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Abstract

Conventional natural language process (NLP)
generation models are trained offline with
a given dataset for a particular task, which
is referred to as isolated learning. Research
on sequence-to-sequence language generation
aims to study continual learning model to con-
stantly learning from sequentially encountered
tasks. However, continual learning studies often
suffer from catastrophic forgetting, a persistent
challenge for lifelong learning. In this paper,
we present a novel NLP transformer model that
attempts to mitigate catastrophic forgetting in
online continual learning from a new perspec-
tive, i.e., attention calibration. We model the at-
tention in the transformer as a calibrated unit in
a general formulation, where the attention cal-
ibration could give benefits to balance the sta-
bility and plasticity of continual learning algo-
rithms through influencing both their forward
inference path and backward optimization path.
Our empirical experiments, paraphrase gener-
ation and dialog response generation, demon-
strate that this work outperforms state-of-the-
art models by a considerable margin and effec-
tively mitigate the forgetting.

1 Introduction

Sequence-to-sequence (Seq2Seq) generation has
been widely applied in artificial learning (AI) sys-
tem to deal with various challenging tasks, e.g.,
paraphrase, dialogue system (Bordes et al., 2016),
machine translation, etc. In addition, powerful rep-
resentation learning (e.g., Transformer) have been
used in Seq2Seq models, which have taken the
state-of-the-art of generation models to a new level.
Generally, nature language generation (NLG) mod-
els leverage an encoder to create a vector repre-
sentation for source inputs, and then pass this rep-
resentation into a decoder so as to output a target
sequence word by word. For example, Bart (Lewis
et al., 2019) is such a transformer-based NLG ar-
chitecture that is equipped with the BERT-type net-

work structure (Devlin et al., 2019) as its encoder
and with the GPT-type structure as the decoder.

Despite the remarkable ability on sequence gen-
eration, the conventional paradigm aims to learn
a Seq2Seq model on the whole available dataset,
which limits its ability in accumulating knowledge
in continual learning scenario. When switching to
a new task from some previously learned ones, the
fine-tuned model on the new task sometimes faces
a significant performance drop on previous learned
data, where such a phenomenon is also referred to
as catastrophic forgetting (Parisi et al., 2019; Mai
et al., 2021; Yin et al., 2021; Li et al., 2022a,b). In
contrast, humans and animals exhibit remarkable
ability to deal with new tasks by effectively adapt-
ing their acquired knowledge without forgetting the
previously learned skills. If one desires to build a
human-like NLG model, continual learning ability
is a necessary skill for achieving this goal.

The existing replay-based continual learning
approaches have taken into account of differ-
ent perspectives of the model training process
to remedy the catastrophic forgetting dilemma,
such as regularizing the parameter change dur-
ing training (Chaudhry et al., 2018; Parisi et al.,
2019), selective memory storage or replay (Aljundi
et al., 2019), Bayesian and variational Bayesian
training (Kirkpatrick et al., 2017; Nguyen et al.,
2018), and task-specific parameterization of the
model (Pham et al., 2021; Singh et al., 2020). In
this paper,we tackle the problem from a novel angle
that is distinct to all the aforementioned attempts,
i.e., seeking a better balance between stability and
plasticity with neuron calibration. Specifically, we
refer to neuron calibration as a process of math-
ematically adjusting the transformation functions
in various layers of transformer-based architecture.
In this way, the neuron calibration is able to prior-
itize both model parameter and feature map that
are suitable to new tasks. In detail, our proposed
neuron calibration approach regularizes the param-
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eter update against catastrophic forgetting via pos-
ing a trainable soft mask on the attention and fea-
ture maps, which then influences both the model
inference process and the model training process
through the forward inference path and the back-
ward optimization path.

The contributions of our work are three-fold:
(i) we introduce a general and light-weight feature
calibration approach to tackle task-incremental con-
tinual learning problems where the models are for-
mulated as feed-forward transformer-based func-
tion approximations; (ii) we formulate a novel
task-incremental learning paradigm to train the
calibrated model with an interleaved optimization
scheme to mitigate the forgetting issue; (iii) we in-
dicate through extensive empirical experiments that
the proposed method could outperform the recent
continual learning algorithms on Seq2Seq language
generation applications.

