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Abstract

Unsupervised summarization methods have
achieved remarkable results by incorporating
representations from pre-trained language mod-
els. However, existing methods fail to consider
efficiency and effectiveness at the same time
when the input document is extremely long.
To tackle this problem, in this paper, we pro-
posed an efficient Coarse-to-Fine Facet-Aware
Ranking (C2F-FAR) framework for unsuper-
vised long document summarization, which is
based on the semantic block. The semantic
block refers to continuous sentences in the doc-
ument that describe the same facet. Specifi-
cally, we address this problem by converting
the one-step ranking method into the hierar-
chical multi-granularity two-stage ranking. In
the coarse-level stage, we propose a new seg-
ment algorithm to split the document into facet-
aware semantic blocks and then filter insignif-
icant blocks. In the fine-level stage, we select
salient sentences in each block and then extract
the final summary from selected sentences. We
evaluate our framework on four long document
summarization datasets: Gov-Report, BillSum,
arXiv, and PubMed. Our C2F-FAR can achieve
new state-of-the-art unsupervised summariza-
tion results on Gov-Report and BillSum. In ad-
dition, our method speeds up 4-28 times more
than previous methods.1

1 Introduction

The text summarization task aims to condense a
document or a set of documents into several sen-
tences and keep the primary information. Recent
years, both supervised (Liu and Lapata, 2019; Liu
and Liu, 2021; Liu et al., 2021b) and unsuper-
vised (Zheng and Lapata, 2019; Dong et al., 2021b;
Liang et al., 2021, 2022) methods have made sig-
nificant improvements over short documents with
the development of semantic representations from

*Contribution during internship at Tencent Inc.
†Corresponding Author
1https://github.com/xnliang98/c2f-far

Pre-trained Language Models (PLMs). Due to the
noise and complexity of the increased input and
output length, long-form document summarization
is still a challenge (Tay et al., 2021; Akiyama et al.,
2021; Grail et al., 2021). Compared with super-
vised one, unsupervised methods do not rely on
large amounts of labeled data and have no limi-
tation on input length. In addition, unsupervised
methods can be easily adapted to data from differ-
ent domains, types, and languages. In this paper,
we focus on unsupervised extractive methods for
long document summarization.

Most unsupervised extractive methods are graph-
based (Zheng and Lapata, 2019; Dong et al., 2021b;
Liang et al., 2021, 2022). They represent docu-
ment sentences as nodes in a graph, where the edge
value is the similarity between sentences. Then,
they measure the importance of each node via com-
puting the degree centrality (Radev et al., 2000) or
running PageRank (Brin and Page, 1998) algorithm.
Liang et al. (2021) pointed out that centrality-based
methods always tend to select sentences within the
same facet (i.e. aspect, sub-topic) and proposed a
facet-aware ranking (FAR) method to tackle this
problem. FAR forces a centrality-based model
to select summary sentences from different facets
by incorporating the relevance between the candi-
date summary and the document. However, this
method faces two problems when the document is
extremely long: 1) As the input length increases,
the document will have more noise and insignifi-
cant facets. The relevance computation between the
candidate summary and the document may cause
the facet-aware ranking to be influenced by insignif-
icant facets. 2) The running time of FAR will rise
rapidly as the number of extracted sentences in-
creases. Due to FAR needs to compute the rel-
evance score number of combinations Ck

m times,
where k is the number of extracted summary sen-
tences and m is the number of candidate salient
sentences.

https://github.com/xnliang98/c2f-far
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Figure 1: An example from the Gov-Report dataset to introduce the process of our method. “...” refers to the
omissions of context sentences due to space limitations. Highlight sentences refer to the final extracted summary
sentences. The content of the arrow pointed is the facet description of the left semantic block. Bold facets represent
vital facet-aware semantic blocks of the final summary.

