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Abstract
Query classification is a fundamental task in an
e-commerce search engine, which assigns one
or multiple predefined product categories in
response to each search query. Taking click-
through logs as training data in deep learn-
ing methods is a common and effective ap-
proach for query classification. However, the
frequency distribution of queries typically has
long-tail property, which means that there are
few logs for most of the queries. The lack of
reliable user feedback information results in
worse performance of long-tail queries com-
pared with frequent queries. To solve the above
problem, we propose a novel method that lever-
ages an auxiliary module to enhance the rep-
resentations of long-tail queries by taking ad-
vantage of reliable supervised information of
variant frequent queries. The long-tail queries
are guided by the contrastive loss to obtain
category-aligned representations in the auxil-
iary module, where the variant frequent queries
serve as anchors in the representation space.
We train our model with real-world click data
from AliExpress and conduct evaluation on
both offline labeled data and online AB test.
The results and further analysis demonstrate
the effectiveness of our proposed method.

1 Introduction

In the e-commerce search engine, query classifica-
tion is a task to assign one or multiple predefined
product categories to each search query. It is a
fundamental component that recognizes the intent
of user query and retrieves relevant products. The
task of query classification can be basically viewed
as a multi-label short text classification problem.

Deep learning methods are the mainstream ap-
proaches for query classification tasks nowadays.
Considering the massive amount of queries and cat-
egories, it’s usually too expensive to collect train
data by manually labeling. Therefore, utilizing
the click-through data as implicit feedback signals
to build a model is the most common approach

that predicts the categories of query (Shen et al.,
2009; Lin et al., 2018b) . Various deep models
have achieved great success in query classification
(Zhang et al., 2019; Yu and Litchfield, 2020; Zhang
et al., 2021). To fully utilize the mutual information
between the query and categories, some models
convert the multi-label classification to a multiple
binary classification task and obtain superior per-
formance (Liu et al., 2017; Nam et al., 2014).

However, the long-tail distribution of queries in
e-commerce websites brings challenges to deep
models. Few high-frequency queries dominate in
search input while low-frequency queries have a
very low probability of occurrences. These low-
frequency queries are what we call long-tail queries
and others are frequent queries. The users’ feed-
back logs of long-tail queries are usually difficult to
obtain and insufficient training data also result in a
serious data noise problem. Moreover, the product
taxonomy in e-commerce websites usually con-
sists of thousands of categories. The large amount
of categories aggravates the sparsity of long-tail
query-category feedback data. Therefore, the lack
and noise of training data cause the lower perfor-
mance for long-tail queries compared with frequent
queries in the task of query classification.

Another problem is that queries with slight lexi-
cal differences may have totally different category
intents (Zhang et al., 2021). Queries in e-commerce
are typically short and ambiguous (Shen et al.,
2009; Lin et al., 2018b). A modification of one
word in the query could entirely change the cor-
responding category, such as “blouse collar” and
“blouse with collar”, or “pearl ring” and “pearl ear-
ring”. This phenomenon hinders the deep models
from classifying long-tail queries because there
aren’t enough examples to distinguish the intents
of these lexically similar queries.

In summary, query classification in real-world
e-commerce scenarios differs from common text
classification tasks in at least two aspects. At First,
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the supervised information is not entirely reliable
especially for long-tail queries, depending on the
query frequency in search logs. Secondly, most
queries are short and the textual information inside
queries is very limited.

Inspired by the aforementioned observations, we
propose a novel method to improve the perfor-
mance of long-tail query classification. The ba-
sic idea of our method is to utilize the query fre-
quency information and transfer knowledge from
frequent queries to long-tail queries, which takes
advantage of the fact that the click feedbacks of
frequent queries are more reliable. For each query,
we select several frequent queries as the variant
queries, which are lexically similar to the original
query. We use an auxiliary module coupled with a
contrastive loss (Chopra et al., 2005) to enhance the
representation of the original query by these vari-
ant queries. The variant queries serve as anchors in
vector space while the auxiliary module aligns the
representation vectors between original queries and
variant queries in the view of category semantics.
We conduct experiments on real-world click data
from AliExpress 1 and also evaluate our method on
the public dataset. The results suggest that signifi-
cant improvement of long-tail query classification
tasks on multiple metrics. We further conduct the
comparison and visualization to verify the effect of
our representation enhancement.