2 Related Work

Continual Learning. Existing continual learning
methods can be classified into three categories. The
regularization approaches (Li and Hoiem, 2017;
Zenke et al., 2017; Schwarz et al., 2018) impose a
regularization constraint to the objective function to
mitigate the catastrophic forgetting. The rehearsal
approaches (Rolnick et al., 2019; Aljundi et al.,
2019; Buzzega et al., 2020; Wang et al., 2022) al-
locate a small memory buffer to store and replay
the exemplar from the previous task to consoli-
date the historical knowledge. The architectural
approaches (Rusu et al., 2016; Serra et al., 2018;
Singh et al., 2020; von Oswald et al., 2020) avoid
catastrophic forgetting through approximating the
training of the task-specific network and allowing
the expansion of the parameters during continual
learning. Nonetheless, all these methods are con-
fined to supervised classification problem, which
limits their application in real-life problems. Life-
long GAN (Zhai et al., 2019) tackles the genera-
tion problem of continual learning and learn task-
specific representation on shared parameters. Their
method is restricted to image generation tasks and
not directly applicable to NLP benchmark datasets.

Continual Language Generation. Few work has
been done in continual learning for Seq2seq lan-
guage generation. The most relevant work is
from Mi et al. (2020), which propose a contin-
ual learning framework that builds a human-like
dialogue system in an incremental learning man-

ner. Specifically, this method combines the mem-
ory replay with the regularization technique to ad-
dress the catastrophic forgetting, and empirically
achieves a promising result on the MultiWoZ-2.0
dataset. Nonetheless, their system is specifically
designed for the dialogue task and lacks generaliza-
tion to Seq2Seq tasks. Our method differs from Mi
et al. (2020) in terms of the following three points:
(i) our method is built upon a neuron calibration
approach, where such contribution is orthogonal
to that from all the previous works; (ii) our pro-
posed method does not engage any task-specific
part; (iii) we do not store the historical exemplar
from the episodic memories during training. In ad-
dition, our proposed method could be adapted to
various seq2seq language generation applications,
such as summarization, translation, paraphrases,
dialog response generation.

3 Method

3.1 Preliminary

We introduce the setting of online continual learn-
ing. Formally, we denote the sequence of train-
ing tasks in continual learning as {T1, · · · , TT }.
The tasks come and go in an online fashion, and
the training data for each task is available only
at that time slot. When the new task arrives, the
previous task’s data is deleted and cannot be used
any more. For the t-th task, we denote its training
dataset as Dt. The objective of the task is to learn
a transformer-based generation model. Our work
tackles the natural language generation (NLG)-
based continual learning problems and thus the
model is typically modeled as a feed-forward trans-
former with L-blocks (i.e, {li}Li=1), with its corre-
sponding parameters denoted as {θi}Li=1.

3.2 Transformer Calibration

We introduce a general calibration mechanism to
tackle the continue learning problems on Seq2Seq
generation, where the models are parameterized by
the transformer-based NLG models. By applying
neuron calibration, we aim to adapt the transforma-
tion function in the deep transformer layers. Our
proposed learning paradigm with neuron calibra-
tion could perform both model selection and feature
selection to effectively avoid catastrophic change
on the model parameters while accomplishing a
stable consolidation of knowledge among tasks. In
this framework, the calibration module is indepen-
dent from the pre-trained base model in order to
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Figure 1: Overview of our proposed transformer calibration for continual learning framework. This method consists
of two types of calibration modules: attention calibration module (ACM) and feature calibration module (FCM),
which are sequentially applied to the layers in the multi-head attention model (as shown in the figure) to calibrate
the attention signals and feature maps, respectively.

preserve the learned knowledge and avoid catas-
trophic forgetting. Figure 1 provides an illustration
of our neuron calibration process.

Formally, we introduce two types of general cal-
ibration modules to be applied on the transformer-
based NLG models: (i) attention calibration module
(ACM) and (ii) feature calibration module (FCM).
The attention calibration module learns to scale the
attentions of the transformer function whereas the
feature calibration module learns to scale the fea-
ture map output from the transformer block. When
calibrating the i-th layer of the transformer block,
we use Ai to denote its scaled attention function
after applying attention calibration (ACM). Mean-
while, we use hi and h̃i to denote the output fea-
ture maps before and after applying feature calibra-
tion (FCM), respectively.