To tackle these problems, in this paper, we pro-
pose a novel Coarse-to-Fine Facet-Aware Ranking
(C2F-FAR) Framework based on semantic blocks,
which consists of two stages with different gran-
ularities: semantic blocks and sentences. The se-
mantic block means continuing sentences that de-
scribe the same facet. We use a simple example
in Fig. 1 to describe the motivation for building
two stages. Fig. 1 shows four facet-aware semantic
blocks. Each block contains continuous sentences
describing the same facet, which is listed on the
right. From the coarse-level view, we should first
filter blocks with unimportant facets in the docu-
ment, e.g. the block related to “additional goal of
PILT” in Fig. 1. Then, from the fine-level view,
we should select proper sentences in each block,
which are more relevant to the block facet. Note
that we only show the most relevant sentences with
the facet of each semantic block and omit unre-
lated sentences due to the space limitation. Finally,
the highlighted sentences should be selected as the
summary.

Following this intuitive process, we designed
our framework with a coarse-level stage and a fine-
level stage. The coarse-level stage aims to select
several salient facet-aware semantic blocks for the
fine-level stage. We first segment the document

into facet-aware semantic blocks by our proposed
new document segmentation algorithm, which is
inspired by TextTiling (Hearst, 1997). Then, we fil-
ter insignificant facets via a coarse-level centrality
estimator to measure the salience of blocks. The
fine-level stage aims to select final summary sen-
tences from previously selected blocks. We first
select candidate sentences in each block to repre-
sent its facet by simply computing relevance be-
tween sentences and the block. Finally, we extract
the final summary from candidate sentences by
sentence-level centrality-based estimator. Overall,
the coarse-level stage can identify all facets of the
document effectively and filter insignificant ones.
The fine-level stage can reduce the influence of
facets with many sentences by only selecting sev-
eral related sentences for the final ranking. This
framework with a hierarchical coarse-to-fine struc-
ture can guarantee effective and efficient long doc-
ument summarization.

We evaluate the effectiveness and efficiency
of our C2F-FAR on four long-document summa-
rization datasets with two different metrics. Our
method achieves new state-of-the-art performance
on Gov-Report and BillSum. It is comparable to
strong baselines on arXiv and PubMed. Besides,
our method can achieve a speedup of 4-28 times
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more than two strong baselines.

2 Methodology

We show the workflow of our proposed coarse-to-
fine facet-aware ranking (C2F-FAR) framework
in Fig. 2. After encoding the document into sen-
tence embeddings, the workflow contains two main
stages and each stage contains two steps.

(1) In the coarse-level stage, we first employ a
document segmentation algorithm to split the docu-
ment into coarse-level semantic blocks and we call
them facet-aware semantic blocks. Then, we score
all blocks via the centrality estimator and select
top-ranked blocks for the next fine-level stage.

(2) In the fine-level stage, we first select sev-
eral sentences of each facet-aware semantic block,
which can cover the main facet of each block. Then,
we employ a sentence-level centrality estimator to
score selected sentences and extract the final sum-
mary.

We describe the details of each step in the fol-
lowing sections.

2.1 Sentence Embeddings
Formally, let D indicate a long document contain-
ing n sentences {s1, . . . , sn}. In this paper, we em-
ploy pre-trained language model to obtain the sen-
tence embeddings {v1, . . . , vn}. Specifically, we
employ an improved BERT (Devlin et al., 2019a)
from previous work PacSum (Zheng and Lapata,
2019) to represent each sentence si with the hidden
state vi of “[CLS]” token. This improved BERT
can obtain better sentence semantic representation.

2.2 The Coarse-Level Stage
The coarse-level stage contains two steps: docu-
ment segmentation and coarse-level centrality esti-
mator. The document segmentation splits the doc-
ument into semantic blocks. The coarse-level cen-
trality estimator employs a directed centrality score
to measure the importance of each facet-aware se-
mantic block. After the coarse-level stage, we only
keep top-ranked α × m semantic blocks of the
whole document, where m is the number of facet-
aware semantic blocks and α is a hyper-parameter
used to control the ratio of reserved important
blocks (default α = 0.5).