The major contributions of this article are sum-
marized as follows:

• We propose a novel method for long-tail query
classification by transferring knowledge from
multiple variant frequent queries to long-tail
queries.

• Our method enhances the representations of
queries with the contrastive loss which bases
on the category consistence among lexical
similar queries.

• We validate the effectiveness of our method
in a public dataset and real-world search sce-
narios.

2 Related Work

2.1 Query Classification
There have been various works studying query clas-
sification in e-commerce recently. These works can

1https://www.aliexpress.com, a cross-border e-
commerce platform of Alibaba

be classified into three categories: statistical-based
methods (Shen et al., 2009), traditional machine
learning methods and deep learning methods. Lin
et al. (2018b) introduce an unsupervised method to
collect query classification data from click-through
logs and apply several traditional methods such as
SVM, XGBoost and fastText on this task. Zhang
et al. (2019) design a progressively hierarchical
classification framework to make use of the se-
mantic information from a category tree and take
TextCNN (Zhang and Wallace, 2015) as the base
model. To incorporate information of category tree
structure, Gao et al. (2020) proposes a deep hier-
archical classification framework. The framework
generates layer representation for each layer and
shares the representation to lower layers. Yu and
Litchfield (2020) propose a multi-objective method
that optimizes hierarchical accuracy-depth trade-
off across multi-level categories. Multi-objective
optimization is adopted in post inference phase to
select the deepest category whose prediction accu-
racy exceeds its corresponding threshold. Zhang
et al. (2021) propose a framework that also focuses
on long-tail query classification in e-commerce,
which adds an auxiliary across-context attention
module to extract external information by predict-
ing the categories of variant queries.

2.2 Text Classification

Multi-label text classification can be viewed as
the generalization of query classification, although
most text classification tasks focus on long text
such as web document, papers and news. CNN-
based models, including traditional CNN (Liu
et al., 2017) and graph-CNN (Peng et al., 2018),
are the common approaches to classify text. Lin
et al. (2018a) apply multi-level dilated convolution
and attention-over-attention mechanism to gener-
ate higher-level semantic representations for text
classification. Recurrent networks are also ap-
plied to this task, You et al. (2019) proposes a
label BiLSTM-based deep learning model with
multi-label attention named AttentionXML. Atten-
tionXML uses a probabilistic label tree to handle
extreme multi-label text classification (XML). X-
Transformer (Chang et al., 2020) deals with XML
by transformer models, which predicts labels in
two steps: first, recalls the label clusters and then
re-ranks the labels within the predicted clusters.
LightXML (Jiang et al., 2021) and DECAF (Mit-
tal et al., 2021) also follows the above two-stage
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schema but make efforts in utilizing label meta-
data and dynamic negative sampling, respectively.
Yang et al. (2018) and Lin et al. (2018a) apply a
sequence-to-sequence model on multi-label classi-
fication to capture the correlations between label.
Peng et al. (2018) use a regularized loss to model
the dependency of hierarchical classes.

2.3 Contrastive Learning

The contrastive loss is first presented by Chopra
et al. (2005) for the face verification task. By mini-
mizing the contrastive loss with siamese networks,
the similarity metric becomes small for pairs of
faces from the same person and large for pairs from
different persons. Oord et al. (2018) utilize a proba-
bilistic contrastive loss in a universal unsupervised
learning approach to extract useful representations
from high-dimensional data, such as speech, im-
ages and text. Lian et al. (2018) introduce a deep
model coupled with contrastive loss to learn dis-
criminative audio representations. The principle
that aligns the representation according to the cate-
gories is similar to contrast learning. Contrastive
learning learns effective representations by pulling
semantically close neighbors together and pushing
apart non-neighbors so that “similar” points in in-
put space are mapped to nearby points on the man-
ifold (Hadsell et al., 2006). SimCLR(Chen et al.,
2020) is a successful appliance of contrastive learn-
ing in computer vision fields and Gao et al. (2021)
introduce SimCSE in NLP, which applies contrast
learning to sentence embedding task of both unsu-
pervised approach and supervised approach.