We first introduce the formulation for ACM. To
calibrate the attention, we first define a learnable
matrix Φi ∈ RN×N , which presents the importance
of each pair of words, where N is the maximal
number of words in the sentence and a subset of
parameters is used according to sentence length.
The scale dot-product attention is formulated as:

Atten = Softmax
(
QiK

⊤
i ⊙

(
Φi√
d

))
Vi (1)

where ⊙ is the element-wise product. As Φi is
learned across the sequential tasks, the task-aware
attention can serve as a task representation instead
of traditional task embedding. The overall cali-
brated attention can be decoupled into two parts:
theQK⊤ term presents the content-based attention,

and Φi/
√
d term acts as the soft mask for attention

calibration. This united design offers more task
adaptation by suppressing the unrelated attention
values and highlighting the important ones. With
the ACM, the calibrator module plays a crucial role
during the model training process: at the forward
inference path, it scales the value of the attention
in the attention block to make prediction; at the
backward learning path, it serves as a prioritized
weight to regularize the update on parameters.

By applying attention calibration on transformer
blocks, the attention function at the i-th layer
Atten(Qi,Ki, Vi,Φi) is parameterized by Φi and
produces the output as follows,

hi = FAi(hi−1), s.t. Ai = Atten(Qi,Ki, Vi,Φi)
(2)

The output hi of the attention function is then pro-
cessed by a feature calibration module (FCM) to
generate the calibrated feature map for that layer.
We use Ωλi(·) to denote the feature transformation
function at the i-th layer, parameterized by λi. With
FCM, the calibration parameters also interact with
the feature map hi with a multiplicative operation.
Specifically, the calibrated feature is computed as:

Ωλi(hi) = tile(λi)⊙ hi, λi ∈ Rd, hi ∈ RN×d

(3)
given the dimension of feature map d.

In the end, the outputs from (2) and (3) get added
up in an element-wise manner by a residual con-
nection. This is followed by normalization and acti-
vation operations to produce a final output for that
layer. In summary, the overall calibration process
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for the i-th layer could be formulated as follows,

h̃i = σ (LN (Ωλi (FAi (hi−1))⊕FAi (hi−1))) ,
(4)

where LN (·) denotes the layer normalization, ⊕
denotes an element-wise addition operator, and σ(·)
is an activation function. Then h̃i is sent as input
to the i + 1-th layer in the feed-forward network.
All the aforementioned calibrator parameters are
initialized with a value of 1 at the start of training.
We illustrate an example case of applying the cali-
bration on a transformer-based model in Figure 1.

3.3 Learning Calibration Parameters

We propose an interleaved learning paradigm to
train the calibrated transformer model. In the train-
ing procedure, we aim to exploit the training of the
calibrator parameters to mitigate the catastrophic
forgetting on the continual learning. Since the ‘for-
getting’ in the training is often attributed to dra-
matic changes in parameter values, we design the
learning objective for the calibrator learning as to
regularize the parameter change after accessing the
new knowledge not to be biased too much from the
model values learned from previous ones.

To formulate the objective function for the cali-
brated model training, we inherit the elastic weight
consolidation (EWC) approach proposed in Kirk-
patrick et al. (2017) . Specifically, EWC approxi-
mates the true posterior distribution for the contin-
ual learning parameters by a Gaussian distribution
given by the mean from the previous tasks and
a diagonal precision from the Fisher information
matrix. In this work, we formulate a weight cali-
bration process to prevent the catastrophic change
on model parameters. Then we train the calibrator
parameters with the following loss function,

Lc = vec
(
θ − θt

)⊤
Λtvec

(
θ − θt

)
︸ ︷︷ ︸

term (a)

+βLt(Ψ, λ, θ)︸ ︷︷ ︸
term (b)

(5)
where β is a trade-off parameter, and the operator
vec (·) stacks the tensor into a vector.

The matrix Λt in term (a) are the Fisher infor-
mation matrix, which is obtained from the data
training loss for previous observed tasks, while
the Lt(Ψ, λ, θ) in term (b) is the loss for the cur-
rent task. The two terms perform the consolidation
process to retain the essential parameters towards
past knowledge when the base model parameters
are trained to absorb new tasks. To consolidate the

knowledge on the calibrated model, the Fisher in-
formation matrix is computed upon the gradients
on calibrated parameters.