2.2.1 Document Segmentation Algorithm
We propose a simple but effective document seg-
mentation algorithm to split the input document
into facet-aware semantic blocks. This algorithm

is based on the assumption that when sentences
with adjacent positions are semantically similar,
they focus on the same facet (Skorochod’ko, 1971).
As shown in Fig. 3, the algorithm aims to select
some potential segmentation points to segment the
document into several facet-aware semantic blocks
P1 = {sps1 , ..., spe1}, ..., Pm = {spsm , ..., spem}.
Our proposed document segmentation algorithm is
inspired by TextTiling (Hearst, 1997). It contains
two steps: similarity measure and segmentation
point identification.

In the similarity measure step, we compute the
similarity of sentences on both sides of the po-
tential segmentation point gi. Each side select
w sentences and apply mean operation method
over their vectors to obtain global representations
bli = 1

w

∑i
j=i−w+1 vj and bri = 1

w

∑i+w
j=i+1 vj ,

where bli and bri refer to the left and right side block
with w sentences, respectively. The similarity of
the sentence on both sides of the potential segmen-
tation point gi is computed by cosine similarity
simi =

bli·bri
||bli||||bri ||

.
Then, we apply the moving average on the

similarity list of potential segmentation points
{sim1, ..., simn−1} to get a smooth similarity list
with Equ. (1)

ˆsimi =
1

2ŵ + 1

i+ŵ∑
j=i−ŵ

simj (1)

where the ŵ is the window size used for moving av-
erage operation and the similarity list is refactored
as { ˆsim1, ..., ˆsimn−1}. In this paper, the window
size w and ŵ are all set as 2.

The segmentation point identification step is
based on the smooth similarity list. We show an
intuitive similarity curve in Fig. 4. If the value of
ˆsimi is low, the facets in the left and right blocks

are different. So we should segment them with the
point gi. We can see that segmentation points g3
and g5 are the local minimum value of the curve in
Fig. 4, which are suitable to segment the document.

We convert the similarity list of the potential
segmentation point into depth score series {di}n−1

i=1

by Equ. 2 to select proper segmentation points.

di = max{( ˆsimi−1 − ˆsimi), 0}
+max{( ˆsimi+1 − ˆsimi), 0}

(2)

When the similarity of the potential segmentation
point is the local minimum value, it will become
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Figure 2: The workflow of our proposed coarse-to-fine facet-aware ranking framework.

Figure 3: A diagram for document segmentation.

Figure 4: The smooth similarity curve.

the local maximum value after being converted into
a depth score. If di > ϵ, we choose the potential
segmentation point gi as the segmentation point.
The ϵ is a threshold and is decided by the mean µ
and standard deviation σ of the depth score series.
We set ϵ = µ+λ · σ, where λ is a hyper-parameter
to control the granularity of segmentation. The
greater the λ, the segmented block contains more
sentences.

Finally, we can segment the whole document
into some facet-aware semantic blocks P1 =
{sps1 , ..., spe1}, ..., Pm = {spsm , ..., spem}, like ex-
amples in the Fig. 3.

2.2.2 Coarse-Level Centrality Estimator
We introduce the coarse-level centrality estima-
tor for filtering unimportant facet-aware semantic
blocks in this section. We represent the semantic
information of each block Pi by computing the av-
erage of sentence vectors contained in the block.

pi =
1

|Pi|
∑
si∈Pi

(si) (3)

The representations of blocks are {p1, . . . , pm}.
Then, we employ directed centrality (Zheng and
Lapata, 2019) to score each block based on the as-
sumption that the contribution of any two nodes’
connection to their respective centrality is influ-
enced by their relative position.

C(pi) = λ1

n∑
j<i

pi · pj + λ2

n∑
j>i

pi · pj (4)

After that, we rank all blocks via directed centrality
score C(pi) and only keep top-ranked α percent se-
mantic blocks for the next fine-level stage, where α
is a hyper-parameter to control the ratio of reserved
blocks.

