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Abstract
Targeted studies testing knowledge of subject-
verb agreement (SVA) indicate that pre-trained
language models encode syntactic informa-
tion. We assert that if models robustly encode
subject-verb agreement, they should be able to
identify when agreement is correct and when
it is incorrect. To that end, we propose gram-
matical error detection as a diagnostic probe
to evaluate token-level contextual representa-
tions for their knowledge of SVA. We eval-
uate contextual representations at each layer
from five pre-trained English language models:
BERT, XLNET, GPT-2, ROBERTA, and ELEC-
TRA. We leverage public annotated training
data from both English second language learn-
ers and Wikipedia edits, and report results on
manually crafted stimuli for subject-verb agree-
ment. We find that masked language models
linearly encode information relevant to the de-
tection of SVA errors, while the autoregressive
models perform on par with our baseline. How-
ever, we also observe a divergence in perfor-
mance when probes are trained on different
training sets, and when they are evaluated on
different syntactic constructions, suggesting the
information pertaining to SVA error detection
is not robustly encoded.

1 Introduction

Recent work investigates whether linguistic infor-
mation is encoded in pre-trained transformer-based
language models (Peters et al., 2018; Devlin et al.,
2019). Research using diagnostic methods (Shi
et al., 2016; Alain and Bengio, 2017; Adi et al.,
2017; Conneau et al., 2018; Hupkes et al., 2018)
indicates models encode syntax via experiments
targeting, for example, part-of-speech and depen-
dency labelling (Tenney et al., 2019; Jawahar et al.,
2019; Hewitt and Manning, 2019), while targeted
syntactic evaluation studies show models encode
a large amount of hierarchical syntactic informa-
tion in tests for subject-verb agreement (Linzen
et al., 2016; Marvin and Linzen, 2018; Goldberg,

2019). Although previous research has covered a
large number of probing tasks (Tenney et al., 2019;
Liu et al., 2019a), no one has yet fully explored
grammatical error detection (GED) as a probe. We
assert that the ability to detect ungrammatical to-
kens serves as a complementary evaluation to as-
sess linguistic competence.

GED is a natural and complex NLP task that as-
sesses a model’s ability to detect which tokens in a
sentence are grammatically incorrect. Ungrammat-
ical tokens may be categorised within a taxonomy1

comprising three operational categories (replace-
ment, unnecessary, and missing) and twenty-five
categories based on parts-of-speech. For example:

(1) [Replacement subject-verb agreement]
The train are a good option for long trips.

(2) [Replacement pronoun] Everybody must
have free time for yourself.

(3) [Missing determiner] The birth of [a] new
star.

(4) [Unnecessary preposition] Public trans-
port means travelling around [...] by using
trains, buses, and planes.

To do well in the task, a model must encode and
make use of a wide array of linguistic information.
For example, detecting subject-verb agreement er-
rors in English tests a model’s capacity to identify
i) verbs, ii) the subjects of the verbs, iii) the gram-
matical number (singular/plural) of both, and iv)
whether their number agrees.

The above makes the task a very interesting test-
bed for evaluating a model’s syntactic knowledge.
We operationalise the GED task and train probes to
detect replacement subject-verb agreement errors
(as in Example 1) using contextual representations
from different hidden layers from five pre-trained
English language models – BERT (Devlin et al.,

1Much recent research in GED uses error-type labels based
on ERRANT (Bryant et al., 2017).
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2019), XLNET (Yang et al., 2019), GPT-2 (Radford
et al., 2019), ROBERTA (Liu et al., 2019b), and
ELECTRA (Clark et al., 2020).

To ensure a robust and thorough evaluation, we
leverage existing publicly annotated data from two
domains for training: essays by learners of English
as a second language from both the Cambridge
English Write & Improve + LOCNESS (W&I)
corpus (Bryant et al., 2019) and the First Cer-
tificate in English corpus (FCE) (Yannakoudakis
et al., 2011), along with a corpus of automati-
cally extracted edited sentences from native En-
glish Wikipedia edit histories (Grundkiewicz and
Junczys-Dowmunt, 2014). For evaluation, we re-
frame the minimal-pair dataset from Marvin and
Linzen (2018) to create targeted evaluation sets an-
notated for GED. In doing so, we demonstrate how
existing minimal-pair datasets can be leveraged to
create challenging and interpretable test sets for
GED models2 (Hu et al., 2020).

