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Abstract

Conversational discourse parsing aims to con-
struct an implicit utterance dependency tree to
reflect the turn-taking in a multi-party conver-
sation. Existing works are generally divided
into two lines: graph-based and transition-
based paradigms, which perform well for short-
distance and long-distance dependency links,
respectively. However, there is no study to
consider the advantages of both paradigms to
facilitate conversational discourse parsing. As
a result, we propose a distance-aware multi-
task framework DAMT that incorporates the
strengths of transition-based paradigm to facili-
tate the graph-based paradigm from the encod-
ing and decoding process. To promote multi-
task learning on two paradigms, we first intro-
duce an Encoding Interactive Module (EIM)
to enhance the flow of semantic information
between both two paradigms during the encod-
ing step. And then we apply a Distance-Aware
Graph Convolutional Network (DAGCN) in the
decoding process, which can incorporate the
different-distance dependency links predicted
by the transition-based paradigm to facilitate
the decoding of the graph-based paradigm. The
experimental results on the datasets STAC and
Molweni show that our method can signifi-
cantly improve the performance of the SOTA
graph-based paradigm on long-distance de-
pendency links. Our code is available at
https://github.com/yxfanSuda/DAMT.

1 Introduction

The goal of conversational discourse parsing is to
uncover latent conversation topics and construct
an implicit utterance dependency tree to reflect the
turn-taking in a multi-party conversation. Since the
discourse structure is essential to understand multi-
party conversations, it has been widely applied to
various Natural Language Processing (NLP) ap-
plications,such as response generation (Hu et al.,
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(u1)  A: headers , kernel image and all the rest
(u2)  B: what project are you trying to build ?
(u3)  A: this did n't work either , i guess that the 
k  cc is correctly registered but fails .
(u4)  C: his gcc segfaults on helloworld
(u5)  B: ahh , so , a libc issue most likelyis there a 
kk  pastebin url of the errors ?
(u6)  D: are you using any backports or sth ?
(u7)  B: can you pastebin the results of that `` gcc 
kk -v test.c '' if there are errors ?
(u8)  B: do you have the matching kernel-headers 
kk  and glibc-devel packages installed ?
(u9)  A:  can you help me how to find that out ?

u1

u2 u3 u7u6u5u4

Comment 

7018

12,13,24,45,36 ,37,38,89
Clarification_question，"Comment"，"Result"，
Clarification_question，Clarification_question，
Clarification_question，Clarification_question，
Clarification_question

Figure 1: A multi-party dialogue with its dependency
structure, where the solid lines, dotted lines and dashed
lines denote the relations “Clarification Question”,
“Comment”, and “Result” respectively, and A, B, C,
D mean different speakers.

2019), reading comprehension(Li et al., 2021b; Li
and Zhao, 2021), meeting summarization (Feng
et al., 2021), and emotion recognition(Sun et al.,
2021).

Segmented Discourse Representation Theory
(SDRT) (Asher et al., 2003) is one of the most
influential theories to reveal the overall discourse
structures in conversational discourse parsing. Un-
like Rhetorical Structure Theory (RST) (Mann
and Thompson, 1987), which limits the relation-
ship to occur between adjacent EDUs1 in mono-
logue, SDRT represents multi-party conversations
as dependency-based discourse structures, due to
crossing dependencies. Recently, some SDRT-style
corpora have been built, such as STAC (Asher et al.,
2016) and Molweni (Li et al., 2020). Figure 1
shows an example of a multi-party conversation
and its dependency structure from Molweni.

Existing work on conversational discourse pars-

1Elementary Discourse Units(EDUs) are the fundamental
discourse units in discourse parsing. In the monologue, each
EDU corresponds to a phrase or sentence. In the conversation,
each EDU corresponds to an utterance.

https://github.com/yxfanSuda/DAMT
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Figure 2: The performance of dependency links at
different distances predicted by the graph-based and
transition-based paradigms on the testing set of Mol-
weni and STAC, respectively. The x-axis is the rel-
ative distance between EDUs (For example, the dis-
tance of (u1, u2) and (u3, u8) are 1 and 5 in Figure
1.). And the y-axis is the accuracy of dependency links.
"TP" indicates Transition-based Paradigm and "GP"
means Graph-based Paradigm.TP comes from (Shi and
Huang, 2019), which utilizes hierarchical GRU to en-
code the conversations, while GP comes from (Wang
et al., 2021a) and we also utilize hierarchical GRU to
encode the dialogues for a fair comparison.