3 Methodology

We introduce our proposed method in this section.
We first give an overview of our method in Sec-
tion 3.1 and then demonstrate each module in detail
from Section 3.2 to 3.5.

3.1 Overview

We first define the formal notation of our work.
We cast query classification task as multi-label text
classification in a binary manner. Given a query
q = [wq1, wq2, ..., wqn], a sequence of words with
length n, the task is to predict whether category
c ∈ C is a positive category for query q or not,
where C is the set of predefined e-commerce cat-
egories. The category c = [wc1, wc2, ..., wcm]
is also a sequence of words that is the descrip-
tion of the category. We denote training set as

T = {⟨qi, ci, yi⟩ |i = 1, 2, ..., N}, where yi ∈
{0, 1} is the label which indicates the pair ⟨qi, ci⟩
is a negative example or a positive example. We
denote the set of all queries in training set as
QALL = {q| ⟨q, ∗, ∗⟩ ∈ T}. We also define a fre-
quent queries set QF , which is a subset of QALL

and consists of the queries with daily average page
views more than thresq. The other queries are
regarded as long-tail queries.
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Figure 1: The overview of our proposed model.

Our proposed method consists of two compo-
nents: the main module and the auxiliary module,
as depicted in Figure 1. The main module is a
standard text classification model which takes the
tokenized sequence of query and category as in-
put and predicts the relation between query and
category in an interactive manner. The auxiliary
module is to learn the representations of variant
queries and transfer the representing ability to the
main module with a contrastive loss function. The
main and auxiliary modules are optimized simulta-
neously in training phase while only the main mod-
ule is used in inference phase. Therefore, we do
not add extra computation for prediction compared
with base method. In this work, we adopt BERT
(Devlin et al., 2018) as our base model because it
achieves state-of-the-art performance among many
NLP tasks and provides a high standard of baseline.

3.2 Main Module
The main module is basically a standard BERT to
compute the relevance score between query and
category via transformer architecture and we make
a slight modification on input schema. Since each
query and category share the same BERT model,
the query input is typed by customers and the cate-
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gory’s textual description is usually more formally
written, which differs in choice of words. Accord-
ing to ColBERT(Khattab and Zaharia, 2020), we
distinguish the input sequences by adding a spe-
cial token [Q] to queries and another token [C]
to category descriptions. Given a training exam-
ple ⟨q, c, y⟩, we get the concatenated input tokens
[CLS, [Q], wq1, ..., SEP, [C], wc1, ..., SEP ]. Af-
ter feeding the input, we obtain the output vec-
tors from BERT of all tokens. We denote the out-
put vectors of [Q]-location, [C]-location and CLS-
location as hq, hc and hcls, which are expected to
represent the query, the category and the interactive
feature between query and category respectively.

We concatenate hq, hc and hcls as a hidden vec-
tor and feed it to fully connected networks with
binary cross-entropy loss to predict the target score
ŷ ∈ [0, 1]. The target score indicates the relevance
of the query and category, as follows:

ŷ = f(Wa · (hq ⊕ hc ⊕ hcls) + ba), (1)

LM = −ylog(ŷ)− (1− y)log(1− ŷ), (2)

where Wa and ba is the weight and bias of the
fully connected network and y denotes the label of
pair ⟨q, c⟩.

3.3 Variant Query Selection

To transfer knowledge from frequent queries to
long-tail queries, we introduce variant queries that
are lexically similar to the original query with sev-
eral different tokens. Despite the similarity in text,
those slight tokens’ differences between the origi-
nal query and its variant queries can lead to totally
different category intents. Since variant queries and
original queries may be fused in semantic space
because of the lexical similarity, we use the cate-
gory information from variant queries to build a
better latent representation for original queries with
auxiliary tasks.