We find that ELECTRA, BERT, and ROBERTA lin-
early encode information for the detection of SVA
errors in the contextual representations of verbs,
however, we observe a gap in performance when
probes are trained on data from different domains,
implying the information is not encoded consis-
tently or robustly. The results show consistent
patterns across layers: both BERT and ELECTRA

encode information related to SVA errors in the
middle-to-late layers, while ROBERTA seems to
encode information earlier in the model. Probes
trained on representations from GPT-2 and XLNET

(with uni- and bi-directional decoding) perform
poorly on the evaluation set, indicating a funda-
mental difference from either the training objective
or pre-training data. Finally, we show that GED
probes can complement existing tools for syntactic
evaluation: our results suggest that although neural
language models perform well on targeted syntac-
tic evaluation tasks, their encoding of SVA does
not robustly extend to the detection of SVA errors.3

2 Token-level grammaticality

We motivate the use of GED-probes by first review-
ing previous literature involving grammaticality
judgements and tests for subject-verb agreement,
then discuss the advantages in tests for GED.

2In principle these minimal-pair datasets can also be used
to evaluate grammatical error correction systems.

3We release our code at https://github.com/
chrisdavis90/ged-syntax-probing

Boolean acceptability judgements have long
been used as a primary behavioural measure to
observe humans’ grammatical knowledge (Chom-
sky, 1957; Pater, 2019), and have recently been
employed in computational linguistics to evaluate
grammatical knowledge in neural models. For ex-
ample, Warstadt et al. (2019) train classifiers to
predict sentence-level Boolean acceptability judge-
ments on example sentences from the linguistics
literature. As each sentence is designed to demon-
strate a particular grammatical construction, perfor-
mance on the task is interpreted as a reflection of
the implicit knowledge of the classifier.

An alternative approach frames acceptability as
a choice between minimal pairs of sentences – one
grammatical and another ungrammatical, where the
difference between the two is typically one or two
tokens. Marvin and Linzen (2018) evaluate linguis-
tic knowledge by testing whether a language model
assigns higher probability to a grammatical sen-
tence relative to its minimally different ungrammat-
ical counterpart. Similar to Warstadt et al. (2019),
fine-grained grammatical knowledge is evaluated
by controlling the evaluation stimuli, with the hy-
pothesis that models must have implicit knowledge
of the underlying grammatical concept to succeed.

Rather than evaluating sentence-level scores,
Linzen et al. (2016) compare predicted probabili-
ties assigned to target verbs in minimal pair sen-
tences, where each sentence in a pair uses a dif-
ferent form of the verb. Goldberg (2019) extends
this to masked language models where he replaces
a target verb with the [MASK] token and feeds
the entire sentence to a BERT model. A model is
considered successful, and thereby has knowledge
related to SVA, if it assigns higher probability to
the correct form of the verb.

Our work differs from the above in three impor-
tant ways. First, we don’t assume to know where
the incorrect token is – the probe is trained to de-
tect errors for all tokens in a sentence, given each
token’s contextual representation. This is a more
fine-grained evaluation compared to sentence-level
judgements and tests whether probes know where
the error is located. Second, instead of targeting
information in the masked token, we investigate
whether the model implicitly encodes SVA informa-
tion in a token’s contextual representation. Third,
we test for knowledge of SVA without comparing
to the counterpart token or sentence. We argue
that if a model has knowledge of SVA, it should

361

https://github.com/chrisdavis90/ged-syntax-probing
https://github.com/chrisdavis90/ged-syntax-probing


Syntactic Construction Example
Simple agreement The author laughs/laugh∗

Agreement in a sentential complement The bankers knew the officer smiles/smile∗

Agreement across a prepositional phrase The farmer near the parents smiles/smile∗

Agreement across a subject relative clause The officers that love the skater smile/smiles∗

Short verb-phrase coordination The senator smiles and laughs/laugh∗

Long verb-phrase coordination The manager writes in a journal every day and
likes/like∗ to watch television shows

Agreement across an objective relative clause The farmer that the parents love swims/swim∗

Agreement within an objective relative clause The farmer that the parents love/loves∗ swims

Table 1: Examples for the main syntactic constructions from the subject-verb-agreement stimuli from Marvin and
Linzen (2018). Bold indicates the subject-noun, and underlined tokens indicate the grammatical/ungrammatical∗

verb.

be able to detect SVA-errors without requiring a
comparison.

