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Q: What is the man using as tools?
A: A saw and handaxe
E: 

00:00 00:37 00:51

Figure 1: An example from our WildQA dataset, showing a question (Q), an answer (A), and evidence (E) that
supports the answer. The corresponding part of the videos is provided as evidence for the question.

Abstract

Existing video understanding datasets mostly
focus on human interactions, with little at-
tention being paid to the "in the wild" set-
tings, where the videos are recorded outdoors.
We propose WILDQA, a video understanding
dataset of videos recorded in outside settings.
In addition to video question answering (Video
QA), we also introduce the new task of identi-
fying visual support for a given question and
answer (Video Evidence Selection). Through
evaluations using a wide range of baseline mod-
els, we show that WILDQA poses new chal-
lenges to the vision and language research com-
munities. The dataset is available at https:
//lit.eecs.umich.edu/wildqa/.

1 Introduction

Video understanding plays an important role in the
development of intelligent AI systems, as it enables
the effective processing of different modalities of
information (Li et al., 2021a). Various tasks have
been proposed to examine the ability of models’
to understand videos, including video question an-
swering (Video QA), video captioning, and fill-in-
the-blank tasks (Xu et al., 2017; Tran et al., 2016;

*: Equal contribution

Castro et al., 2022). Recent years have witnessed
significant progress in video understanding, includ-
ing new benchmarks (Tapaswi et al., 2016; Grau-
man et al., 2021) as well as advanced sophisticated
benchmarksmodels (Jin et al., 2019; Radford et al.,
2021).

There are however several drawbacks associated
with existing video understanding research. First,
existing video understanding benchmarks focus
on common human activities as typically appear-
ing in cooking videos (Zhu et al., 2017) or in
movies (Tapaswi et al., 2016), leading to a lim-
ited set of video domains. Second, most video
understanding benchmarks adopt a multiple-choice
format, where models select an answer from a set
of candidates (Jang et al., 2017; Castro et al., 2020).
Models trained under such a setting cannot be
used in real-life applications because candidate an-
swers are not provided (Castro et al., 2022). Third,
videos included in existing benchmarks are typi-
cally short (Kim et al., 2016), and the performance
of models on longer videos is not well studied.

We address these challenges in our dataset con-
struction process. First, we propose the WILDQA
dataset in which we collect “in the wild” videos that
are recorded in the outside world, going beyond
daily human activities. Figure 2 shows the differ-

https://lit.eecs.umich.edu/wildqa/
https://lit.eecs.umich.edu/wildqa/
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Example from MovieQA (multiple-choice)
Q: How does E.T. show his happiness that he 
is finally returning home?
A: His heart lights up.

Example from WildQAours (open-ended)
Q: What sort of environment is it based on the 
landscape and plant life?
A: Temperate mountain environment.

Example from TVQA (multiple-choice)
Q: Why does Joey want Chandler to kiss 
Janice when they are in the kitchen?
A: Because then she will leave.

Figure 2: Examples from MovieQA (Tapaswi et al., 2016), TVQA (Lei et al., 2018), and our WildQA dataset.
The previous datasets mostly focus on human interactions in a multiple-choice setting, while ours focus on scenes
recorded in the outside world in an open-ended setting. We only list a single answer here for illustration purposes.

ence between the WILDQA dataset and previous
question answering datasets. Second, we adopt the
challenging answer generation approach, aiming
to build a system that can answer questions with
an open-ended answer, rather than selecting from
a predefined set of candidate answers. Third, the
average video length in our dataset is one minute,
longer than the video clips in most of the existing
datasets in Table 3, which presents a novel chal-
lenge for video understanding algorithms.

Using the WILDQA dataset, we address two
main tasks. First, we address the task of video
question answering (Video QA), aiming to gen-
erate open-ended answers. Second, we introduce
the task of retrieving visual support for a given
question and answer (Video Evidence Selection).
Finding the relevant frames in a video for a given
question-answer pair can help a system in its rea-
soning process, and is in line with ongoing efforts
to build interpretable models (Jacovi and Goldberg,
2020). For each of these two tasks, we evaluate sev-
eral baseline models, including multi-task models
that combine the two tasks together. Figure 1 shows
an example from our dataset, including an exam-
ple of a question, answer, and supporting video
evidence.

To summarize, the main contributions of this
paper are:

1. We propose WILDQA, a multimodal video
understanding dataset where video scenes are
recorded in the outside world.

2. We propose two tasks for WILDQA: Video
QA and Video Evidence Selection, aiming to
build more interpretable systems.

3. We test several baseline models; experimental
results show that our dataset poses new chal-
lenges to the vision and language research
communities.

2 Related Work

Multimodal Question Answering. Two popular
and representative tasks are Visual Question An-
swering (Visual QA) on images, and Video Ques-
tion Answering (Video QA) on videos. Visual
QA has attracted attention for a long time (Ma-
linowski and Fritz, 2014; Zhang et al., 2016; Ren
et al., 2015; Zhu et al., 2016). Recently, much
progress has been made in Video QA. Researchers
proposed various datasets such as TVQA that con-
tain videos from movies or TV series (Tapaswi
et al., 2016; Lei et al., 2018, 2020a) or videos from
the Internet spanning from YouTube videos to Tum-
blr GIFs (Zeng et al., 2017; Ye et al., 2017; Jang
et al., 2017; Yu et al., 2019b). Other datasets such
as MSVD-QA (Xu et al., 2017) contain videos
from the existing corpus (Chen and Dolan, 2011)
or cartoon videos (Kim et al., 2016). Recent Video
QA datasets have stronger focuses such as tem-
poral relations (Mun et al., 2017), multi-step and
non-factoid answers (Colas et al., 2020), natural
interactions (Zadeh et al., 2019), characters in the
video (Choi et al., 2021), question answering in
real life (Castro et al., 2020), incorporating exter-
nal knowledge (Garcia et al., 2020), and videos
recorded from the egocentric view (Fan, 2019;
Grauman et al., 2021). To the best of our knowl-
edge, we are the first to collect videos from the
outside world.