We select M variant queries for each query in
the training set. All the variant queries are frequent
queries that are selected from the candidate set QF .
We propose a simple but effective method with a
low computational cost to select variant queries.
To measure the textual similarity between query q
and candidate query qc, let Tq and Tqc be the set of
tokens of q and qc respectively, a weighted token
similarity is calculated as follows:

Sim(q, qc) =

∑
ti∈Tq∩Tqc

wi,qc

|Tqc|
, (3)

where wi,qc is the weight score of token ti in
query qc. We take TF-IDF (Salton and Buckley,
1988) as the weight score:

wi,qc = TFi,qc ∗ IDFi, (4)

where IDFi is the inverse document (i.e., query)
frequency of token ti. We order all the candidate
queries by their similarity score Sim(q, qc) with q
and select the top M of them as the set of variant
queries, denoted as V q.

The variant queries have similar text to the orig-
inal query but they are not always have same cat-
egories. These queries with different category in-
tents become hard negative examples which are
then utilized by the contrastive loss. All the work
in this subsection is done in data preparing phase.

3.4 Auxiliary Module
The auxiliary module is also a BERT-based model
that predicts the relevance between the given cate-
gory and the variant queries. The auxiliary module
shares parameters of BERT with the main mod-
ule. However, to obtain the pure representation
of queries, the auxiliary module only receives the
tokens of variant queries as input. For each vari-
ant query qvi ∈ V q, we add the special token [Q]
ahead to indicates a query sequence, i.e., the input
sequence is [CLS, [Q], wqv1 , wq

v
2 , ..., wq

v
n, SEP ].

We take the output of [CLS]-location and [Q]-
location from BERT as the representation of variant
query qvi , which is denoted as hicls and hiv. we ob-
tain representation of category c from the main
module and concatenate hicls and hiv with hc for
downstream fully connected networks. Finally, the
relevance score is predicted as follows:

ŷi = f(Wb · (hicls ⊕ hiv ⊕ hc) + bb), (5)

LA = −
∑

M

yilog(ŷi)+(1−yi)log(1− ŷi), (6)

where ŷi is the prediction value and yi is the
label that indicates whether category c is related
to the variant query qvi . The value of yi is from
the training set where yi = 1 if ⟨qvi , c, 1⟩ ∈ T
otherwise yi = 0. Through the training of the
auxiliary module, we build the representations of
variant queries which play an important role in the
calculations of contrastive loss.
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3.5 Contrastive Loss

Since we have obtained hq and hvi , i = 1, ..,M ,
which are the representations of original query q
and its variant queries qvi , we apply a contrastive
loss function to align their representations accord-
ing to their relevance with the category c. We fol-
low the definition of contrastive loss in (Lian et al.,
2018). If the variant query qvi and original query
q belong to the same category c, the representa-
tions of the two queries should be pulled together.
Otherwise, the representations should be pushed
apart. The above process is adopted by adding the
contrastive loss as follows:

LC =
∑

i∈1,...,M
y · Li

C , (7)

Li
C =

{
∥hq − hvi ∥2 y

∧
yi = 1

max(0,m− ∥hq − hvi ∥2) y
∧
yi = 0

,

(8)
where ∥ · ∥ is the L2 norm and m is the margin.
Finally, the total loss is calculated as follows,

re-weighted by parameters λA and λC :

L = LM + λALA + λCLC . (9)

The auxiliary module aims at transferring knowl-
edge from frequent queries to long-tail queries.
Since all the variant queries are frequent queries
that have a large number of click feedback, the
supervised signal derived from those feedback is
more reliable and their representations are more
reasonable in feature space. With the constraint of
contrastive loss between the original query and lex-
ically similar variant queries (shown in Figure 1),
queries obtain better representations to recognize
different category intents.

It’s noteworthy that our proposed method en-
hances the query representations in long-tail query
classification task without bringing in external in-
formation. we neither augment the training exam-
ples nor use other data except the training set.

4 Experiments

We introduce the training and evaluation data set
and the setting of our experiments in section 4.1.
We discuss the performance and effectiveness of
our proposed method with other methods in sec-
tion 4.2 and 4.3.