3 Data

3.1 Second language learner corpora

Following previous work in grammatical error
correction and detection, we use the Cambridge
English Write & Improve + LOCNESS corpus
(Bryant et al., 2019) and the First Certificate in
English (Yannakoudakis et al., 2011), hereinafter
W&I-FCE.4

The edit annotations in these corpora were pre-
processed and standardised using the ERRANT
annotation framework (Bryant et al., 2017). One
advantage of this framework is that error types are
modular, and consist of “operation” + “main” type
tags. This provides us flexibility to target grammat-
ical errors at different levels of granularity. E.g. all
NOUN errors or only R:NOUN for replacement nouns.
In addition, we can take advantage of the correc-
tions provided with each edit annotation to control
the number and variation of grammatical errors.
Since we focus only on replacement subject-verb-
agreement errors, R:VERB:SVA, we correct all other
error types and keep only those sentences contain-
ing at least one grammatical error. This leaves
1936 sentences for training and 142 sentences for
validation.

3.2 Dataset of Wikipedia edits

As an alternative to the learner corpora, we addi-
tionally experiment with a corpus of automatically
extracted edited sentences from native English
Wikipedia edit histories (WIKED) (Grundkiewicz

4Public data for W&I and the FCE are available at: https:
//www.cl.cam.ac.uk/research/nl/bea2019st#data

and Junczys-Dowmunt, 2014). We use the clean
and preprocessed version of English Wikipedia ed-
its, consisting of ~29 million sentences.5 We fol-
low the same procedure as above and retain only
sentences with R:VERB:SVA errors by correcting
all other error types, and keep only the sentences
containing at least one error. This leaves ~233K
sentences, from which we sample five training sets
each with 1936 sentences each to match the amount
of sentences in the learner corpora after processing,
and 5839 sentences for the validation set. Statistics
for both corpora are given in Appendix A. We refer
to the sampled training sets as WIKED-S.

3.3 Minimal-pair datasets

We use the manually constructed subject-verb
agreement stimuli from Marvin and Linzen (2018)
(M&L) to evaluate the GED-probes – this enables
a more controlled evaluation compared to the natu-
rally occurring sentences in W&I-FCE and WIKED.
The dataset consists of seven main syntactic con-
structions, shown in Table 1. In addition to those
shown in the table, sentences with multiple nouns
(except for those testing VP coordination) include
instances with two nouns and one acts as a distrac-
tor, potentially agreeing with the verb even though
it is not the subject:

(5) a. The farmer near the parent smiles/smile∗.
b. The farmer near the parents smiles/smile∗.
c. The farmers near the parent smiles∗/smile.
d. The farmers near the parents smiles∗/smile.

In the above sentences, the verbs marked with
an asterisk are ungrammatical. The dataset also
expands on sentences testing agreement with ob-
ject relative clauses: agreement is tested across

5https://github.com/snukky/wikiedits
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and within the clause, using animate and inani-
mate main subjects, and with and without the that-
complementizer.

We process the M&L minimal pairs to create
token-level GED annotations, where the ungram-
matical verbs are tagged as R:VERB:SVA.6 We in-
clude all of the ungrammatical and grammatical
sentences for evaluation – to be successful, the
GED-probe should recognise when the agreement
is correct and label all tokens as grammatical.7 Fi-
nally, we capitalise the first word in each sentence
and add a full stop if one doesn’t already exist.
Appendix B contains details about the processed
dataset.

4 Experiment 1: Per Layer Probes

We first investigate whether models encode SVA-
errors by examining probing performance at each
layer; we want to test whether models encode this
information in the final layer, the token representa-
tion, but also how this information develops across
the layers. We then break-down performance by
syntactic construction to better understand how the
SVA-error encoding generalizes. Finally, we carry
out a follow-up experiment to investigate the im-
pact of training data size and verb frequency.