Researchers have also developed various meth-
ods to handle the Video QA task, including joint
reasoning of the spatial and temporal structure of a
video (Zhao et al., 2017; Gao et al., 2019; Huang
et al., 2020; Jiang et al., 2020), integrating mem-
ory to keep track of past and future frames (Kim
et al., 2017; Gao et al., 2018a; Zhao et al., 2018;
Fan et al., 2019; Yu et al., 2020), various attention
mechanisms (Zhu et al., 2017; Zhang et al., 2019;
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Li et al., 2019; Yu et al., 2019a; Kim et al., 2018;
Jin et al., 2019), and others. Recently, pre-trained
models have proved to be useful in various visual
and language tasks (Radford et al., 2021; Chen
et al., 2020; Zellers et al., 2021). However, the pre-
trained visual and language models are typically
encoder-only and cannot generate an answer in nat-
ural language on their own. Thus, such pre-trained
encoder-only models do not fit into the open-end
video question answering setting in our task.

Additionally, previous work has also investi-
gated various reasoning tasks in a multimodal set-
ting (Gao et al., 2016; Yang et al., 2018; Gao et al.,
2018b; Zellers et al., 2019). Although it is not
our focus, some questions in our dataset require a
certain level of reasoning ability. Moreover, since
our dataset is created by domain experts, there is
domain knowledge involved in the questions as
well.

Moment Retrieval. Moment Retrieval is the task
of retrieving a short moment from a large video cor-
pus given a natural language query (Escorcia et al.,
2019; Lei et al., 2020b). Researchers have pro-
posed or adapted various datasets for this task (Kr-
ishna et al., 2017; Hendricks et al., 2017; Gao et al.,
2017; Lei et al., 2020b). The task of retrieving rel-
evant parts in the video given the question (Video
Evidence Selection) in our proposed dataset is akin
to Moment Retrieval. However, moment retrieval
focuses on retrieving the part of videos that the
question describes, while Video Evidence Selec-
tion is to find parts of videos that can support the
answer to the questions as shown in Figure 1. Prior
work such as Tutorial-VQA (Colas et al., 2020) also
adopt the setting of providing parts of the videos
as answers to the question, but they did not include
any text answers in their dataset.

Few-shot Learning. Recently, there is a trend
to evaluate neural models in a few-shot learning
setting (Huang et al., 2018; Mukherjee and Awadal-
lah, 2020; Sun et al., 2020; Li et al., 2021b; Lee
et al., 2021; Pfeiffer et al., 2022), where the model
is tuned with a small portion of the data and tested
against the rest. We adopt the few-shot learning set-
ting for our dataset for both Video QA and Video
Evidence Selection.

3 WildQA Dataset

Video Selection and Processing. Follow-
ing Zadeh et al. (2019); Castro et al. (2020), we

start by collecting videos from YouTube. First,
we identify five domains that primarily consist
of outdoor scenes and are representative for the
outside world, namely, Agriculture, Geography,
Human Survival, Natural Disasters, and Military.
We then manually collected videos from relevant
YouTube channels for each domain.

Because the raw videos can be as long as an
hour, we split the raw videos into short clips us-
ing PySceneDetect,1 and concatenate these short
clips so that the output video is approximately one
minute. We use the output videos for the annotation
process described below. More details for the video
selection and video processing steps are discussed
in Appendix A.1.

Question, Answer, and Evidence Annotation.
There are two phases in our annotation process,
as shown in Figure 3. In Phase 1, annotators watch
the video clips and come up with a hypothetical
motivation. They ask one or more questions and
provide an answer to each of the questions they
ask. Annotators are also instructed to provide all
the relevant parts in videos as pieces of evidence
to support the answer to their question. After this
step in the data collection, three of the authors of
this paper manually review all the question-answer
pairs for quality purposes. Next, in Phase 2, we
collect more answers and evidences for each ques-
tion from Phase 1. Over the entire annotation pro-
cess, annotators spent a total of 556.81 annotation
hours, split into 77.05 hours in Phase 1 and 479.76
in Phase 2. Appendices A.2, A.3, and A.5 present
the annotation instructions, annotation interfaces,
and reviewing process for question-answer pairs,
respectively.

Because we want to collect questions that do-
main experts are interested, as opposed to arbitrary
questions, domain experts carry out the Phase 1
annotations. To demonstrate the quality difference
of questions collected from domain experts ver-
sus non-experts, we conduct a pilot study. Appen-
dices A.4 and A.6 discuss the pilot study and the
annotators’ expertise, respectively.

Dataset Statistics. Tables 1 and 2 present statis-
tics of the videos and associated questions for each
of the five domains, along with other relevant statis-
tics. Figure 4 shows the distribution of question
types. Appendix A.7 discusses more statistics.

1PySceneDetect uses the OpenCV (Bradski, 2000) to find
scene changes in video clips (py.scenedetect.com).

py.scenedetect.com
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Figure 3: The two phases of data annotation.

Domain video count question count

Agriculture 85 109
Human Survival 95 309
Natural Disaster 70 187
Geography 46 110
Military 73 201
Total 369 916

Table 1: Video and question count for each domain.