ing can be divided into two lines: graph-based
and transition-based paradigms. The graph-based
paradigm (Muller et al., 2012; Afantenos et al.,
2015; Perret et al., 2016; Yang et al., 2021; Wang
et al., 2021a) first obtains the probability of the
discourse relation for each EDU pair, then a global
decoding method is applied to construct the dis-
course structure. The transition-based paradigm
(Shi and Huang, 2019; Wang et al., 2021b) first
obtains the probability of the discourse relation
between the current EDU and all previous EDUs,
then discourse structure is constructed incremen-
tally. Due to the discrepancy in the parsing process,
both of them have different strengths in predicting
the dependency links at various distances.

As shown in Figure 2, we analysis the perfor-
mance of dependency links at different distances
predicted by the above two paradigms. The re-
sults show that the graph-based paradigm performs
better for dependency links with the distance 1,
while the transition-based paradigms performs bet-
ter when the distance greater than 1. As a result,
it is a great challenge to combine the advantages
of both two paradigms to facilitate conversational
discourse parsing.

Previous work (Falenska et al., 2020) has demon-
strated the effectiveness of multi-task learning to
integrate both two paradigms in a similar task de-
pendency syntactic parsing. Through the shared
encoding layer, both two paradigms can facilitate
each other implicitly. However, it is not sufficient
to apply this approach to conversational discourse
parsing, because the advantages of one paradigm
cannot be explicitly exploited to facilitate the other
one.

To alleviate the above issues, we propose a
Distance-Aware Multi-Task framework (DAMT)
for conversational discourse parsing that allows
one paradigm to explicitly facilitate the decoding
process of the other from the encoding and decod-
ing process, respectively. Specially, we introduce
an Encoding Interactive Module (EIM) to enhance
the flow of semantic information between both two
paradigms during the encoding step. And then we
apply a Distance-Aware Graph Convolutional Net-
work (DAGCN) in the decoding process, which can
incorporate the different-distance dependency links
predicted by the transition-based paradigm to fa-
cilitate the decoding of the graph-based paradigm.
The experimental results on two datasets STAC
and Molweni show that our DAMT outperforms
the SOTA baselines, especially the significant im-
provement on those dependency links with long
distances.

2 Related Work

Most previous studies for overall discourse struc-
ture parsing are based on Rhetorical Structure The-
ory Discourse TreeBank (RST-DT) (Carlson et al.,
2003), including greedy bottom-up approach (Feng
and Hirst, 2014), CYK-based approaches (Joty
et al., 2015; Liu and Lapata, 2017) and transition-
based methods (Wang et al., 2017; Lin et al., 2019;
Kobayashi et al., 2020; Zhang et al., 2021).

In this paper, we focus on parsing conversational
dependency structures that allow crossing depen-
dencies. Recently, there are two available corpora,
i.e., STAC (Asher et al., 2016) and Molweni (Li
et al., 2020) defined 16 relation types. STAC col-
lected from an online game The Settlers of Catan,
which contains 1,062 and 111 dialogues for train-
ing and testing, respectively. Molweni is based on
Ubuntu Chat (Lowe et al., 2015), which contains
9,000, 500 and 500 instances for training, validat-
ing and testing, respectively.

Up to now, only a few studies focused on con-
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Figure 3: The architecture of our DAMT framework.

versational discourse parsing and most of them can
be divided into two paradigms, i.e., graph-based
paradigm and transition-based paradigm.

Graph-based paradigm Muller et al. (2012),
Afantenos et al. (2015) and Perret et al. (2016)
adopted traditional manual features to calculate the
probabilities of all EDU pairs and then global de-
coding algorithm (e.g., Maximum Spanning Trees,
A* and Integer Linear Programming) was used to
construct dependency structures. With the devel-
opment of deep learning, some advanced methods
are used to obtain the semantic representation of
each EDU pair. Wang et al. (2021a) proposed a
novel edge-centric graph neural network to enhance
the semantic representation of EDUs. Yang et al.
(2021) first used the dependency syntactic graph
to obtain a better EDU representation and then a
biaffine relation prediction layer was applied to
obtain the probability of each EDU pair.