2.3 The Fine-Level Stage

The fine-level stage contains two steps: relevance
estimator and fine-level centrality estimator. The
relevance estimator is used to select some sentences
in each facet-aware semantic block, which can re-
tain the main information of the block. The fine-
level centrality estimator is applied to sentences
from the previous relevance estimator and also em-
ploys the directed centrality score to extract the
final summary.

2.3.1 Relevance Estimator
The relevance estimator simply computes the rel-
evance between sentences and the block to select
sentences to represent the facet in semantic blocks.
This step is based on the assumption that each facet-
aware semantic block only contains one facet. We
employ cosine similarity to measure the relevance
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between sentence representation vj and block rep-
resentation pi.

R(sj) =
vj · pi

||vj ||||pi||
, sj ∈ Pi (5)

For each semantic block, we select top-ranked β
sentences, where β is the average number of se-
mantic block sentences, which is determined by
the granularity of document segmentation. If the
number of sentences in a block is lower than β,
we keep all sentences. Then, we can get t candi-
date sentences {ŝ1, . . . , ŝt} for the final summary
selection.

2.3.2 Fine-Level Centrality Estimator
The final fine-level centrality estimator aims to se-
lect the final summary sentences from previous
candidate sentences. The final fine-level centrality
estimator measures the importance of each candi-
date sentence as follows:

C(si) = λ1

t∑
j<i

vi · vj + λ2

t∑
j>i

vi · vj (6)

where si, sj ∈ {ŝ1, . . . , ŝt}. We select top-ranked
k sentences as the final summary, where k is the
average number of sentences of different datasets.

3 Experiments

3.1 Datasets

Datasets #docs document summary
words sen. words sen.

Gov-Report 973 9,409 304 657 23
BillSum 3,269 2,148 169 209 10
arXiv 6,440 4,938 206 220 10
PubMed 6,658 3,016 107 203 8

Table 1: Statistics information of Gov-Report, BillSum,
arXiv, and PubMed datasets. We compute the average
document and summary length in terms of words and
sentences, respectively.

We evaluate our C2F-FAR on 4 datasets. The
statistics information of them is shown in Tab. 1.

Gov-Report (Huang et al., 2021) is a large-scale
long document summarization dataset containing
19,466 long reports published by U.S. Govern-
ment Accountability Office (GAO) and Congres-
sional Research Service (CRS). Documents and
summaries in Gov-Report are significantly longer
than other datasets.

BillSum (Kornilova and Eidelman, 2019) con-
tains US Congressional bills and human-written
references from the 103rd-115th (1993-2018) ses-
sions of Congress. We found that previous works
have some errors in the sentence segmentation of
the dataset. We re-segmented this dataset with the
StanfordNLP toolkit and conducted experiments
on the basis of the new sentence segmentation.

arXiv and PubMed (Cohan et al., 2018) are two
long scientific document summarization datasets
from scientific papers.

3.2 Settings and Metrics

We employ sentence-BERT2 from (Zheng and La-
pata, 2019) to encode sentences in the document,
which converts each sentence into a vector with
768 elements. The window size of the document
segmentation algorithm is 2. The default setting of
λ is 1.0 and α is 0.5.

We reported ROUGE-1/2/L scores with
ROUGE-1.5.5.pl script3 (Lin, 2004) and
BertScore (Zhang* et al., 2020) of baselines and
our methods. The ROUGE score is the lexical level
metric to measure the similarity between extracted
summary and gold summary. The BertScore4

measures the semantic level similarity between the
extracted summary and gold reference.

3.3 Baselines

We compare our method with recent strong unsu-
pervised extractive summarization models.

Lead, which selects the first k tokens as a sum-
mary.

Oracle, which is the upper bound of extractive
summarization methods. It selects sentences by
computing ROUGE scores with the gold summary.

TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004), which are two
traditional unsupervised ranking method based on
TF-IDF and PageRank algorithm to select salient
sentences.

TextRank(BERT), which employs embeddings
from improved BERT to compute the edge weight
of TextRank.

FAR (Liang et al., 2021), which defined the facet
bias problem and proposed a facet-aware centrality
method to tackle the bias problem.