3.4 Optimization
We formulate the optimization process to train the
calibrated model under an iterative optimization
schema, with the parameters from the base model
and those from the calibration module being op-
timized by the loss function (5). During the inter-
leaved optimization process, we first fix θt and take
gradient steps with regard to {Ψ, λ} as follows:

Ψt+1 ← Ψt − α▽Ψ Lc ((Ψ, λ), θt,Dt) , (6)

λt+1 ← λt − α▽λ Lc ((Ψ, λ), θt,Dt) , (7)

Then, we go on to optimize the base model param-
eter when the inference takes place with the up-
dated base model,

θt+1 ← θt − α▽θ Lc (θ, (ψt+1, λt+1),Dt) (8)

where α is the learning rate. By employing the cal-
ibrated parameterization of the transformer-based
network, and optimizing it with the iterative learn-
ing scheme, our method achieves the trade-off be-
tween new data adaptation and past knowledge con-
solidation. We present the details in Algorithm 1.

Algorithm 1: Transformer Calibration for
Continual Learning Algorithm (TCCL)

Input: Base model θ, calibrator (Φ, λ)
learning rate α, trade-off parameter
β, training data {Dtr1 , ...,DtrT }, test
data {Dte1 , ...,DteT }

Output: Base model Fθ, calibrator F(Φ,λ).
function train_and_eval

Randomly initialize θ, Ψ and λ.
for t← 1 to T do

for b← 1 to nbatch do
Observe a batch of data
Bt = {xi, yi}bsi=1 from Dtrt .

Φ′ ← Φ− α∇ΦLc(Bt; θ,Φ, λ)
λ′ ← λ− α∇ψLc(Bt; θ,Φ, λ)
θ′ ← θ − α∇θLc(Bt; θ,Φ′, λ′)
Compute Λt according to∇θLc

for te← 1 to t do
Evaluate testing accuracy for the

current model on Dte1,...,t:
ŷ1,...,t ← F(Dte1,...,t; θt,Φt, λt)
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4 Empirical Experiments

We evaluated the proposed algorithm on seq2seq
generation tasks. We applied the algorithms on two
datasets for seq2seq generation tasks in the contin-
ual learning. We also conducted the ablation study
with respect to attention calibration and feature cali-
bration to evaluate the robustness and effectiveness
of the proposed calibration techniques.

4.1 Application: Paraphrase Generation

Dataset. For paraphrase generation, we train the
model over three existing paraphrase datasets,
Quora1, Twitter2 and Wiki_data (linked-wiki-
text2)3, in a sequential manner, where the model ob-
serves the three sequential tasks (i.e., datasets) one
by one. See Table 1 for Statistics of the datasets.

train valid test
Quora 111,947 8,000 37,316
Twitter 85,970 1,000 3,000
Wiki_data 78,392 8,154 9,324
total 276,309 17,154 49,640

Table 1: Statistics of Dataset on Paraphrase Generation

Experimental Setting. We exploit the SOTA gener-
ation model, BART, as the generation model back-
bone in the continual learning framework. We com-
pare our approach with the following baselines:

• Finetune: for each new task, the model is ini-
tialized with the parameters learned from pre-
vious observed tasks, and then fine-tuned with
data of the current new task.

• Full: the model is trained with all the available
instances from three datasets together, which
regarded as the up-bounded performance for
the continual learning techniques.

• EWC: the EWC (Kirkpatrick et al., 2017) is
introduced in the objective function to train
the model over the sequential tasks.

For evaluation metrics, we use Bleu4, RougeL
and Meteor for the Seq2Seq generation tasks. To
measure the forgetting rates of different methods,
we basically exploit the model learned on t-th task
to evaluate its performance on previous tasks, i.e.,

1https://huggingface.co/datasets/quora
2https://metatext.io/datasets/paraphrase-and-semantic-

similarity-in-twitter-(pit)
3https://paperswithcode.com/dataset/wikitext-2

1, · · · , t− 1 task. We tune the learning rate α from
{10−3, 10−2, ..., 100} for both model parameter
and calibrator parameter, and trade-off parameter
β from {0.1, 0.5, 1, 5, 10}. Meanwhile, the batch
size is set to be {128, 256, 512} on all datasets. All
training and evaluation experiments are performed
using Tesla V100S GPUs. The whole learning pro-
cess takes around 0.5 GPU day.