Videos 369
Duration (in seconds) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38
Question length (#tokens) 7.09 ± 2.60

Answer per question 2.22 ± 0.69
Answer length (#tokens) 9.08 ± 8.15

Evidence per answer 1.18 ± 0.80
Evidence length (s) 9.64 ± 10.96

Table 2: Dataset statistics for WildQA.
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Figure 4: Percentage distribution of question types. Be-
cause one question might be classified into multiple
categories, the scale summation is larger than 100%.

Q: What type of weather is happening?
A: Flooding and rain.
     The weather is rain and flood.

Q: Where is the road at?
A: It is in a tundra environment
     The road zig-zags across the landscape.
     The road winds through a mountainous landscape.
     The road is in an elevated area.

Figure 5: Examples of questions (Q) and answers (A)
from WildQA. The first answer is collected during Phase
1 of the annotation process; all remaining answers are
collected in Phase 2. More analyses in Appendix A.7.

Dataset Comparison. Table 3 shows the compar-
ison between WILDQA and other existing datasets.

4 Video Question Answering

Following Xue et al. (2017), we adopt free-form
open-ended video question answering for our
video question answering (Video QA) task. Given
a question q and a video v, the task is to generate
an answer a in natural language.

We adopt a few-shot learning setting on our
dataset, where models are fine-tuned on question-
answer pairs corresponding to 30% of the videos
for each domain. The tuned models are tested on
data for the remaining 70% videos. The reason
is that the time to annotate 30% of the data is
around 23 hours, during which there are around
50 data points annotated for each domain, which
is acceptable. We hypothesize that it is realistic
to have such a setting because the potential end-
users could spend around a day or two collecting
data, and we can then quickly tune a model using
it. Moreover, no repeated videos appear in differ-
ent splits, following Lei et al. (2018). We end up
having 264 question-answer pairs for 108 videos
in our dev set and 652 pairs for 261 videos in the
test set. We adopt BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) as the metrics to measure
the quality of the generated answer. We run each
model 3 times and report the scores of mean ±
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Dataset Domain VE? #Videos # Q Avg
dur. (s) Annotation QA Task

MovieQA (Tapaswi et al., 2016) Movies
√

6.7K 6.4K 203 Manual MC
VideoQA (FiB) (Zhu et al., 2017) Cooking, movies, web 109K 390K 33 Automatic MC
MSRVTT-QA (Xu et al., 2017) General life videos 10K 243K 15 Automatic OE
MovieFIB (Maharaj et al., 2017) Movies 128K 348K 5 Automatic OE
TVQA (Lei et al., 2018) TV shows

√
21.8K 152K 76 Manual MC

ActivityNet-QA (Yu et al., 2019b) Human activity 5.8K 58K 180 Manual OE
TVQA+ (Lei et al., 2020a) TV shows

√
4.2K 29.4K 60 Manual MC, ES

KnowIT VQA (Garcia et al., 2020) TV shows 12K 24K 20 Manual MC
LifeQA (Castro et al., 2020) Daily life 275 2.3K 74 Manual MC
TutorialVQA (Colas et al., 2020) Instructions

√
76 6.2K – Manual ES

NExT-QA (Xiao et al., 2021) Daily life 5.4K 52K 44 Manual MC, OE
FIBER (Castro et al., 2022) Human actions 28K 2K 10 Manual OE

WildQA In-the-wild
√

369 916 71.2 Manual OE, ES

Table 3: Comparison between our WILDQA and other existing datasets. VE?: Whether the dataset provides “Video
Evidences”?; MC: “Multiple Choice” question answering; OE: “Open Ended” question answering; ES: “Evidence
Selection”. We adapt the comparison table from Zhong et al. (2022).

standard deviation in Table 4.

4.1 Baselines
Human Baselines. We report the average BLEU
and ROUGE scores by leaving one annotator out
in Table 4 (Human).

Text-only Models. We implement several base-
lines that only use the question-answer pairs in
the dev set. Random randomly chooses answers
from the dev set. Common always predicts the
most common answer in the dev set; Closest
employs embedding produced by a pretrained
roberta-base model (Liu et al., 2019). In the
inference, Closest retrieves the answers for the
dev set question whose embedding has the highest
cosine similarity to the test question. We also fine-
tune T5 (Raffel et al., 2020) using question-answer
pairs from the dev set (T5 T).

Text + Visual Models. Following Castro et al.
(2022), we concatenate the text features with the
visual features and input the concatenated features
to the T5 model (T5 T+V). We extract I3D (Car-
reira and Zisserman, 2017) video features and take
one feature per second.

Multi-task Learning. Multi-task learning has
proved to be successful in various domains (Col-
lobert and Weston, 2008; Deng et al., 2013; Gir-
shick, 2015). Following Caruana (1993), we train
MultiT+V,SE which combines T5 T+V and T5
SE (the Video Evidence Selection model described
in Section 5) with a shared T5 encoder between
the tasks of Video Question Answering and Video
Evidence Selection. We also train MultiT+V,IO

Model name ROUGE-1 ROUGE-2 ROUGE-L

Random 5.0 ± 0.2 0.5 ± 0.1 4.9 ± 0.2
Common 10.6 ± 0.0 0.0 ± 0.0 10.6 ± 0.0
Closest 19.5 ± 0.0 6.2 ± 0.0 18.7 ± 0.0
T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3
T5 T+V 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
MultiT+V,IO 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6
MultiT+V,SE 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8

Human 40.8 ± 0.0 18.1 ± 0.0 36.3 ± 0.0

Table 4: ROUGE scores for the task of Video Question
Answering. For comparison, we test the out-of-box T5
model under the zero-shot setting (T5 T0-shot).

which combines T5 T+V and T5 IO (another
Video Evidence Selection model described in Sec-
tion 5) in a similar way. The loss function during
the fine-tuning is:

L = αL1 + βL2 (1)

where L1, L2 are the losses for Video Question
Answering and Video Evidence Selection, respec-
tively; α, β are the weights for the two tasks. The
selection process behind the values of α and β are
presented in Appendix C.