2https://github.com/huggingface/transformers
3https://github.com/andersjo/pyrouge
4https://github.com/Tiiiger/bert_score
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3.4 Evaluation of Summary Quality and
Inference Time

We report the results of automatic and human eval-
uation of all systems to measure the extracted sum-
mary quality of our C2F-FAR. Besides, we also
compare the inference time of our method with two
strong baselines to prove the high efficiency of our
method.

The automatic evaluation results of ROUGE
score and BertScore are shown in the Tab. 2 and
Tab. 3. These two scores measure the lexical and
semantic level similarity between extracted sum-
mary and gold reference, respectively. All reported
results of our C2F-FAR framework employed the
default hyper-parameters λ = 1 and α = 0.5. We
can see that our C2F-FAR achieved new state-of-
the-art results on Gov-Report and BillSum in unsu-
pervised methods. The performance of our method
also is better than PacSum and comparable to FAR
on the other two datasets: arXiv and PubMed. We
will analyze the reason for the results on arXiv and
PubMed in the discussion section. Interestingly,
there is no big difference between the two versions
of TextRank. We guess that the iterative algorithm
based on PageRank is not sensitive to the similarity
measure methods.

To evaluate the ability of our C2F-FAR in re-
ducing facet bias and improving the quality of ex-
tracted summaries, we asked 3 human annotators
to evaluate the extracted summaries of C2F-FAR
and FAR with the gold reference summary. Three
annotators were given extracted and gold summary.
Then they were asked to give 0-2 scores for facets
coverage (whether the extracted summary contains
most primary facets) and quality (the comprehen-
sive feelings of the extracted summary) of 20 ran-
dom sampled examples from test sets of BillSum
and 20 random sampled examples from test sets of
Gov-Report (0-bad, 1-normal, 2-good). The results
of FAR in terms of facets coverage is 1.16 and qual-
ity is 1.03. Our C2F-FAR performs significantly
better (p < 0.05 with Mann-Whitney U tests) than
FAR whose facets coverage is 1.38 and quality is
1.15.

To test the inference time of our method, we
randomly select 100 examples from the test set
of each dataset and ensure that the average input
length of these 100 examples is the same as the
average length of the test set. Then, we run each
method 10 times and report the average inference
time of them on four datasets. We can see Fig. 5

Figure 5: The inference time of each system. Each time
is the average of multiple runs (10 times). ”×N“ means
the running time is N times (rounded up) of our method.

and find that our method is far ahead of the other
two methods in inference time, and this advantage
becomes more obvious as the length of the input
document increases.

Overall, compared with other methods, our
method takes into account both efficiency and ef-
fectiveness. In addition, our framework also can
adjust the specific ranking method in each step for
datasets with different types and domains, which
makes it flexible.

4 Analysis

In this section, we first analyze the parameter sensi-
tivity of our C2F-FAR and then discuss the reason
why our method is inferior to the FAR on arXiv and
PubMed via facets analysis of extracted sentences.

4.1 Impact of Hyper-parameters

In this section, we will analyze the parameter sen-
sitivity of two hyper-parameters in our C2F-FAR
framework: 1) λ is used to control the granularity
of the document segmentation algorithm; 2) α is
used to control the ratio of reserved blocks of the
coarse-level centrality estimator. We can see the
relationship between compression ratio and λ in
the Tab. 4. The default setting of λ = 1 has an
impressive compression ratio on two datasets.

We fix α and show the change of the ROUGE-
1 score while λ changes in Fig. 6. We can find
that the performance is best when λ = 1.0, and
there is little change when λ ∈ [0, 2]. This shows
that our algorithm is stable. You can set a larger λ
to get a faster running speed while ensuring good
performance. We set the value range of λ between
0.0 and 2.5 because when λ is less than 0, the most
segmented blocks contain one sentence. Then the
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Models Gov-Report BillSum
R-1 R-2 R-L BS-F R-1 R-2 R-L BS-F