4.1 Data and Setting

To collect training data, we sample search queries
and their clicked products’ categories in recent
3 months logs from AliExpress, a cross-border
e-commerce platform of Alibaba. We collect
5,000,000 ⟨query, category⟩ pairs and the num-
bers of distinct queries and categories are 3,620,000
and 6,300 respectively. All of the queries and cate-
gories are in English. Queries with daily average
page view less than thresq = 100 are defined as
long-tail queries, which include almost 97% of
queries and occupy only 56% of the whole clicked
pairs. The rest 3% of queries are defined as fre-
quent queries that contributes 44% of clicks. For
each query, we choose its corresponding categories
with high click-through rates as our positive train-
ing examples and replace the query or category ran-
domly from a different pair to generate negative ex-
amples. Finally, we obtain a training data set which
consists of about 33,400,000 pairs. We list several
examples from the training set in Table 1 including
the variant queries and their labels. The columns
named “Query”, “Category” and “Label” are the
inputs of the main module, where the “Label” col-
umn denotes whether the pair of query and category
is relevant or not. The columns named “Variant
Q1/Q2/Q3” and corresponding “Label 1/2/3” are
the inputs of the auxiliary module.

For evaluation, We randomly sample another
2,000 long-tail queries and collect a total of 78,226
correspondings clicked ⟨query, category⟩ pairs
from search engine. Each pair in the evaluation
set are labeled as relevant or irrelevant by human
annotators.

We use the BERT-Tiny pre-trained model re-
leased by google research as our base model. We
process the queries and categories by WordPiece
tokenization (Wu et al., 2016). The number of
variant queries M is 3. The number of frequent
queries N is 100,000. Margin m in contrastive
loss is 32.0 . The loss reweight parameter λA and
λC are 0.1 and 0.02 respectively. We use Adam
optimization method (Kingma and Ba, 2014) and
set the learning rate to 1e-6 while the batchsize is
1024. All hyper-parameters are adjusted according
to the performance on the held-out validation set.
We train the model for a fixed number of global
steps (640,000) and save models at regular intervals.
Then we choose the best performance achieved by
these models as the result.
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Table 1: Examples of training set.

Query Category Label Variant Q1 Label1 Variant Q2 Label2 Variant Q3 Label3
video game consoles 16bit Handheld Game Players 1 game consoles 1 video game consoles 1 video 0
lure glass rattles Fishing Lures 1 lure 1 glass 0 fishing lure 1
fine point heels Women’s Pumps 1 point 0 heels 1 fine jewelry 0
huawei p 40 lite 5g cover Mobile Phone Cases & Covers 1 huawei 0 cover 1 huawei phone 0
612 bundles with frontal Hair Bundles with Closures 1 bundles 1 bundles with frontal 1 613 bundles 1
0.25 eyelashes Body Foundation 0 eyelashes 0 rover 25 0 false eyelashes 0
1 birthday boy clothes Audio Intercom 0 birthday 0 birthday boy 0 boy birthday 0
2000s aesthetic sunglasses Wax Fabrics 0 2000s 0 2000s aesthetic 0 sunglasses 0
pink porcelain plate Men’s Socks 0 porcelain 0 porcelain plate 0 plate porcelain 0

4.2 Performance
We use AUC (Area Under Curve), AP (Average Pre-
cision), Prec (Precision), Recall and F1 score as our
evaluation metrics. The Average precision (Turpin
and Scholer, 2006) is the area under the precision-
recall curve and it is independent of threshold as
well as AUC.

We conduct experiments on the aforementioned
data set and compare our method with the baseline
and existing approaches in Table 2:

• “Base” is the standard BERT model which
takes the same setting as our proposed method
(only preserve the main module).

• “AC(LSTM)” (Zhang et al., 2021) is the lat-
est related work for long-tail query classifi-
cation which couples with an auxiliary task
to provide across-attention information. The
original paper uses LSTM (Hochreiter and
Schmidhuber, 1997) as the encoder and the
base queries and variant queries differ in en-
coders.

• “AC(BERT)” is the modified version we im-
plemented, which shares the same BERT en-
coder for original queries and variant queries
following our proposed method setting for a
fair comparison.

• “Proposed” is our proposed method.