Transition-based paradigm Shi and Huang
(2019) proposed a Deep Sequence Model (DSM)
to predict dependency links and corresponding re-
lation types jointly and alternately. Their model
not only consider the local information of the con-
cerned EDUs but also utilizes the historical struc-
ture. Based on DSM, Wang et al. (2021b) adopted
the graph attention network by incorporating cohe-
sion information including lexical chain and coref-
erence chain to enhance the semantic representa-
tion of EDUs.

3 DAMT

Our framwwork DAMT is shown in Figure 3,
which includes four components: Encoding Mod-

ule (EM), Encoding Interaction Module (EIM),
Transition-based Decoding Module (TDM), and
Distance-Aware Decoding Module (DADM). In
EM, the hierarchical GRU is applied to obtain the
semantic representation of dialogues. In EIM, the
semantic representations of different paradigms
can interact explicitly to promote the multi-task
learning. In TDM, we adopt a pointer network for
transition-based decoding to obtain the dependency
structures. In DADM, the dependency structures
predicted by TDM are incorporated by DAGCN for
the final graph-based decoding.

3.1 Encoding Module

In the encoding module EM, we adopted hierarchi-
cal GRU to obtain the semantic representation of
dialogues for both paradigms. For each EDU ui
in dialogue D={u1, u2, · · · , un}, a bidirectional
GRU (bi-GRU) encoder is applied on the word se-
quence, and the last hidden states in two directions
are concatenated as the EDU-level semantic rep-
resentation, denoted as hi

e ∈ Rd. Then another
bi-GRU is applied on the EDU-level representation
to obtain the dialogue-level representation. We use
Htd and Hgd to denote the semantic representa-
tion of transition-based paradigm and graph-based
paradigm respectively, where Htd,Hgd ∈ Rn×d.

3.2 Encoding Interaction Module

Several studies (E et al., 2019; Qin et al., 2021; Li
et al., 2021a) have demonstrated that the explicit
interaction between encoding representations of
different tasks can better improve each other in
multi-task learning. Inspired by this, we propose an
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encoding interaction module EIM, which can build
a bidirectional connection between two paradigms.

Our EIM consists of two Self Attention (SA) lay-
ers and two Unidirectional Cross Attention (UCA)
layers. We first feed the semantic representation
Htd and Hgd from EM into the SA sub-layers to
obtain the internal semantic information for each
paradigm as follows.

Ht = SA(W s
q Htd,W

s
kHtd,W

s
vHtd)

Hg = SA(W s
q Hgd,W

s
kHgd,W

s
vHgd)

(1)

where SA(.) denotes multi-head attention as
(Vaswani et al., 2017) and W s

q ,W
s
k ,W

s
v are

weight matrix, which map vectors to the same fea-
ture space.

Second, two UCA layers are applied to build the
connection between the two paradigms, where one
from Ht to Hg and one from Hg to Ht as follows.

Hg→t = UCA(W c
qHg,W

c
kHt,W

c
vHt)

Ht→g = UCA(W c
qHt,W

c
kHg,W

c
vHg)

(2)

UCA(.) is a variant of SA(.), which uses
Ht(Hg) as query vectors and Hg(Ht) as the con-
text vector, thus enabling an explicit interaction
between the two vectors. The UCA layer is used
to make the encoding semantics of one paradigm
updated with the guidance of the other one, achiev-
ing a bidirectional connection between both two
paradigms.

Then, we add a residual connection and layer nor-
malization function LayerNorm(.) to obtain the
semantic representations of the two paradigms as
follows.