4.1.1 Experimental Results

Accuracy Measurement: Table 2 presents the ac-
curacy results in the continual learning setting,
where the model is evaluated after the model has
been trained on sequential tasks one after another.
In the table, the first three models are independent
baselines trained on either one of three datasets.
As expected, model trained on new dataset may
suffer the significant performance drop on previous
instances, due to the data distribution gap between
old and new datasets. For example, twitter includes
the short casual text while Wiki_data contains for-
mal academic text.

For the fine-tune, the model is trained in a Quora-
Tweeter-Wiki (QTW) order, in which the model is
initialized with the model parameters learned on the
previous task and then fine tuned over the follow-
ing task. We observe that finetune results on Quora
and Wiki_data are comparable with those when
building the model from scratch. In addition, EWC
can achieve a better performance than Finetune and
independent training over any evaluation metrics
on Quora and most metrics on Twitter and Wiki,
demonstrating the effectiveness of EWC in contin-
ual learning. Nonetheless, our calibration model
consistently achieves the best performance across
all sequential tasks, demonstrating that the calibra-
tion model yields a promising domain adaptation
in continual learning.

Forgetting Measurement. Table 3 presents the
results when the current models are evaluated on
testing data from the previous tasks. The purpose
of this experimental setting is to measure the for-
getting rate of the models in the sequential train-
ing. In the order of QTW, the results are evaluated
on Quora after the model is trained on Twitter, as
well as on Quora and Twitter after the model is
trained on Wiki. Our method is compared with in-
dependent baseline, finetune and EWC. Table 3 in-
dicates that our method obtains a less performance
drop than Finetune and EWC, with a low forget-
ting rate. Moreover, after the model is trained on
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Quora Test Twitter Test Wiki Test
Models bleu4∗ rougeL meteor bleu4∗ rougeL meteor bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 35.47 57.49 54.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 42.12 73.86 73.10
Finetune 30.11 55.85 57.17 35.79 56.32 54.93 42.12 73.86 73.10
EWC 30.25 56.16 57.98 33.52 54.41 54.21 42.15 73.53 73.59
Ours 32.14 58.12 59.13 36.81 58.46 55.32 44.47 74.49 73.66
Full 33.99 59.56 61.67 38.56 58.76 56.01 46.86 76.59 75.91

Table 2: Results of model evaluations on QTW setting
(bleu4∗ denotes a more strict scoring version for the baseline evaluation)

Train: Twitter→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 15.80 46.59 47.31
EWC 15.63 41.53 46.03
Ours 15.93 46.65 45.81

Train: Wiki_data→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 19.07 51.76 55.95
EWC 19.63 49.35 53.02
Ours 21.39 53.62 56.44

Train: Wiki_data→ Test: Twitter
Models bleu4∗ rougeL meteor
Twitter-based 35.79 56.32 54.93
Finetune 14.09 37.97 45.89
EWC 14.84 38.65 46.33
Ours 16.62 40.25 48.44

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

Wiki, the performance on Quora is even improved
from the one after trained on Twitter. Moreover,
this work outperforms EWC on all the evaluation
domains with a noticeable margin, which demon-
strates that our calibration module is effective to
boost the performance for continual learning via
properly regularizing the parameter update against
catastrophic forgetting. Overall, the empirical re-
sult demonstrates that the calibration mechanism
can mitigate the forgetting issue greatly.

Ablation Study. We conduct the ablation study
where several simplified versions of the calibration
framework are evaluated in order to understand
the effects of different components. Specifically,
we evaluate the model variants without attention
calibration module (i.e., w/o ACM), or feature cal-
ibration module (i.e., w/o FCM), or EWC regu-

Quora Test Wiki_data Test
Models bleu4∗ meteor bleu4∗ meteor
Finetune 30.11 57.17 42.12 73.10
w/o FCM 33.32 59.32 43.33 73.10
w/o ACM 32.25 58.91 42.15 72.59
w/o R 33.77 59.57 43.51 72.93
Ours 35.44 61.45 44.47 73.66

Table 4: Ablation studies on the proposed calibration
components and regularizion terms.

larization term (i.e., w/o R), and present the com-
parison result in Table 4. From the table, we can
observe that (i) equipped with ACM or FCM, the
performance is apparently better than the original
backbone since dropping the calibration module
(“w/o ACM" and “w/o FCM") would degrade the
performance; (ii) EWC regularization is also ef-
fective, indicated by the better result than the one
without EWC regularization term (“w/o R"). Over-
all, the results demonstrate that calibrating on latent
feature and attention value is a promising direction.