As shown in Table 2, our proposed method
outperforms the baselines by a statistically sig-
nificant margin on all of the metrics. Compared
with method named “Base”, our method achieves
+1.92% improvement on AUC, +2.48% improve-
ment on AP and +2.27% improvement on F1 score.
Our method also outperforms “AC(LSTM)” and
“AC(BERT)” in all of the metrics with steady mar-
gins (range from +1.19% to +1.68%) which reflect
the effectiveness. The AC methods only use one
variant query to adjust the original query represen-
tation implicitly. In contrast, our proposed method

Table 2: Performance comparison between our method
and baselines on evaluation set.

Method AUC AP Prec Recall F1 Score
Base 0.7610 0.3110 0.3367 0.3463 0.3414

AC(LSTM) 0.7622 0.3132 0.3214 0.3727 0.3452
AC(BERT) 0.7681 0.3190 0.3396 0.3632 0.3510
Proposed 0.7802 0.3358 0.3522 0.3767 0.3641

clearly establishes the pulling or pushing relations
between the original query and variant queries by
contrastive constraints.

To better understand the contribution of each key
component of our method, we conduct several abla-
tion tests and each method is described as follows:

• “Proposed-Without LC” removes the con-
trastive loss from the proposed method.

• “Proposed-Only CLS” only uses hcls as fea-
ture instead of concatenating hq, hc and hcls
in main module.

• “Proposed-Sym” means the auxiliary module
uses the same input schema as the main mod-
ule, which takes both variant query tokens and
category tokens as input.

• “Proposed-Entire Query” takes the whole
queries in the training set as variant query can-
didates rather than only the frequent queries.

The experimental results are listed in Table 3.
The results show that our proposed method out-
performs the others significantly. As contrast, the
performance of “Proposed-Without LC” decreases
significantly, which shows that the contrastive loss
plays a key role in enhancing representations. The
performance of “Proposed-Only CLS” decreases
remarkably compared with our proposed method,
which shows that the representations hq and hc can
provide extra useful information for query classi-
fication. The performance of “Proposed-Sym” is
dramatically lower than the results of “Proposed”
method and has only slight improvement compared
to the “Base” method. The result indicates that the
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Table 3: Ablation test of our proposed method on evalu-
ation set.

Method AUC AP Prec Recall F1
Base 0.7610 0.3110 0.3367 0.3463 0.3414

Proposed-Sym 0.7650 0.3148 0.3124 0.3791 0.3425
Proposed-Without LC 0.7584 0.3147 0.3240 0.3780 0.3489
Proposed-Only CLS 0.7708 0.3245 0.3339 0.3699 0.3510

Proposed-Entire Query 0.7645 0.3209 0.3304 0.3589 0.3441
Proposed 0.7802 0.3358 0.3522 0.3767 0.3641

representation alignment effect of contrastive loss
weakens using query tokens and category tokens
simultaneously in the auxiliary module. With in-
puts of extra category tokens, the representation
of the variant query hvi loses its independence and
becomes sensitive to disturbance of category texts,
which makes hvi an unstable anchor for the original
query. The decreased performance of "Proposed-
Entire Query” shows choosing frequent queries as
variant queries can lead to better representations for
long-tail queries, which implies frequent queries
serve as better anchors in hidden spaces because of
sufficient training data.

To investigate the effect of our method on long-
tail queries, we split the evaluation set of long-tail
queries into 3 sets according to their frequency
levels in search logs. The set of relatively high-
frequency queries is named “Long-tail Head”, the
set of queries with middle-frequency level is named
“Long-tail Mid” and the set of rest queries is “Long-
tail Tail”. To compare with performance on those
long-tail query sets, we also randomly sample a
set of queries named “Top Freq” from frequent
queries as defined in Section 4.1, which includes
28,389 pairs of 512 queries. The performance of
base method and our method on the above evalu-
ation sets are listed in Table 4. Our method out-
performs the baseline by a significant margin in
all the groups of long-tail queries, where the AUC
improvements are +1.99%, +1.84% and +2.22%
respectively. The improvement on “Long-tail Tail”
set is greater than other sets, which means the great-
est improvement is achieved on the queries at the
far end of the tail. We notice that the improve-
ment on “Top Freq” queries is much smaller with
+0.28% on AUC, +0.37% on AP and +0.67% on
F1 Score, compared with the remarkable improve-
ment on long-tail queries. The results indicate that
our method improves the effectiveness on long-tail
queries more than frequent queries.