4.1 Experimental setup

For each model, we extract contextual representa-
tions for every token in a sentence for every one
of the twelve layers in the model. We then train
a linear probe (Tenney et al., 2019; Hupkes et al.,
2018; Liu et al., 2019a) per layer to predict whether
each token-level contextual representation is un-
grammatical. We train two versions of each probe:
one trained using W&I-FCE, and the other using
WIKED-S. Every probe is evaluated on the M&L

stimuli
Since the probe is trained to detect R:VERB:SVA

errors, high probing performance would indicate
the probe has learned to extract features to identify
subject-verb agreement errors from the contextual
representations of the verbs. This implicitly in-
cludes sub-tasks to identify the verb, the subject
noun, the number of both the verb and noun, and

6In principle, any minimal-pair dataset can be converted to
token-level annotations using ERRANT, but not all grammati-
cal errors map cleanly to ERRANT categories. For example,
replacement pronouns (R:PRON) includes reflexive anaphor
gender- and number- agreement errors.

7While the evaluation stimuli consists of minimal pairs,
the training data does not.

that their number disagrees. Furthermore, as this is
a token labelling probe, high probing performance
would indicate the pre-trained model has encoded
the relevant features in the contextual representa-
tions of the verbs.

We evaluate probes using F1 on the evaluation
stimuli from M&L containing an equal number of
grammatical and ungrammatical sentences.8 We
compare probes to a VERB-ONLY baseline which
incorrectly tags all verbs as ungrammatical. The
number of verbs per sentence varies across syntac-
tic constructions; constructions with one verb have
an equal number of grammatical and ungrammat-
ical verbs, and therefore have a baseline score of
0.67. Constructions with two and three verbs have
scores of 0.40 and 0.30, respectively. Evaluating
the baseline over all constructions yields a score of
0.43.

We evaluate five pre-trained models: BERT-
BASE-CASED, GPT-2 (small), ROBERTA-BASE, XL-
NET with both uni-directional (XLNET-UNI) and
bi-directional XLNET-BI decoding, and ELECTRA-
BASE (discriminator). As all five models use sub-
word tokenisation, we follow Liu et al. (2019a) and
use the last sub-word unit for token classification.
We train the probes for 50 epochs with a patience
of 10 epochs for early stopping based on in-domain
validation sets.

Four of the five models were pre-trained with
a language modelling objective: either masked
language modelling (MLM) or autoregressive lan-
guage modelling (ALM). Whereas ELECTRA is
the exception – the replaced token detection train-
ing objective is somewhat aligned with GED and
therefore we may expect representations to encode
grammatically discriminative information.9 Indeed,
Yuan et al. (2021) find ELECTRA outperforms BERT

when fine-tuned for binary GED targeting a wide
range of error-types. BERT and ROBERTA also de-
tect replaced tokens during training, but only on
1.5% of tokens.

8This departs from F0.5 used in the GED literature, which
was motivated from educational applications where high pre-
cision is preferred over recall because false-positives can
be more harmful for language learners compared to false-
negatives.

9The ELECTRA discriminator model is trained to detect
substituted tokens in a grammatical sentence, where an orig-
inal token is substituted with a plausible alternative from a
masked language model.
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(a) W&I-FCE (b) WIKED-S

Figure 1: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding (XLNET-BI), XLNET with unidirectional decoding (XLNET-UNI), and
GPT-2. 1a and 1b show results for probes trained on W&I-FCE and the WIKED-S training sets respectively. The
VERB-ONLY baseline scores are illustrated using grey horizontal lines. 1b shows the mean and standard deviation
across the five training sets (§3.2). All probes are evaluated on the M&L stimuli (§3.3).

W&I-FCE WIKED-S

Model Layer F1 Layer F1

ELECTRA 9 0.95 10 0.89±0.02

BERT 12 0.89 12 0.73±0.03

ROBERTA 5 0.80 5 0.70±0.04

XLNET-BI 6 0.59 6 0.51±0.01

XLNET-UNI 3 0.48 3 0.43±0.02

GPT-2 6 0.45 6 0.48±0.02

VERB-ONLY - 0.43 - 0.43

Table 2: Top F1 scores on the M&L evaluation set, for
probes trained on either W&I-FCE or WIKED-S. Scores
for probes trained on WIKED-S are reported as the mean
±1 standard deviation over the five sampled training
sets.