Next we aim to investigate the effect of the at-
tention calibration that is performed on three dif-
ferent attentions in the transformer model. Specif-
ically, we equipped the calibration component on
either one of the self-attention of encoder, the self-
attention of decoder and the encoder-decoder (ED)
attention. The comparison results in Table 5 indi-
cate that (i) the self-attention calibration on encoder
is more effective to boost the performance; (ii)
the calibration on encoder-decoder attention yields

Quora Test
Model Variants bleu4∗ rougeL meteor
Self-Attention (E) 33.31 59.94 59.56
Self-Attention (D) 32.65 58.76 58.34
ED-Attention (D) 34.81 60.55 60.33
Ours (All) 35.44 61.37 61.45

Table 5: Ablation studies of the calibration different
attention blocks in language model.
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SOURCE BART Ours TARGET

What is the best home workout
to reduce waist fat?

How can I reduce my
waist fat through a diet?

What is best home remedy for
reducing belly fats?

What is best home remedy for
reducing belly fats?

What’s it like to be
in a relationship with
a married man?

What is it like for
a married man to be
in a relationship?

What’s it like to be
in a relationship with
a married man?

What’s it like to be
in a relationship with
a married man?

which provides a conventional
sonic underscore to the
onscreen action

which provides a sonic
underscore to the onscreen
action

which provides a conventional
sonic underscoring to the
onscreen action

which provides a conventional
underscore to the onscreen
action

Example gymnasium scene’s
first encounter with Angela

Example gymnasium scene,
Angela ’s first encounter
with Angela

For example, the gymnasium
scene, Pfaster ’s first encounter
with Angela

One example is the gymnasium
scene, Lester ’s first encounter
with Angela.

Table 6: Examples of the generated paraphrases by BART and Ours on QTW data setting.

much better results than other two self-attentions.
Overall, the results demonstrate that the attention
calibration plays an important role for boosting the
performance of the transformer-based generation
model.

Case Study. In Table 6, we perform the case stud-
ies on paraphrase generation tasks. All examples
are results generated by the final model, e.g., the
model trained on Wiki_data is used to generate
samples on Quora, Twitter, Wiki_data. Among the
four examples, the first two is from Quora, and
the others from Wiki_data. We compare our gen-
erated sentence with ones from BART backbone.
From the table, we observe that our method has a
better generation on all four cases. In those gen-
eration samples, the colored parts are key words.
Yet, BART model either fails to generate those key
words or creates the examples of false causality. In
contrast, our method is able to generate key words
in all cases with correct word relations.

4.2 Application: Dialog Response Generation

Dataset. The proposed model is evaluated on the di-
alog response generation task using the MultiWoZ-
2.0 dataset (Budzianowski et al., 2018), which
contains 6 domains (Attraction, Hotel, Restaurant,
Booking, Taxi and Train) and 7 DA intents (“In-
form, Request, Select, Recommend, Book, Offer-
Booked, No-Offer"). We follow the setting (Mi
et al., 2020) to generate the train/validation/test
splits of MultiWoz. The details of the dataset is
present in Table 7.

Experimental Setting. To evaluate the method
performance, we exploit the slot error rate (SER)
and BLEU4 score as the evaluation metrics. The
lower value of SER indicates a better performance.
To estimate the forgetting rate, the above met-

Domain and Intents of MultiWoZ-2.0 Data
Domains #. Total Intents #. Total
Attraction 8,823 Inform 28,700

Hotel 10,918 Request 7,621
Restaurant 10,997 Select 865
Booking 8,154 Book 4,525

Taxi 3,535 Recommend 3,678
Train 13,326 Offer-Booked 2,099

No-Offer 1,703

Table 7: Statistics on the Dialog Response dataset

rics are reported in two continual learning set-
tings (Kemker et al., 2018): Ωall = 1

T

∑T
i=1Ωall,i

and Ωfirst = 1
T

∑T
i=1Ωfirst,i, where T is total

number of tasks in the sequential order. Ωall,i is the
test performance on all the tasks evaluated by the
model learned with the i-th task, while Ωfirst,i is
the test result on the first task after the i-th task has
been learned.