Furthermore, We evaluate our method on the
public dataset released by the personalized e-
commerce search challenge of the CIKM Cup 2016

2. This dataset contains query searching and brows-
ing logs and product metadata including the prod-
uct categories information (Wu et al., 2017). We
process the data files and collect a total of 500,000
⟨query, category⟩ pairs as training data for the
query classification task, which have 26,137 dis-
tinct queries and 1,213 distinct categories. To col-
lect test data, we sample 3000 long-tail queries
and remove the corresponding pairs from the train-
ing set. The detailed data process is described in
Appendix A. As shown in Table 5, our proposed
method substantially improves multiple metrics in-
cluding AUC, AP and F1 Score on this dataset,
with +4.3% and +2.6% absolute improvement on
AP compared with the base method and AC(LSTM)
method respectively. Considering that the dataset
is more sparse and its tokenization is different from
the common wordpiece model (Wu et al., 2016),
these performances demonstrate the effectiveness
and generalizability of our method.

4.3 Discussion

To verify whether our proposed method is able to
recognize the category intents of lexically similar
queries, we calculate two distances: 1) the average
Euclidean distance between representation vectors
of original queries and their category-consistent
variant queries and 2) the same metric between orig-
inal queries and their category-inconsistent variant
queries. We visualize the distances between the pro-
posed method and baseline with increasing training
steps in Figure 2. The curves named “PD” and
“PS” are derived from our proposed method and
the curves named “BD” and “BS” are from the
base method. In Figure 2, the gap between the
curve “BD” and “BS” are very close all the time
while the curve “PD” and “PS” gradually sepa-
rate from each other with a certain margin. As we
mentioned ahead, the phenomenon indicates that
our proposed model distinguishes different cate-
gory well by pulling original query and category-
consistent variant queries together and pushing
them of different category further apart.

To verify whether our proposed method gener-
ates better representations for long-tail queries, we
visualize the representation vectors (i.e. vector [Q]
from the model) of the baseline method and our
method in Figure 3. We randomly sample 100,000
long-tail queries and project their representations

2https://competitions.codalab.org/
competitions/11161
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Table 4: Performance improvement of queries grouped by frequency in search logs.

base proposed
Group AUC AP Prec Recall F1 Score AUC AP Prec Recall F1 Score

Top Freq 0.7408 0.4615 0.4149 0.4852 0.4473 0.7436(+0.28%) 0.4652(+0.37%) 0.4177(+0.28%) 0.4973(+1.21%) 0.4540(+0.67%)
Long-tail Head 0.7558 0.3469 0.3359 0.3823 0.3576 0.7757(+1.99%) 0.3514(+0.45%) 0.3564(+2.05%) 0.3887(+0.64%) 0.3719(+1.43%)
Long-tail Mid 0.7461 0.3102 0.3214 0.3862 0.3508 0.7645(+1.84%) 0.3344(+2.42%) 0.3287(+0.73%) 0.4005(+2.43%) 0.3611(+1.03%)
Long-tail Tail 0.7742 0.2926 0.3103 0.3539 0.3307 0.7964(+2.22%) 0.3211(+2.85%) 0.3484(+3.81%) 0.3736(+1.97%) 0.3606(+2.99%)

Table 5: Performance comparison between our method
and baselines on the public CIKM Cup 2016 dataset.

Method AUC AP Prec Recall F1 Score
Base 0.9096 0.6465 0.6571 0.5716 0.6061

AC(LSTM) 0.9122 0.6637 0.6736 0.5732 0.6193
AC(BERT) 0.9129 0.6668 0.6845 0.5636 0.6181
Proposed 0.9160 0.6897 0.6738 0.5969 0.6330

Figure 2: The Euclidean distance of category-consistent
queries and category-inconsistent queries representation
vector.