4.2 Results

Figure 1 shows F1 scores for probes trained on
W&I-FCE and WIKED-S, and evaluated on the M&L

stimuli.10 For the latter, we plot the mean and stan-
dard deviation evaluated over the five sampled train-
ing sets. We illustrate the VERB-ONLY baseline
score with a grey horizontal line. Table 2 shows
layers which obtained the top F1 score per model.

The figure and table shows ELECTRA encodes
the most salient information for SVA error detec-
tion, with probes obtaining maximum scores of
0.95 and 0.89 (σ=0.02) when trained on W&I-

10We additionally evaluate probes against the other error
types in the W&I dataset and verify that probes only detect
SVA errors. Probes trained on either BERT or ELECTRA ob-
tain mean scores of 0.04 (σ=0.04), verifying that information
extracted by the probe is isolated to subject-verb agreement
errors.

FCE and WIKED-S, respectively. Though this may
not be surprising given the replaced token detec-
tion pre-training objective, it illustrates that probes
trained on representations from a model capable of
SVA error detection can obtain high performance
using both training sets.

We observe a divergence in performance be-
tween MLM-probes and ALM-probes; the MLM-
probes tend to perform better, obtaining maximum
scores between 0.70 and 0.89 F1, while the ALM-
probes don’t score above 0.59 on either training
set. In fact, probes trained on representations from
GPT-2 and XLNET-UNI often perform worse than
the VERB-ONLY baseline at 0.43 and don’t score
above 0.50 F1. These results imply that GPT-2 and
XLNET-UNI representations do not linearly encode
enough information to differentiate between gram-
matical and ungrammatical verbs in SVA.

The MLM-ALM performance gap could be due
to the language model directionality: the two uni-
directional models (GPT-2 and XLNET-UNI) do per-
form the worst, but this fails to account for the
performance of XLNET-BI – a bi-directional lan-
guage model which does not perform much better.
It may be that the MLM training objective helps to
imbue contextual representations with information
useful for detecting SVA errors, but we cannot dis-
count the inclusion of the replaced token detection
objective, even though it is rarely included. Finally,
we note key differences in the pre-training data
used by the models: BERT and ELECTRA use the
BooksCorpus and English Wikipedia, GPT-2 uses
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web-scraped data, and XLNET and ROBERTA use
a combination of BooksCorpus, Wikipedia, and
web-scraped data.

When we examine performance across layers we
see that ELECTRA- and BERT-probes follow a sim-
ilar trajectory, with performance on par with the
baseline from layers 1-5 and higher performance
only in layers 8-12. SVA-error information is high-
est in the final layer for BERT (the token represen-
tation) while layers 9 and 10 seem to encode the
most useful information for ELECTRA. In contrast,
probes trained with representations from ROBERTA

peak at layer 5 but have mostly consistent perfor-
mance until 12, apart from a drop in layer 7.

The results for BERT support those from Jawa-
har et al. (2019), where they find probes encode
elements of syntax in the middle to late layers. Liu
et al. (2019a) also find that later layers obtain the
best performance for a general GED probe, though
they experiment on a single dataset (FCE (Yan-
nakoudakis et al., 2011)) and include all grammat-
ical error types. Recent results from Lasri et al.
(2022b) show that removing number information
from nouns at different layers has a detrimental
effect on the number-agreement task up until layer
8. They hypothesise that some transfer of noun-
number takes place in the previous layers. Our
results seem to support this: low probing perfor-
mance in layers 1-5 (when the noun-number has
yet to be transferred to the verb), and high prob-
ing performance in layers 8-12 after transfer has
taken place. Interestingly, performance for ELEC-
TRA takes the same shape, suggesting that the pre-
training objective (replace token detection versus
MLM) may not have an important role in how mod-
els encode SVA information, especially given that
ROBERTA, trained using masked-language mod-
elling, displays a different pattern across layers.
Finally, if GED-probe-performance can be taken
as a proxy for noun-number transfer, then results
for ROBERTA-probes suggest that noun-number in-
formation is transferred to the target verb earlier,
possibly due to the more robust optimization.