Htc = LayerNorm(Ht +Ht→g)

Hgc = LayerNorm(Hg +Hg→t)
(3)

Finally, following the previous work (Wang et al.,
2021a), Structure Self Attention (SSA) is applied
to enhance the semantic representation of dialogues
by incorporating the structural information of con-
versations. By feeding Htc and Hgc to the SSA,
we can obtain the semantic representation of all
EDU pairs which incorporate the structural infor-
mation of dialogues, denotes as Hts and Hgs,
where Hts,Hgs ∈ Rn×n×d.

3.3 Transition-Based Decoding Module
We adopt a pointer network for transition-based
decoding. After obtaining the semantic repre-
sentations Hts, we first applied mean pooling
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Figure 4: The decoding process of pointer network,
where the solid red arrows indicate dependency links of
current EDUs.

on Hts to obtain the semantic representation of
EDUs containing structural information, denotes
as Htm ∈ Rn×d. As shown in Figure 4, Htm are
fed into a uni-directional GRU for transition-based
decoding, and the initial state of the decoder is
taken from the combination of the last states of
hierarchical GRU in both directions2.

At each decoding step, it supposes the current
EDU index is i at the k-th step. Then, the seman-
tic representation Htm is fed to the decoder and
its output at the k-th step is hdk. After that, we
adopted the Biaffine Attention mechanism to the
representation Htm and the output hdk to obtain
the probability between the current EDU and all
previous EDUs that existing the dependency links
and the corresponding relation type as follows.

sji = Htm
TWhdk +UHtm + V hdk + b (4)

where sji ∈ Rm refers to the probability between
the current EDU ui and the previous EDU uj and
m is set to 1 when there is a dependency link be-
tween them, or set to the number of relation types
when there is a dependency type between them. Be-
sides, W denotes the weight matrix of the bi-linear
term, U ,V are the two weight vectors of the linear
terms, and b is the bias vector.

For a conversation with n utterances, we use
the adjacency matrix A ∈ Rn×n to represent
the transition-based dependency structure, where
Aij = 1 if there is a dependency link between the
EDUs ui and uj . Then, the adjacency matrix A is
fed to DAGCN to incorporate the transition-based
dependency structure.

3.4 Distance-Aware Decoding Module
In the distance-aware decoding module DADM,
DAGCN is first applied to capture the depen-
dency structure predicted by the transition-based

2Following previous work, we add a dummy root u0 to
represent the beginning of a dialogue.
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paradigm. Then the output of DAGCN and the se-
mantic representation of the graph-based paradigm
are fused together for final decoding.

To incorporate the information of dependency
links with different distances, the adjacency matrix
A converted from the dependency structure, which
is predicted by the transition-based paradigm, is
fed to DAGCN to facilitate the decoding process of
the graph-based paradigm. Inspired by Meng et al.
(2020), we hypothesize that the dependency links
with different distances have a different impact on
the decoding process of the graph-based paradigm.
Hence, the trainable weights is applies to the ad-
jacency matrix and each weight is determined by
the distance of the dependency link and the corre-
sponding relation type from the transition-based
paradigm.

Let Wd be a matrix of RNd×d′ where Nd is the
number of different distances 3 and d′ is the dimen-
sion of the embedding space. Let Wr be a matrix
of RNr×d′ where Nr is the number of dependency
relation types. The feature combination weight
over the element Aij in the adjacency matrix A
can be represented as follows.

αij = W [dis(dij) : rel(rij)] (5)

Where dij is the distance from the EDU ui to uj ,
and rij is the corresponding relation type. The
functions dis(.) and rel(.)are vector mapping func-
tions, which map the one-hot vector dij and rij
into the corresponding column of Wd and Wr, re-
spectively. [:] indicates the concatenation operation,
and W ∈ R2d′ is weight matrix.

Let A
′

be the final adjacent matrix for DAGCN,
then each element of A

′
can be computed as:

A
′
ij = αijAij (6)

Then, we add an identity matrix to A
′
, which

makes each node can connect to itself.
After obtaining the adjacent matrix A

′
, we first

apply mean pooling on the semantic representation
of graph-based paradigm Hgs to obtain Hgm ∈
Rn× d

2 , then the calculation of DAGCN is as fol-
lows.