to 2-dimensional space by UMAP(McInnes et al.,
2018) (neighbors=40, epochs=400). Each point
in Figure 3 is a long-tail query colored according
to its category. If a query is relevant to multiple
categories, the category which has the most click
logs is chosen. To simplify the figure, we only re-
serve queries that are relevant to the top-10 hot cat-
egories. As shown in the left box of Figure 3, a lot
of the query representations are scattered around
the space, and categories groups are overlapped
with each other, which means the baseline method
fails to preserve the category consistency of long-
tail queries. In contrast, the query representations
in the right figure form clusters according to their
categories spontaneously. Most of these clusters
are cohesive and keep away from other clusters.
There are still some overlaps between query clus-
ters, probably due to that some queries are natu-
rally interested with multiple categories, such as
T-shirt (Men) and T-shirt (Women). The visual-
ization results indicate that our method is able to
obtain reasonable representations corresponding to
the category semantics of queries.

Figure 3: The visualized representation vectors of long-
tail queries generated by Base model (left) and our pro-
posed model (right).

Table 6: Online performance evaluation.

Method CTR RPM
Base - -

Proposed +0.63% +1.06%

4.4 Online Evaluation
We deploy online evaluation in search advertising
system of AliExpress. Instead of comparing each
query with the whole 6,300 categories online, we
predicted categories offline beforehand and gener-
ated a query-category cached table that covers over
80% of page views. The predicted categories of
queries serve as the filters of vector-based product
retrieval and influence the relevance score between
the queries and products in our e-commerce spon-
sored search system. We conducted standard A/B
testing for 5 days and selected 5% of the search
traffic as the test group to evaluate our proposed
method. Two common metrics are calculated for
evaluation: CTR (click-through rate) and RPM
(revenues per mille). As shown in Table 6, the
results suggest that our proposed method improves
the online performance on tens of millions of user
visits. The gains of CTR and RPM reflect that our
method increases valid exposures of the advertise-
ment with better quality, which finally results in
the growth of users’ clicks and platform revenue.

5 Conclusion

In this paper, we propose a novel method for query
classification which focuses on the long-tail queries
in e-commerce. Our method consists of a main
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module and an auxiliary module that aims at uti-
lizing reliable information from frequent queries
to help the classification of long-tail queries. The
results of extensive experiments show that our pro-
posed method outperforms the baselines by a sub-
stantial margin. Further analysis demonstrates our
method can obtain better representations for long-
tail queries and discriminate different category in-
tents from lexically similar queries. In the future,
We will generalize our idea to more situations in
e-commerce, such as multi-language query classifi-
cation and other tasks such as product retrieval or
relevance classification.
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A Data Process for CIKM Cup 2016
Dataset

We extract pairs of ⟨query, productID⟩ from
the file named train-queries.csv, which
includes user sessions from e-commerce search
engine logs. Only the query-full cases are se-
lected and each query is represented as a list
of hashed tokens. The queries which appear in
more than thresq sessions are regarded as fre-
quent queries while others are long-tail queries.
We then map the pairs of ⟨query, productID⟩ to
⟨query, categoryID⟩ according to the content of
file product-categories.csv and denote
the set of pairs as S. We denote the number of
occurrences of query q in S as fq and the number
of ⟨q, c⟩ pairs in S as fq,c where c is the category.
The pair ⟨q, c⟩ is regarded as a positive example
when it meets the requirements of both absolute
number and relative ratio, which are fq,c > thresN
and fq,c >

fq
M . We collect all positive examples as

set SP and then generate negative examples from
SP . For each ⟨q, c⟩ in SP , we replace the q and c
by a random query q′ and category c′ respectively
and repeat R times. Finally, we randomly select L
long-tail queries and then take all the correspond-
ing pairs in positive set and negative set as the test
set, while the rest of pairs are training set.

Considering there is no category description in
the original dataset, we group the products based
on their categories and take the top-K most fre-
quent tokens in product names as the description
of the category (the hashed product name tokens
are obtained from products.csv).

The values of above parameters are listed in Ta-
ble 7. The hyper-parameters of the model are the
same as Section 4.1.

Table 7: Parameters in process of CIKM Cup 2016
dataset.

Name value
thresq 5
thresN 2

M 16

Name value
R 4
L 3000
K 10
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