4.2 Results

Table 4 reports F1 scores of ROUGE-1 (R1),
ROUGE-2 (R2), and ROUGE-L (RL) for our base-
line models. For comparison, we also test the out-
of-box T5 model on our test split under the zero-
shot setting (T5 Text0-shot in Table 5).

T5-based models significantly outperform the
random baselines as well as the out-of-box T5
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model, which suggests that the T5-based models
acquire certain levels of question-answering ability
in the tuning stage. However, adding visual fea-
tures does not improve the model’s performance.
This might be due to the challenges of attending to
the visual features at the corresponding parts in the
video, because both models under multi-task learn-
ing outperform the text-only baseline, suggesting
that attending to the correct part of the video helps
the answer generation process.

All baseline models underperform human base-
lines on ROUGE scores, especially on ROUGE-
1 and ROUGE-L scores, suggesting that there is
room for improvement. However, the ROUGE-2
score for human annotators is low because although
human annotators tend to use the same word to de-
scribe the object that appears in the video, there are
large variations in terms of expressing the ideas of
their answers. More discussions on the diversity of
the answers are in Appendix A.7.

5 Video Evidence Selection

Similar to Colas et al. (2020), given a video v and
a question q, the video evidence selection task con-
sists of predicting {(s1, e1), (s2, e2), . . .}, where
(si, ei) represents the time for start s and end e of
a singles span within the video v. We also adopt
the few-shot learning setting as described in Sec-
tion 4 for the task of Video Evidence Selection.
Similar to DeYoung et al. (2020), we design an
Intersection-Over-Union (IOU) metric borrowed
from Everingham et al. (2010). We define IOU as
follows: given two time spans in the video, IOU is
defined as the length of their intersection divided by
the length of their union. The prediction is counted
as a match if it overlaps with any of the ground
truth spans by more than the threshold (0.5, follow-
ing DeYoung et al., 2020). We use these partial
matches to calculate an F1 score (IOU-F1 scores).
As described in Section 4, we run each model three
times and report the scores of mean ± standard
deviation in Table 5.

5.1 Baselines

As described in Section 4, we compute the average
IOU-F1 score on the annotations from one anno-
tator against the remaining annotators; we denote
this metric as Human. The Random baseline con-
sists of randomly choosing the start and end of a
part within the original video as evidence. Simi-
lar to the structure Devlin et al. (2019) experiment

Model name IOU-F1

Random 2.5 ± 0.3
T5 IO 1.1 ± 0.2
T5 SE 4.5 ± 0.8
MultiT+V,IO 1.4 ± 0.3
MultiT+V,SE 3.7 ± 2.4
Human 18.37 ± 0.0

Table 5: IOU-F1 scores for Video Evidence Selection.

on SQuAD (Rajpurkar et al., 2016), we build T5
SE; here, we feed the concatenated question embed-
dings and I3D visual features to the T5 encoder, and
the T5 encoder outputs a sequence of the encoded
states. We treat the subsequence corresponding to
the visual features as the encoded hidden sequence
Tm ∈ RH for the video frames (H denotes the di-
mension of the hidden sequence). We then multiply
the sequence with two vectors S,E ∈ RH . The Ti

and Tj that maximize the likelihood are predicted
as the start and the end of the evidence, respec-
tively. During the training, we maximize their joint
probability:

PiPj =
eS·Ti∑
m eS·Tm

eE·Tj∑
m eE·Tm

where Pi and Pj are the probability for the i
being the start and j the end of the evidence, re-
spectively.

Inspired by the Inside-Outside-Beginning
(“IOB”) tagging scheme (Ramshaw and Marcus,
1995), we also formulate the evidence finding as
a task of tagging whether a video frame is inside
(“I”) the evidence, or outside (“O”) the evidence.
We then build T5 IO by feeding the concatenated
features to a T5 encoder. Similar to T5 Start
End, we have an encoded sequence of Tm ∈ RH

corresponding to the video frames. We then
multiply the sequence with a vector L ∈ RH and
apply a sigmoid function to the multiplication
result. The model predicts the frame as “I” if the
value at the corresponding position is greater than
or equal to 0.5, otherwise it predicts “O”. We
test MultiT+V,IO and MultiT+V,SE described in
Section 4 on Video Evidence Selection as well.

5.2 Results

Table 5 shows the performance of the baseline mod-
els on the Video Evidence Selection task. All the
baseline models perform significantly worse than
the human annotators, and sometimes worse than
the random baseline. This is understandable be-
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Type R1 IOU-F1

Existence 33.3 ± 0.3 5.3 ± 0.3
Motion 32.8 ± 0.6 3.1 ± 2.0
Reasoning 33.3 ± 0.4 3.1 ± 1.3
Location 26.2 ± 10.7 4.4 ± 1.4
Entity 33.2 ± 0.7 5.2 ± 0.7
Spatial 32.2 ± 0.6 2.4 ± 1.7
Number 33.8 ± 0.4 4.5 ± 0.7
Temporal 33.8 ± 0.6 3.8 ± 0.5
Time 33.1 ± 0.8 5.7 ± 1.0
Other 33.2 ± 0.6 5.3 ± 0.9

Table 6: MultiT+V,SE performance on different ques-
tion types for Video QA (ROUGE-1) and for Video
Evidence Selection (IOU-F1).

cause selecting evidence from a long video can be
difficult. Additionally, multi-task learning makes
the model’s performance worse. However, this
could be due to the fact that the Video Evidence Se-
lection itself is a hard task, and all the baseline mod-
els struggle with such a task. Although multi-task
learning does not help Video Evidence Selection,
as mentioned in Section 4, training with Video Evi-
dence Selection does help Video QA. Thus, Video
Evidence Selection is still an important task to im-
prove a model’s ability to answer questions. We
include more ablation studies in Appendix D.1.