Hgcn = ReLU(A
′
HgmW ) +Hgm (7)

3In our implementation, we set the distance to 2 for all
distances greater than or equal to 2.

where Hgcn ∈ Rn× d
2 is the output of DAGCN,

which incorporate the dependency structure pre-
dicted by TDM, and W is the parameter matrix.
Then, we broadcast the output of DAGCN and add
it to the semantic representations Hgs to obtain the
final representation Hf ∈ Rn×n×d for EDU pairs.

Lastly,Hf is fed into two multi-layer percep-
trons to obtain the probability distribution of each
EDU pair’s existing dependency link and the corre-
sponding relation type as follows.

Sl = Softmax(MLP(Hf ))

Sr = Softmax(MLP(Hf ))
(8)

where Sl ∈ Rn×n×1 and Sr ∈ Rn×n×m and m is
the number of relation type. To find the highest-
scoring tree, we apply greedy decoding method on
Sl. After determining the dependency link from
uj to ui, the relation type can be obtained by the
probability Sij

r .

3.5 Multi-Task Learning
For multi-task learning, we have two goals: (i)
optimizing the Transition-based Paradigm (TP) and
(ii) optimizing the Graph-based Paradigm (GP).

To optimize TP, we minimize the sum of the
loss for constructing the right dependency structure
and the loss for predicting the correct relation type,
which is calculated as follows.

Lt(θt) =−
n∑

t=1

logPθt(yt|y<t, X)

−
n∑

t=1

m∑
j=1

rt,jlogPθt(rt, X)

(9)

where θt denotes the parameters of TP to be opti-
mized, y<t represents the historical structure that
has been generated at previous steps,n is the total
number of dependency links, m is the total number
of relation types and rt,j is the golden relation type.

To optimize GP, we minimize the cross-entropy
of gold dependency links between EDUs pairs as
follows.

Lg(θg) =−
n∑

i=1

y∗logPθg(yt, X)

−
n∑

i=1

m∑
j=1

ri,jlogPθg(ri, X)

(10)

where θg denotes the parameters of GP to be opti-
mized, y∗ represents the golden dependency links,
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Model Molweni STAC

Link Link&Rel Link Link&Rel
w/o pre-trained model

TP
DSM∗ 77.32 54.15 72.10 53.56
LCCC - - 72.50 55.20

PN 81.02 56.47 72.56 54.40
GP SSAM∗ 81.15 56.93 72.92 54.83

Ours DAMT 82.25 57.35 73.54 55.32
w/ pre-trained model

GP
DiscProReco - - 74.10 57.00

SSAM∗ 81.52 57.90 73.09 56.57
Ours DAMT 82.50 58.91 73.64 57.42

Table 1: F1 scores (%) for different models where Link refers to link prediction and Link&Rel refers to that a
correct prediction must predict dependency link and relation type correctly at the same time. We used the t-test with
a 95% confidence interval for the significance test and all improvements of DAMT over SSAM are significant ( p <
0.05). TP is short for Transition-based Paradigm, and GP is short for Graph-based Paradigm. ∗ indicates that we
reproduce the scores of models using their released code.

Distance Percentage(%)
Molweni STAC

1 64.94 55.63
2 21.49 21.26
3 7.38 10.63

>=4 6.19 12.48

Table 2: Distribution of dependency links at different
distances in the training set of Molweni and STAC.

n is the total number of dependency links, m is the
total number of relation types and rt,j is the golden
relation type.

For multi-task learning of the TP and GP, we add
the above loss terms as follows.

L =Lt + Lg (11)

4 Experimentation

In this section, we first introduce the datasets,
hyper-parameters and baselines used in our evalua-
tion, and then report the experimental results.

4.1 Datasets
We conduct experiments on two publicly available
multi-party dialogue datasets: Molweni (Li et al.,
2020) and STAC (Asher et al., 2016) and we pre-
process these two datasets following Shi and Huang
(2019). The distribution of dependency links at
different distances on the training set of Molweni
and STAC are shown in Table 2.

We can find that the dependency links with the
distance 1 dominate both two corpora (about 65%

and 56% in Molweni and STAC, respectively). The
small percentage of long-distance dependency links
poses challenges for models to predict. Our method
DAMT can explicitly leverage the strengths of the
transition-based paradigm to facilitate the graph-
based decoding and further improve the perfor-
mance on long-distance dependency links.