Turning to probe performance across training
sets, we find that probes trained on W&I-FCE

consistently perform better than those trained on
WIKED-S, for all models tested apart from GPT-2.
This could be due to a domain mismatch, where
learner writing may be more similar to the M&L

stimuli than data from WIKED-S. Though, at the
very least this indicates that information pertaining

to SVA errors is not consistently encoded.
Previous work finds some evidence that BERT’s

representations encode knowledge of SVA (Gold-
berg, 2019; Jawahar et al., 2019; Newman et al.,
2021; Lasri et al., 2022a) but that this knowledge
is based on heuristics rather than robust SVA rule
learning (Chaves and Richter, 2021; McCoy et al.,
2019). Our results indicate that information en-
coded in contextual representations extends to the
detection of SVA errors in ELECTRA, BERT, and
to a lesser extent, ROBERTA. However, we find the
encoding is not robust across domains, supporting
the heuristic-learning claim. These results illustrate
the importance of utilising training and evaluation
datasets from disparate domains to evaluate probes.

4.3 Results per syntactic construction
We break down the performance of probes for each
syntactic construction in the M&L dataset. Fig-
ure 2 illustrates F1 scores for probes trained on
W&I-FCE and WIKED-S using representations from
each layer of BERT and ROBERTA.11 The VERB-
ONLY baseline is shown as grey horizontal lines.
For brevity, we present results on sentences with
simple agreement, sentential complements, prepo-
sitional phrases, subject relative clauses, and object
relative clauses (agreement within and across the
clause). Results for the other models and syntactic
constructions are included in Appendix E.

The trends across layers observed in Figure 1 are
generally consistent within syntactic constructions:
probes trained on BERT representations improve in
the later layers, while layers 5 and 8-12 seem to be
the most salient for probes trained on ROBERTA.

Probes for both models detect SVA errors in the
simple agreement constructions – with only the
BERT-probe trained on WIKED-S scoring less that
0.90 F1. We find BERT-probes perform well for
most constructions, especially in layer 12, but per-
formance for ROBERTA-probes drops for sentences
with subject-relative clauses, prepositional phrases,
and object-relative clasues (agreement within the
clause), particularly when trained on WIKED-S data.
This suggests that the token representation from
BERT models, potentially used in downstream tasks,
already encodes a lot of information related to SVA
before any fine-tuning.

When comparing performance between probes
across training sets, we observe a noticeable differ-

11We select BERT and ROBERTA because they are both
MLMs, whereas the ELECTRA-discriminator is trained using
a replaced token detection objective.
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Figure 2: F1 scores for probes trained on contextual representations from BERT and ROBERTA, using both the
W&I-FCE and WIKED-S training sets. The probes are evaluated on M&L stimuli. The VERB-ONLY baseline is
illustrated using grey horizontal lines.

ence in performance between BERT-probes trained
on W&I-FCE versus those trained on WIKED-S,
most evidently in five out of the six syntactic con-
structions shown. On the other hand, probes trained
on ROBERTA don’t always display a performance
gap – performance is more comparable between
probes on sentences testing simple agreement, sen-
tential complements, and agreement across object
relative clauses. For sentences with subject relative
clauses we find the probes trained on WIKED-S out-
perform those trained on W&I-FCE. These results
may indicate that information pertaining to the de-
tection of SVA errors is more robustly encoded in
ROBERTA than BERT – that is, the information is
more invariant to the choice of probe training set.

5 Experiment 2: Generalisation to unseen
verbs

In our first experiment, we observe that although
the MLMs encode more information for SVA er-
ror detection compared to the ALMs, the informa-
tion does not always generalize across domains or
syntactic constructions. We carry out a follow-up
experiment to investigate whether the information
generalizes across verbs using probes trained on
BERT representations and WIKED data. We focus
on layers 6 to 12 as these were the layers where
performance was above the baseline. There are 13
target verbs in the M&L stimuli, of which “to be” is