6 Analysis and Discussion

Model Performance v.s. Question Types. Ta-
ble 6 shows MultiT+V,SE’s performance on dif-
ferent question types for Video QA and Video Evi-
dence Selection respectively. Other ROUGE scores
for Video QA follow similar trends as shown in Fig-
ure 14. According to Table 6, the model achieves
good ROUGE-1 scores for Video QA when the
model has a good IOU-F1 score for Video Evi-
dence Selection such as its performance on Exis-
tence. The model has the highest ROUGE-1 varia-
tion on Location question types, with a relatively
large variation for IOU-F1. The model’s ROUGE-1
score on Spatial questions is relatively low, with the
lowest IOU-F1 score. MultiT+V,SE excels at ques-
tion type Entity and Existence with relatively high
IOU-F1 scores. One possible explanation could be
that the average length of the answers generated
for Entity and Existence are around eight tokens,
which might be easier for the model to ground to
the relevant part in the video.

Interestingly, even if the answers have similar
lengths, the model struggles on Motion questions
(with a relatively low IOU-F1 score). A possible

Model name R1 R2 RL

T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T0-shot

TVQA 9.1 ± 0.0 1.2 ± 0.0 8.8 ± 0.0
T5 TTVQA,ours 32.4 ± 0.2 17.5 ± 0.2 31.6 ± 0.2
T5 Tours 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3
T5 T+V0-shot

TVQA 20.3 ± 0.0 8.1 ± 0.0 20.1 ± 0.0
T5 T+Vours 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
T5 T+VTVQA,ours 33.7 ± 0.2 18.3 ± 0.1 32.6 ± 0.1

Table 7: ROUGE scores for the task of Video Question
Answering for few-shot learning setting (the standard
setting in our WildQA dataset introduced in Section 4)
and zero-shot learning setting (“0-shot” in the super-
script). Subscript “TVQA” means pre-training on the
TVQA (Lei et al., 2018) dataset; subscript “TVQA,ours”
means first pre-training the model on TVQA, then tun-
ing the model on our WildQA dataset; subscript “ours”
means tuning the model directly on our WildQA dataset.

reason could be that this type of questions provide
a very abstract description of the action, which
makes the model hard to attend to the relevant part
of the video. For instance, an example of a Mo-
tion question is “Are there any structure or natural
features being affected?”. To attend to the corre-
sponding period in the video, the model needs to
understand the word “affected” and the objects that
are actually affected, which can be very difficult.
The model also struggles to attend to the correct
places in the video for the Spatial type of ques-
tion. This might be because there is more than one
entity in Spatial type of questions, and the model
needs to locate all the objects appearing in vari-
ous parts of the video, which is similarly complex.
For instance, for the question “What effects did
the weather have?”, the model needs to attend to

“debris in the air”, “truck turnover” and “destruc-
tion of buildings”. For Location type of questions
such as “What sorts of terrain is the vegetation
present in?”, it might be difficult to attend to all
the terrains of “forest”, “plateaus”, “mountain-
ous”, “valleys”, and “arboreal” and to include
them in the answer.

Domain Adaptation. Furthermore, we tune the
MultiT+V,SE model on the dev set data from a
single domain, and test it against data from other
domains. Figures 6 and 7 show the model’s per-
formance in different tuning and testing domains.
Interestingly, the diagonal cells do not always
have the darkest color, which indicates that inter-
relations exist across domains. For instance, the
model tuned on Geography performs relatively bet-
ter for Video QA on Human Survival and Agri-
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Figure 6: MultiT+V,SE performance (ROUGE-1) for
Video QA when tuned on a single domain (y-axis) and
tested against each domain (x-axis). The performances
by the rest metrics for Video QA resemble the pattern
here and are reported in Appendix D.

culture rather than itself. This suggests that the
questions and videos from Geography, Agricul-
ture, and Human Survival exhibit some similarity
so that the model tuned on one domain can an-
swer questions from the other domains relatively
well. But answering questions from Geography
can introduce the domain knowledge, an example
of the answer is “Mountainous, temperate
forest.”, where “temperate forest” is
one of the terminologies specific to Geography
domain. Training on these terminologies might
confuse the model and hurt the performance. Thus,
future research might be needed to study how to
better incorporate domain knowledge into multi-
modal question answering.

As for Video Evidence Selection, the patterns
generally resemble the pattern in Figure 6, which
means that in general, the model answers a question
better if it can attend to the relevant part in the
video. However, when tuned on Human Survival
and tested on Natural Disaster the model performs
relatively well on Video QA (with a 28.7 ROUGE-
1 score) but less well on Video Evidence Selection
(with a 0.7 IOU-F1 score). This might indicate that
the model picks up some common patterns in the
text rather than reasoning about the video and the
question in an expected manner.