4.2 Hyper-Parameters
Following the previous work, we initialize words
with GloVe embeddings (Pennington et al., 2014)
that are fine-tuned during training. For Molweni
and STAC corpus, the embedding dimension is set
at 200 and 100, respectively. The dimension of the
hidden representation d is set to 256 and the layer
of EIM is set to 1 with 4 heads. The layer of SSA is
set to 2 with 4 heads. The dimension of the embed-
ding space d′ in DAGCN is set to 8. And we set the
dropout rate to 0.5 and employ Stochastic Gradient
Descent (SGD) to train the model. The batch size
is set to 150 and 70 for Molweni and STAC, respec-
tively, and the initial learning rate is set to 3e-2. For
the experiments using the pre-trained model, we
apply XLNet-based (Yang et al., 2019) to obtain
the semantic representations of EDUs and adopt
AdamW to optimizer the model. The learning rate
is set to 3e-4 and the dimension of the hidden repre-
sentation d is set to 768. Besides, in this paper, the
micro-averaged F1 score is adopted for evaluation.

4.3 Baselines
To verify the effectiveness of our DAMT, we con-
duct the following strong baselines for comparison.
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Figure 5: Comparison of dependency link accuracy at
the different distance between our approach and two
baselines.

Transition-based models 1) DSM (Shi and
Huang, 2019): it predicted links and corresponding
relation types jointly and alternately by considering
the historical structure predicted; 2) LCCC (Wang
et al., 2021b): it is based on DSM and enhanced the
semantic representation of EDUs by incorporating
cohesion information; 3) PN: it is the pointer net-
work we proposed for transition-based decoding.
As shown in Figure 3, our framework becomes PN
after discarding the modules EIM and DADM.

Graph-based models 1) DiscProReco (Yang
et al., 2021): it used the syntactic dependency graph
to enhance the semantic representation of EDUs
pairs; 2) SSAM (Wang et al., 2021a): it used the
structure self attention network and two auxiliary
training signals to enhance the semantic represen-
tation of EDU pairs.

4.4 Results

Table 1 shows the performance comparison be-
tween our DAMT and all the Transition-based and
Graph-based baselines. Besides, the results with-
out the pre-trained model and with the pre-trained
model are also shown in Table 1. We can find out
that our DAMT outperforms all baselines without
the pre-trained model.

Especially, compared with the SOTA transition-
based PN, our DAMT improves the F1-score by
1.23 and 0.88 in link and relation on Molweni, re-
spectively, and improves them by 0.98 and 0.92
on STAC, respectively. Compared with the SOTA
graph-based SSAM, our DAMT improves the F1-
score by 1.10 and 0.42 in link and relation on Mol-
weni, respectively, and improves them by 0.62 and

Figure 6: Accuracy of dependency links at various num-
bers of EDUs between our DAMT and SSAM.

0.49 on STAC, respectively. Our approach DAMT
leverages the strengths of different paradigms from
two perspectives with multi-task learning and there-
fore achieves better performance.

Besides, with the application of the pre-trained
model, our approach DAMT still improves the
F1-score on Molweni and STAC compared to the
SSAM, which illustrates the effectiveness of our
approach.

5 Analysis

In this section we first conduct a detailed analysis
on the dependency links with different distances
and the different lengths of dialogues, and then
provide the ablation study and case study.

5.1 Performance on Dependency Links with
Different Distances

To further analyze the improvements of our model
DAMT, we investigate the accuracy of dependency
links at different distance between DAMT and two
SOTA baselines on Molweni, as shown in Figure 5,
where PN is a transition-based model and SSAM
is a graph-based model.

Comparing with SSAM, we can find that PN
performs better when the distance of dependency
links is greater than one, while SSAM performs
better when the distance of dependency links is
one. This result shows that even though the se-
mantic representations of EDUs are obtained using
more advanced methods, both paradigms still have
different performances on dependency links with
different distances due to the discrepancy in depen-
dency structure construction.