Our work exploits the well-known seq2seq gen-
eration model, conditional variational encoder
(CVAE) as the backbone model, and the proposed
model is compared with the following baselines:

a) Finetune: the model trained from previous ob-
served tasks is used to be fine-tuned with data of
the current new task.
b) Full: this model is trained with the data from
current tasks and all historical tasks together.
c) ARPER (Mi et al., 2020): the model introduces
memory replay and adaptive regularization together
to mitigate the catastrophic forgetting issue.
d) ER: the model with the chosen exemplars that
best approximate the mean DA vector (Rebuffi
et al., 2017).

For CVAE, we equipped the feature calibration
module on the backbone, due to no attention on
the CVAE. In the following experiment, we follow
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the setting (Mi et al., 2020) and utilize the selected
exemplars to compute the Fisher information as in
the function (5).

4.2.1 Comparison Result
We conduct comparison experiments with baselines
with various number of exemplars. The first one is
that all methods do not use any exemplars. The rea-
son for this comparison is that our proposed method
is memory-free, i.e., no memory buffer required to
store and replay the exemplar for data rehearsal. In
such setting, ARPER reduces to the general reg-
ularization technique. Table 8 gives the evidence
that without any exemplars, our method achieves a
better performance than ARPER in both Ωall and
Ωfirst, with a noticeable margin. We observe that
the ARPER severely relies on the exemplars. With-
out the exemplars, the ARPER suffer a significant
performance drop in terms of the accuracy, even
poorer than Finetune.

With the increased number of exemplars, our
method can obtain a better performance since the
fisher matrix in our objective can cumulative the
informative data throughout the training process.
In addition, ER and APRE are memory-based tech-
niques and are obviously beneficial from the ex-
emplars. Nonetheless, our method can consistently
outperform APRER and ER in both settings of 250
exemplars and 500 exemplars. That indicates that
our memory-free calibration technique can effec-
tively exploit the exemplar knowledge without the
need of data storage for the exemplars.

4.2.2 Dynamic Results in Continual Learning
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Figure 2: BLEU-4 and SER on all observed domains
(solid) and on the first domain (dashed) over the six
continually observed domains using 250 exemplars.

Figure 2 presents the comparison results along
the six continually observed domains of dialog re-
sponse. We compare the performance of the cal-
ibrated model with the original CVAE backbone.
With more tasks continually learned, our method
gradually performs better performance than the
original backbone. On the first task (dashed lines),

Zero exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 67.23 0.360 105.33 0.181
ARPER 63.54 0.360 102.87 0.192
Ours 56.90 0.395 68.60 0.258
ALL 4.26 0.599 3.60 0.616

250 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 16.89 0.535 9.89 0.532
ARPER 5.22 0.590 2.99 0.624
Ours 4.41 0.603 2.33 0.635
ALL 4.26 0.599 3.60 0.616

500 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 12.25 0.555 4.53 0.568
ARPER 5.12 0.598 2.81 0.627
Ours 4.33 0.606 2.21 0.638
ALL 4.26 0.599 3.60 0.616

Table 8: Average Results of all the methods when
learning six domains using 0/250/500 exemplars.
(BLEU4 follows the setting in Mi et al. (2020))

the calibrated model outperforms the original one
on both metrics. These results illustrate the advan-
tage of our calibration components throughout the
entire continual learning process.

5 Conclusions

We propose an efficient seq2seq generation model
with the calibration on the transformer, where a
fixed architecture network after calibration can dy-
namically adjust the function with respect to each
individual task. To optimize our method, we fur-
ther propose a reproductive learning equipped with
an iterative optimization objective that trade-off
between plasticity and stability. Moreover, our cal-
ibration module is very light-weight without in-
troducing any task-specific parameters. Extensive
empirical experiments indicate that our approach
outperforms the baselines and achieves a promising
result. We also indicate that the calibration module
and interleaved optimization play a vital role to
boost the performance. Finally, extending the cali-
bration module to multi-lingual pre-trained model
is a promising future research direction.
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