the most frequent with 946 occurrences in WIKED-
S. The remaining verbs appear very infrequently –
for example, eight verbs have frequencies less than
30. To test generalization across verbs we remove
all sentences from the training and development
sets which contain a verb from the M&L stimuli ex-
cept for “to be”. We then re-sample sentences from
the full WIKED data to maintain 1936 sentences as
in the first experiment. Due to the infrequency of
many verbs and to ensure a more thorough evalua-
tion, we also increase the training set size by 4- and
8-times to yield training sets with 7744 and 15488
sentences, respectively. We refer to the three sizes
as small, medium, and large. This results in paired
training sets: for each training set size, there is
one set “with M&L verbs” and a set “without M&L

verbs”. We sample each training set five times and
report the mean and standard deviation over the
samples. For example, we sample five training sets
with 7744 sentences “with M&L verbs”, and an-
other five “without M&L verbs”. Since we are only
interested in the performance of 12 verbs, we mod-
ify the evaluation stimuli to remove a) sentences
containing only “to be” verbs, and for sentences
with multiple verbs we remove the “to be” token
from evaluation. For example, in the sentence “The
movie the security guards like is good”, we remove
“is” from evaluation.

Figure 3 illustrates the F1 scores: the left and
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Figure 3: F1 scores for probes trained on BERT representations, with varying amounts of data (left and centre);
1x=1936, 4x=7744, 8x=15488 sentences. The plots show the mean and standard deviation across five training sets
(§5). On the left, probes are trained on data including M&L verbs, while the centre shows scores for probes trained
on data without M&L verbs (apart from “is” and “are”, as described in §5). The right-hand plot shows the mean and
standard deviation of differences in F1 scores between probes trained on the two types of dataset: with and without
M&L verbs. The VERB-ONLY baseline is shown as a grey horizontal line.

centre plots show results for probes trained on data
with and without M&L verbs, respectively. The
plot on the right presents the mean and standard de-
viation for the pairwise differences between probes
trained on datasets of the same size. The right-hand
plot shows that for the smallest training set size we
observe a slight benefit when including the M&L

verbs, but this is limited to ~0.05 F1 and restricted
to layers 8-10. We generally observe no difference
in performance for the medium and large training
sets, indicating that SVA-error information does
generalize across verbs. Furthermore, we observe
no difference when comparing results across train-
ing set sizes in the left and central plots, except
for probes trained on the small training set without
M&L verbs. These results indicate that SVA-error
information is linearly accessible and generalizable
across across the verbs we test, even when probes
are trained with limited data. Future work may ex-
pand the investigation to cover more verbs, though
we expect performance to deteriorate as verbs be-
come infrequent in the pre-training data (Wei et al.,
2021).

6 Discussion

Our experiments test whether information for SVA
errors is implicitly encoded in the contextual rep-
resentations of verbs, but they don’t provide any
indication as to how the information is encoded:
is grammaticality encoded atomically or compo-
sitionally? Furthermore, we note that selecting
the “erroneous token” can be an ambiguous choice

between the noun and the verb, for example in
“The authors laughs”. Yet, the probes we evalu-
ate never tag the nouns. This could indicate that
a) the probes learn to only tag verbs, and/or b)
that SVA-grammaticality is disparately encoded be-
tween nouns and verbs. A compositional account
of grammatical encoding is a plausible explanation
given the results provided in Lasri et al. (2022b) –
that nouns and verbs have different encodings for
number. We plan to investigate how grammaticality
is encoded in future work, both in pre-trained lan-
guage models as well as models trained specifically
for GED.

7 Conclusion

We analyse whether pre-trained transformer-based
language models implicitly encode knowledge of
SVA errors using GED probes. We carry out a thor-
ough evaluation on five models, using two public
training sets from different domains, and evaluate
on a manually constructed evaluation set. This en-
ables us to get a more complete and reliable picture
of a models’ performance.

Grammatical error detection is a challenging and
linguistically aligned task to assess the knowledge
of neural language models; we show that GED-
probes can be used as a complementary analysis
tool to evaluate a models’ linguistic capabilities.