Pre-training on Other Datasets. We also pre-
train the T5 T and T5 T+V using TVQA (Lei
et al., 2018), a large-scale multimodal question an-

Natural Disaster

Human Survival
Milita

ry

Agriculture

Geography

Natural Disaster

Human Survival

Military

Agriculture

Geography

2.9 2.6 1.8 0.5 2.6

0.7 2.0 3.4 4.7 4.5

2.3 5.2 3.5 5.3 3.2

1.9 2.2 2.7 2.2 2.7

2.1 3.5 2.0 3.3 2.1

1 2 3 4 5

Figure 7: MultiT+V,SE performance (IOU-F1) for
Video Evidence Selection when tuned on a single do-
main (y-axis) and tested against each domain (x-axis).

swering dataset with videos from TV series. We re-
port the zero-shot learning performances as well as
the few-shot learning performances for T5 T and
T5 T+V in Table 7. We can see that pre-training
on TVQA for text-only T5 T does not help, which
shows that the question styles in our dataset might
be different from TVQA. For T5 T+V which uses
both text and visual features, pre-training on TVQA
does help the model, which suggests that the pre-
training helps the model take advantage of the
visual features. T5 T+V pre-trained on TVQA
underperforms T5 T+V trained together with T5
IO (the MultiT+V,SE model) according to Table 4
and Table 7, suggesting that attending to the rele-
vant part in the video helps the model better than
training the model on more data. However, pre-
training the model on the TVQA dataset reduces
the variance of model performance, which suggests
that training the model with more data helps the
model perform consistently.

7 Conclusion

In this paper, we introduced a new and challeng-
ing benchmark, WILDQA, to promote domain di-
versity for video understanding. Specifically, we
focused on five domains that involve long videos
recorded in the outside world, which can be useful
for applications in these domains. Instead of the tra-
ditional multiple-choice setting for Video Question
Answering, we proposed to generate open-ended
answers. We believe open-end answer generation
can help construct systems that can answer end
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users’ questions in a more natural way. To help the
model attend to the relevant parts in the videos, we
also proposed the task of Video Evidence Selection.
Through experiments, we showed the feasibility
of these tasks, and also showed that jointly train-
ing for both Video Question Answering and Video
Evidence Selection can improve the models’ per-
formance. In addition, we found it is easier to
understand models’ behavior by knowing which
part of the video the model attends to when answer-
ing a question. We believe that this is an impor-
tant step towards a trustworthy, explainable multi-
modal system. The dataset is available at https:
//lit.eecs.umich.edu/wildqa/.
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A Annotation Details

A.1 Video Selection and Processing

Video Selection. For the video selection part, as
mentioned in Section 3, first, we identify 5 do-
mains, Agriculture, Geography, Human Survival,
Natural Disasters, and Military, to collect videos
recorded in the outside world. We then identify
eight (8) YouTube channels and crawl videos from
those channels. During crawling, we manually
substitute irrelevant videos such as advertisements
with videos that contain scenes mostly recorded in
the outside world from the same channel.

Video Processing. As mentioned in Section 3,
we clip the raw videos into short clips by
PySceneDetect because the raw videos can be as
long as an hour. We then concatenate these short
clips so that the output video will be around 1
minute. The output videos are used for the fol-
lowing annotation process. We want to include
longer videos because the videos recorded in the
outside world usually contain less information com-
pared to the videos about human interactions. Be-
sides, if the concatenated video is at the end of
the original video, it is allowed to be shorter than
1 minute. We select the concatenated videos that
only contain scenes recorded in the outside world.
If none of the concatenated videos satisfies, we
manually clip the original videos to get an output
video.

A.2 Annotation Instructions

As mentioned in Section 3, we have 2 phases in
our annotation process as shown in Figure 3. In
Phase 1, annotators come up with a hypothetical
motivation, ask questions, and provide the corre-
sponding answers with relevant parts of the video
as evidence. Phase 2 is to collect answers and ev-
idence for questions we collect in Phase 1. The
following are the instructions for these two phases.

Instructions for Phase 1

We need help for this Video QA task based on
video content (including the audio).
In this task, we suppose you can hypothetically
send a robot to a place that you want, for many
hours, so as to collect information that you need.
In this hypothetical scenario, you have an objec-
tive that you want the robot to learn about. This
robot can chart territory and is able to answer
questions based on recorded videos. Therefore,

after it comes back, you can ask questions to
help you satisfy your objective, then this robot
will provide you with answers, as well as video
evidence clips to support the answers.
In this task, to simplify, the provided videos
represent places where you could potentially
have sent the robot and are much shorter (a
few minutes). Given a recorded video, please
help us provide one hypothetical objective that
makes sense with it, along with questions, an-
swers, and evidence. Specifically, you should
pretend to be both the information-seeker and
the robot, which means that as the robot, you
could watch the recorded video, and you should
provide answers and video evidence clips; as
the information-seeker, you have an objective,
not watch the whole video (because of practi-
cal reasons), and you can only ask questions
and receive answers and video evidence clips as
feedback.

1. Basic Instructions

• You will need to propose a hypothetical
objective (or topic, intention, motivation),
to motivate the questions, that makes sense
for the given video.

• You will need to provide as many ques-
tions as you need (to satisfy your objective)
with regard to the content in the videos and
that seek to understand more about the pro-
posed objective.

• You will first watch the video, but when
you are providing the objective and ques-
tions, please pretend you haven’t seen it
before.

• You will need to provide at least one ques-
tion for each video. The more the better.

• You will need to identify the source of your
question (whether it is based on the visual
scene or the audio) and classify your ques-
tion accordingly.

• You will need to provide the correct answer
to the question you asked, as supported by
the content in the video.

• You will need to provide video evidence
(video clip) to support your question and
answer.

• If one video doesn’t make sense at all, or
there’s no possible objective for this video
that makes sense, please comment at the
bottom of this annotation page (and fill in
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the mandatory fields for the corresponding
video with placeholder values).

2. How To Propose Hypothetical Objective

• For each video, you need to come up with
a hypothetical objective (or intention, mo-
tivation, topic) that makes sense for this
video, and briefly explain it.

• Your questions should all relate to this ob-
jective.

• Example 1:
– Objective: I want to learn about the

water in the territory.
– Question 1: How big is the lake?
– Question 2: Are there any boats in the

lake?
– Question 3: Where is the river?
– ...