Overall, all models have a similar downward
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Model Link Accuracy (%)
Molweni STAC

DAMT 66.93 50.20
-EIM 64.60(↓ 2.33) 47.60(↓ 2.60)

-DAGCN 62.91(↓ 4.02) 44.40(↓ 5.80)
-EIM,DAGCN 62.27(↓ 4.66) 43.00(↓ 7.20)

Table 3: The Accuracy of dependency links with dis-
tance greater than one in the test set of Molweni and
STAC.

trend. Compared with PN and SSAM, our DAMT
improves the performance of dependency links
with a distance greater than one significantly. It
indicates the effectiveness of our model that explic-
itly integrates both paradigms from two perspec-
tives.

5.2 Performance on Different Lengths of
Dialogues

We further analyze the performance of DAMT
and SSAM in terms of the number of EDUs on
Molweni. Figure 6 shows the accuracy of depen-
dency links at various numbers of EDUs in a doc-
ument. Compared with SSAM, our model DAMT
improved performance on almost all documents
with different numbers of EDUs, especially those
documents containing 11 and 8 EDUs with an im-
provement of 9 % and 4 %, respectively.

We analyze the distribution of dependency links
with different distances at various numbers of
EDUs. We find that the percentages of long de-
pendency links (>1) in those conversations with 8
and 11 EDUs are the highest with 43% and 41%, re-
spectively. This can reflect that our DAMT mainly
improves the performance of the long dependency
links.

5.3 Ablation Study

To investigate the impacts of the proposed mod-
ules on the performance of the dependency links
with the longer distances, we conduct an ablation
study on two modules EIM and DAGCN in DAMT,
as illustrated in Table 3, where “-” indicates the
removal of the single or several modules.

Removing any of the two modules makes the
performance worse, while discarding DAGCN has
the greatest impact on the performance. This shows
that DAGCN can explicitly aggregate the informa-
tion of dependency links with different distances
in the discourse structure predicted by the PN, thus
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Figure 7: Discourse structures of the example in Figure
1. (a) refers to the ground truth structure and (b)-(d) re-
fer to the structures predicted by DAMT, SSAM and PN.
Different lines indicate different relation types, where
the solid lines, dotted lines, dashed lines, dashed dotted
lines and dashed double-dotted lines denote the rela-
tions “Clarification Question”, “Comment”, “Result”,
"Question-answer_pair" and "Q-Elab", respectively.

improving the performance of dependency links
with the longer distance.

5.4 Case Study
Figure 7 show the dependency structures of the
example in Figure 1, which are the golden truth
and three predicted results by our DAMT and two
baselines SSAM and PN.

Compared with the transition-based PN, we find
out that SSAM can better predicts the dependency
links and their corresponding relation types when
the distance is one, such as u1 → u2 and u8 → u9.
Although PN can correctly predicts the dependency
link u8 → u9, it cannot correctly predict its corre-
sponding relation type. This shows the advantage
of graph-based approach over transition-based ap-
proach for dependency links when the distance is
one. On the contrary, for those dependency links
with distance greater than one, PN performs better
than SSAM, such as u3 → u6 and u3 → u8.

Compared with PN, DAMT can further cor-
rectly predict the relation type of dependency link
u8 → u9. And compared with SSAM, DAMT can
correctly predict long-distance dependency links
u3 → u6, u3 → u8. These phenomena show that
our distance-aware multi-task framework is able to
combine the advantages of both two paradigms to
predict those long-distance dependency links.

Besides, for some dependency links, such as
u1 → u3 and u4 → u5, all models fail to iden-
tify their links. This indicates that conversational
discourse paring is still a challenging task.
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6 Conclusion

In this paper, we propose a distance-aware multi-
task framework DAMT to facilitate conversational
discourse parsing. First, we propose an encoding
interaction module to enhance the information flow
between the graph-based paradigm and transition-
based paradigm to promote multi-task learning.
Second, we propose a distance-aware graph con-
volutional network DAGCN incorporating the de-
pendency structure predicted by one paradigm to
explicitly facilitate the decoding process of another
paradigm. The experimental results on two pub-
lic datasets show the effectiveness of our proposed
DAMT. In the future, we will further explore how
to recognize relation types more effectively.
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