Our results show that ELECTRA, BERT, and
ROBERTA encode information for SVA-error de-
tection, but GPT-2 and XLNET do not. For BERT

and ROBERTA, we find that the SVA-error encod-
ing is not robust across all syntactic constructions
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or training set domains, though we do find some
evidence that the encoding generalizes across verbs
for BERT. Furthermore, a layer-wise analysis re-
veals the final layers in ELECTRA and BERT are the
most salient for SVA-error detection.
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A Corpus statistics

Corpus # sentences µ sent. length (σ) µ errors per sentence (σ)

Original
FCE-train 28K 16 (11) 1.9 (2.5)
W&I-train 34K 18 (12) 2.0 (2.8)
BEA-dev 4K 20 (12) 1.9 (2.8)
WikEd (total) 28M 22 (12) 1.6 (1.6)

Processed
FCE-train 626 25 (14) 1.1 (0.3)
W&I-train 1310 27 (21) 1.1 (0.3)
BEA-dev 142 26 (19) 1.1 (0.3)
WikEd-train 1936 24 (12) 1.0 (0.2)
WikEd-dev 5839 23 (11) 1.0 (0.2)

Table 3: Corpus statistics.

B Marvin & Linzen statistics

Statistics per construction.

Construction # sentences µ sent. length (σ)

Simple agr. 280 4.57 (0.49)
In sent. comp. 3360 7.57 (0.49)
Across prep. 44800 8.85 (1.17)
Across subj. rel. 22400 8.77 (0.64)
Short VP coord 1680 7.14 (0.64)
Long VP coord 800 14.40 (0.49)
Across obj. rel. 44800 9.18 (0.86)
Across obj. rel. (no comp) 44800 8.18 (0.86)
Within obj. rel. 44800 9.18 (0.86)
Within obj. rel. (no comp) 44800 8.18 (0.86)

Table 4: Details for the evaluation stimuli from (Marvin and Linzen, 2018).
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C Results for probes trained on W&I-FCE

Model 1 2 3 4 5 6 7 8 9 10 11 12

BERT 0.40 0.43 0.43 0.44 0.48 0.50 0.61 0.74 0.84 0.82 0.84 0.89
ELECTRA 0.43 0.46 0.47 0.50 0.50 0.53 0.76 0.88 0.95 0.88 0.90 0.91
ROBERTA 0.51 0.50 0.66 0.67 0.80 0.71 0.65 0.69 0.73 0.74 0.74 0.72
GPT-2 0.37 0.35 0.37 0.37 0.36 0.45 0.43 0.34 0.38 0.31 0.21 0.25
XLNET-BI 0.39 0.44 0.46 0.50 0.59 0.59 0.52 0.48 0.47 0.48 0.45 0.41
XLNET-UNI 0.31 0.43 0.48 0.46 0.44 0.39 0.36 0.35 0.33 0.34 0.29 0.31

Table 5: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding, XLNET with unidirectional decoding, and GPT-2. Probes were
trained on learner data described in §3.1, and evaluated on the Marvin and Linzen (2018) stimuli (§3.3).

D Results for probes trained on WIKED-S

Model 1 2 3 4 5 6 7 8 9 10 11 12

BERT 0.39 0.39 0.40 0.43 0.43 0.47 0.53 0.62 0.68 0.65 0.65 0.73
ELECTRA 0.42 0.43 0.45 0.48 0.48 0.49 0.66 0.83 0.87 0.89 0.88 0.84
ROBERTA 0.46 0.48 0.60 0.62 0.70 0.65 0.59 0.63 0.70 0.65 0.68 0.69
GPT-2 0.37 0.39 0.42 0.44 0.45 0.48 0.44 0.41 0.40 0.38 0.37 0.34
XLNET-UNI 0.38 0.41 0.43 0.43 0.42 0.38 0.35 0.34 0.35 0.35 0.33 0.35
XLNET-BI 0.40 0.43 0.45 0.48 0.51 0.51 0.48 0.44 0.43 0.43 0.42 0.43

Table 6: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding, XLNET with unidirectional decoding, and GPT-2. Probes were
trained on wikipedia data described in §3.2, and evaluated on the Marvin and Linzen (2018) stimuli (§3.3).
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E Results across syntactic constructions

Figure 4: F1 scores for probes trained the W&I-FCE and training set. The probes are evaluated on M&L stimuli. The
VERB-ONLY baseline is illustrated using grey horizontal lines.
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Figure 5: F1 scores for probes trained the WIKED and training set. The probes are evaluated on M&L stimuli. The
VERB-ONLY baseline is illustrated using grey horizontal lines.
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