• Example 2:
– Objective: people/life movement
– Question 1: Is there any sign that

wildlife has passed this area?
– Question 2: How much traffic is there

on the road?
– ...

3. How To Ask Your Question

• Your question should relate to your pro-
posed objective.

• For each video, after you finish one ques-
tion, you could click the Add one more
question for this video button to continue
to provide another question for this video.
On the contrary, if you want to delete one
question, you could click the Delete this
Question button.

• Ask one question at a time.
– E.g., "Are there any people? What are

they doing?" is not appropriate.
• When you provide multiple questions for

the same video, make sure these questions
are independently asked.

– E.g., "What is growing on pine trees?"
and "What is their color?" are not inde-
pendent.

• The answer should be derived from the
video (visual or audio).

– E.g., "Why do they run every morn-
ing?" is not a good question.

• Ask from the 3rd person point of view.
– E.g., "What do we have on this farm?"

-> "What do They have on this farm?"
• Try to balance the questions such that the

answers are not too repetitive (E.g., too
many ’yes’ answers).

• Ask questions matter-of-factly (as objec-
tively as possible). Stick to what you can
see or hear from the video.

– E.g., "Does it make people feel good
here?" is somehow subjective.

• Don’t ask questions about how’s the video
being recorded, the camera-person or the
camera itself. Ask about the content itself.
Ignore what the camera-person is doing.

– E.g., "What’s the cameraman doing?" /
"How fast is the camera moving?" are
not good questions.

4. How to identity the Question Category

We have some basic categories: Motion,
Spatial Relationship, Temporal Relation-
ship, Reasoning, Number, Entity, Exis-
tence, Time, Location, Other.
If your questions fall into multiple cate-
gories, please check all categories that ap-
ply.
Here are some example questions under
each category:

• Motion: What is the group of soldiers do-
ing?

• Spatial Relationship: What is driving be-
side the motorcycle?

• Temporal Relationship: What happens
before the black smoke rises?

• Reasoning: What makes changing be-
tween targets possible for the missile?

• Number: How many fighters are flying?
• Entity: What is the target of the bullet?
• Existence: Is there a lake by the mountain?
• Time: How long can the missile fly?
• Location: Where is the tank?
• Others

5. How To Provide Correct Answer

• Your answer should be written as full sen-
tences (at least one).

– E.g., "Left" -> "The landspout bends
toward the left."
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• The answer should be derived from the
video (visual or audio).

– E.g., "These plants are green because
they contain chlorophyll." is not a good
answer.

• Provide answers matter-of-factly (as objec-
tively as possible). Stick to what you can
see or hear from the video.

– E.g., "beautiful" is likely not a good
word to use within an answer.

– E.g., "This takes some bravery to do."
is somehow subjective.

• Don’t answer about how’s the video being
recorded, the camera-person, or the cam-
era itself. Answer about the content itself.
Ignore what the camera-person is doing.

– E.g., "There are two people, i.e. a run-
ning child, and the cameraman." is not
a good answer.

• When you enter numbers, please enter dig-
its instead of text.

– "Seventeen" -> "17"

6. How to provide video evidence

• The video evidence consists of all the parts
of the video that support the answer to your
given question.

• You need to provide at least one video evi-
dence clip (intervals within the video) for
each question.

• You need to provide both the start point
and end point for all the video evidence
you identify in the video;

• You could use your mouse or ←/→ key
to click or drag the process bars of start
point and end point. When you click or
drag the bar, the above video will change
accordingly, so you could locate the points
according to the video screen.

• For each video evidence clip, the end point
should be greater than zero, and the end
point should be greater or equal to the start
point.

• The video evidence clips (the time gap be-
tween the start point and the end point)
should be as short as possible.

Instructions for Phase 2

We need help for this Video Question Answer-
ing task based on video content (including the
audio).

1. Basic Instructions

• You will first watch the video, then answer the
questions, each question in turn.

• You will need to provide at least one answer
for each question (ignoring differences such
as upper/lower case, or the article). The more
answers the better, but every answer should
be correct.

• You will need to identify the source of your
answer (whether it is based on the visual scene
or the audio).

• For each answer, you will need to provide
video evidence (video clip) to support your
answers. See below for additional informa-
tion.

• If one video or question is not available,
please comment at the bottom of this anno-
tation page (and fill the mandatory fields for
this video/question with placeholder values).

• There are five questions, you need to finish all
five questions according to the content in the
video (including audio).

2. How To Answer

• Provide one or more answers for each ques-
tion.

• Each answer should be written as full sen-
tences (at least one).
– E.g., "Left" -> "The landspout bends toward

the left."
• The answer should be derived from the video

(visual or audio).
– E.g., "These plants are green because they

contain chlorophyll." is not a good answer.
• Respond matter-of-factly (as objectively as

possible). Stick to what you can see or hear
from the video.
– E.g., "beautiful" is likely not a good word

to use within an answer.
– E.g., "This takes some bravery to do." is

somehow subjective.
• Answer in 3rd person point of view.

– E.g.,"We raise cattle on this farm." -> "They
raise cattle on this farm."

• Don’t answer about how’s the video being
recorded, the camera-person, or the camera
itself. Answer about the content itself. Ignore
what the camera-person is doing.
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– E.g., "There are two people, i.e. a running
child, and the cameraman." / "The camera
is moving fast." are not good answers.

• When you enter numbers, please enter digits
instead of text.
– "Seventeen" -> "17"

• Use your best judgment.

3. How to provide video evidence

• The video evidence consists of all the frame
intervals of the video that support the answer
to your given question.

• You need to provide at least one video evi-
dence clip (interval within the video) for each
question.