Oracle 74.87 49.02 72.48 88.83 65.24 47.09 58.81 86.29
Lead 50.94 19.53 48.45 83.47 40.53 18.28 34.15 80.24
LexRank 40.16 8.85 37.65 82.48 34.39 10.05 28.93 79.76
TextRank(TF-IDF) 53.19 23.12 49.86 84.83 40.04 16.12 32.64 80.81
TextRank(BERT) 56.00 22.42 52.86 85.10 38.05 12.99 31.46 80.02

PacSum 56.89 26.88 54.33 85.02 41.11 17.24 34.54 81.33
FAR 57.51 27.54 54.94 85.38 41.53 17.44 34.84 81.21
C2F-FAR 57.98 27.63 55.33 86.62 42.53 17.85 35.58 81.57

Table 2: Results on Gov-Report and BillSum test set. BS-F refers to F1 of the BertScore.

Models arXiv PubMed
R-1 R-2 R-L BS-F R-1 R-2 R-L BS-F

Oracle 53.88 23.05 34.9 87.06 55.05 27.48 38.66 87.05
Lead 33.66 8.94 22.19 82.97 35.63 12.28 25.17 80.43
LexRank 33.85 10.73 28.99 80.42 39.19 15.87 34.53 83.21
TextRank(TF-IDF) 36.59 10.06 30.29 82.49 38.66 15.87 34.53 82.43
TextRank(BERT) 34.68 8.78 30.05 81.19 39.43 12.89 34.66 83.39

PacSum 38.58 11.12 33.5 81.78 39.79 14.00 36.09 83.43
FAR 40.92 13.75 35.56 83.74 41.98 16.74 37.58 83.89
C2F-FAR 39.32 11.65 34.28 82.04 40.12 14.79 36.91 83.50

Table 3: Results on arXiv and PubMed test set. BS-F refers to F1 of the BertScore.

Datasets BillSum Gov-Report

λ β Para. Comp. β Para. Comp.

0 3 70 41% 3 120 39%
0.5 4 45 27% 5 74 24%
1 6 27 16% 10 44 14%

1.5 11 15 9% 15 26 9%
2 20 8 5% 20 15 5%

2.5 36 4 2% 36 4 1%

Table 4: Parameters affected by λ on two datasets.
Para. means the average number of blocks with dif-
ferent hyper-parameters λ. Comp. means the ratio of
the number of blocks to the number of sentences. β is
the average number of sentences in a block.

following algorithms are equivalent to acting on
the sentence-level structure.

We also fix λ and show the change of the
ROUGE-1 score while α changes in Fig. 6. We
can see that the second half of the curve is almost
flat. This shows that the low centrality score of the
segmented segment does not contribute to the final
summary quality. The facets contained in these
blocks are not important to the whole document.

We can filter them with α in the coarse-level step
and achieve a faster running speed.

The analysis of the two hyper-parameters proves
that our C2F-FAR framework can employ simple
hyper-parameter settings to improve the running
speed of the algorithm while ensuring the quality
of the summary.

4.2 Facets of Extracted Sentences

Gov-Report BillSum arXiv PubMed

#fac. 11.1 7.0 3.8 3.2
#sen. 20 10 10 7

#sen./#fac. 1.80 1.42 2.63 2.19

Table 5: #fac. refers to the average number of facet-
aware semantic blocks, which contain extracted sen-
tences. #sen. refers to the number of extracted sentences.
#sen./#fac. refers to the average number of sentences
from each block. Extracted sentences are from the Ora-
cle system.

In Tab. 5, we employ the extracted sentences
from the Oracle system to analyze the character-
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Figure 6: Impact of hyper-parameters λ and α.

istics of four datasets. The granularity of the doc-
ument segmentation algorithm is λ = 1. We can
see that selected summary sentences in arXiv and
PubMed datasets distribute in fewer facet-aware
semantic blocks than those in Gov-Report and Bill-
Sum. Our model tends to select summary sentences
from more blocks, thus achieving better perfor-
mance in Gov-Report and BillSum datasets.

By observing the extracted summary sentences
from the Oracle system and combining the results
in Tab. 5, we can roughly get the reason why our
model is not as good as FAR on these datasets:
the contents of the document and the summary is
more concentrated on 3-4 facets of the document.
Besides, the extracted sentences of them are mainly
distribute at the start or end part (introduction and
conclusion) of the document (Dong et al., 2021b).
However, our method is more inclined to select
summary sentences from more blocks and select
many sentences in the middle part of the document.
This leads to our method not performing so well on
these two datasets.

5 Related Work

5.1 Long Document Summarization
Thanks to the development of Transformer-based
(Vaswani et al., 2017) Pre-trained Language Mod-
els (PLMs), such as BERT (Devlin et al., 2019b), re-
cent summarization models (Liu and Lapata, 2019;

Zhang et al., 2019a; Li et al., 2020; Lewis et al.,
2020; Zhong et al., 2020; Liu and Liu, 2021; Liu
et al., 2021b) achieved excellent performance in
short document summarization. However, these
models can not be simply transferred to long docu-
ment summarization due to both salient and noise
content increasing according to the increase of
the input text. How to summarize the long-form
document, including books (Mihalcea and Ceylan,
2007), patents (Sharma et al., 2019), scientific pub-
lications (Qazvinian and Radev, 2008; Cohan et al.,
2018), etc., is an important and long-standing chal-
lenge.

Most recent works for long-form document sum-
marization are supervised and mainly tackle this
problem through two angles. The first angle tends
to design more efficient self-attention mechanisms
to reduce the complexity. (Child et al., 2019; Kitaev
et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020;
Huang et al., 2021; Tay et al., 2021; Dong et al.,
2021a) The other angle employed the condense-
then-generate paradigm (Cohan et al., 2018; Xu
and Durrett, 2019; Zhang et al., 2019b; Lebanoff
et al., 2019; Zhu et al., 2020; Akiyama et al., 2021;
Grail et al., 2021). This paradigm first employs
sentence/discourse-level structure to select salient
sentences and then generates the summary based
on them. This paradigm is intuitive and similar to
the behavior of humans summarizing a long docu-
ment. Our method also borrows some ideas from
it.

5.2 Unsupervised Summarization

Most traditional unsupervised summarization meth-
ods are graph-based and extractive (Radev et al.,
2000; Mihalcea and Tarau, 2004; Radev et al.,
2000; Erkan and Radev, 2004; Wan, 2008). They
represent the document as a graph, where each
sentence is a node with a weighted edge which
is the similarity between nodes. They rank sen-
tences via computing centrality with node degree
or PageRank algorithm (Brin and Page, 1998). Re-
cently, many unsupervised works (Chu and Liu,
2019; Zhou and Rush, 2019; Zheng and Lapata,
2019; Yang et al., 2020; Xu et al., 2020; Liu et al.,
2021a; Dong et al., 2021b; Liang et al., 2021) com-
bined traditional methods with PLMs and achieved
fantastic performance.

Zheng and Lapata (2019) first employed BERT
to enhance similarity measure for graph-based rank-
ing and proposed a directed degree centrality com-
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putation method. Dong et al. (2021b) pointed
out that the previous method is not suitable for
long scientific papers and proposed a hierarchi-
cal discourse-based unsupervised ranking method.
Liang et al. (2021) found that they all ignored the
facet-bias problem (Mao et al., 2020), which is
ubiquitous in unsupervised methods and proposed
a facet-aware ranking method FAR. However, as
the document length increases, they cannot extract
proper sentences which cover vital facets of the doc-
ument, from rapidly increased insignificant facets.

6 Conclusion

In this paper, we focus on unsupervised long doc-
ument summarization tasks, which is a vital and
long-standing challenge in text summarization. To
obtain summary sentences efficiently and effec-
tively, we proposed a novel coarse-to-fine facet-
aware ranking framework. Our method can achieve
new state-of-the-art results on two datasets. Ex-
periments show that our approach is effective and
efficient for the long document summarization task.
In future work, we will investigate how to refactor
this process into an end-to-end paradigm.
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