• You need to provide both the start point and
end point for all the video evidence you iden-
tify in the video;

• You can use your mouse or ←/→ key to click
or drag the process bars of the start point and
end point. When you click or drag the bar, the
above video will change accordingly, so you
could locate the points according to the video
screen.

• For each video evidence clip, the end point
should be greater than zero, and the end point
should be greater or equal to the start point.

• The video evidence clips (the time gap be-
tween the start point and the end point) should
only cover the actual evidence and not more
(in other words, it should be as short as possi-
ble).

A.3 Annotation Interface

Figure 8 shows the annotation interface for Phase 1.
Figure 9 shows the annotation interface for Phase
2.

A.4 Pilot Study Comparison between
Annotations from Experts v.s.
Non-Expert

Before the formal annotation, we compare the non-
experts and experts’ annotations for both phases.
For Phase 1, we randomly selected 45 videos from
each domain to be annotated by both the experts
and crowdworkers. Following Castro et al. (2022),
we set the AWS annotation qualification as HIT
approve rate >92%, the number of HITs approved
>1000, the location is either Canada or U.S., and
the reward as $6/HIT (around $9/h).

Figure 8: Interface for Phase 1 annotation. After watch-
ing the video, annotators provide a motivation, ask
questions and provide corresponding answers by filling
the blank. They provide parts of the videos as evidence
to support each of the question-answer pairs by drag-
ging the moving bar.
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Figure 9: Interface for Phase 2 annotation. After watch-
ing the video and given the question from Phase 1, an-
notators provide answers with the corresponding evi-
dence.

R I P Overall

expert 2.7 2.5 2.1 2.4
crowd 0.8 0.7 0.5 0.7

Table 8: Average scores of the pilot study for Phase
1 (from 0 to 3). R: Relevance; I: Interestingness; P:
Professionality; Overall:Overall Score

After annotation, two authors of this paper who
do not know the source of annotation evaluate and
score in terms of Relevance, Interestingness, and
Professionality for each annotation from 0 to 3. We
define Relevance, Interestingness, and Profession-
ality as follows:

• Relevance: how relevant a question and an an-
swer are to the video. Good relevance indicates
that the question is related to the video and fo-
cuses on the major events, objects, or people in
the video. A relevant answer should address the
question and can be derived from this video.

• Interestingness: whether the question interests
you. In other words, whether you are interested
in the question and answer, given a video.

• Professionality: how detailed and precise the
question and answer are. Good professionality
can be demonstrated by the precise usage of ter-
minologies and numbers, and accurate descrip-
tion in the answer.

• Overall Score: the average score of the score for
Relevance, Interestingness, and Professionality.

For each category, the higher score indicates the
better the annotation demonstrates that character-
istic. Table 8 lists the scores and Table 9 presents
some annotation examples. From both the empir-
ical and numerical results, we could see there is
a significant quality gap for the annotation from
experts versus from crowdworkers. Therefore, we
decide to employ domain experts for Phase 1.

For Phase 2, we randomly select 104 Geography
videos and questions from the questions annotated
in Phase 1 to be annotated by both experts and
crowdworkers. Moreover, we set the reward as
$3/HIT(around $9/h) and employ the AWS Mas-
ter2 as the crowdworkers. Table 10 lists the results
of the pilot study for Phase 2. According to Ta-
ble 10, crowdworkers perform similarly to experts

2https://www.mturk.com/worker/help#
what_is_master_worker

https://www.mturk.com/worker/help#what_is_master_worker
https://www.mturk.com/worker/help#what_is_master_worker
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Objective Question Answer

E Precipitation What types of precipitation are occurring? Rain and hail.
C Very like Nice Nice

E I want to learn about the people What type of weapons are they carrying? M4’s
C The soldiers are caught on the ship. What they are doing in this video? They caught the ship.

E Storm Where is the storm? In a field.
C Motivation 5 Very amazing

Table 9: Examples in pilot study for Phase 1. E: Expert; C: Crowd

Annotator R1 R2 RL IOU-F1

Expert 23.63 8.05 21.22 12.24
Crowd 20.03 3.24 17.69 8.50

Table 10: ROUGE and IOU-F1 scores for the pilot study
in Phase 2. Note that the scores here are lower than
the scores for the human baselines in Tables 4 and 5.
This is because we only compare the collected answers
to a single answer here, while in Tables 4 and 5 we
calculate the average scores of one annotator against the
remaining as described in Section 4.

in Phase 2. Considering the annotation efficiency,
we decide to employ both experts and crowdwork-
ers to annotate more diversified answers for each
question in Phase 2. Note that the ROUGE scores
in Table 10 are lower than the scores for the hu-
man baselines in Tables 4 and 5. This is because
we only compare the collected answers to a single
answer in Table 10, while in Tables 4 and 5, we cal-
culate the average scores of one annotator against
the remaining as described in Section 4.

A.5 Question and Answer Correction

After we collect annotation from Phase 1, the au-
thors of this paper check the quality of the collected
question and answers and modify the question and
answers accordingly. Specifically, we:

• Delete the questions that can be answered
without watching the video (e.g. Q: “If
water can get through the hut’s
roof; can the wind go through
the hut’s roof?”, A: “Yes the
wind can go through the hut’s
roof.”)

• Modify the question or the answer to 3rd
person view (e.g. change Q: “Do we
have aircraft that we can do
a touch and go landing like a
helicopter?” to Q: “Do they have

Annotator ID Expertise Assigned Domains (# Q)

0 Geography Geography (94) ; Natural
Disaster (187)

1 Geography Geography (16) ; Human
Survival (74)

2 Veteran Military (26) ; Human
Survival (146)

3 Veteran Military (70) ; Human
Survival (89)

4 Veteran Military (12)
5 Veteran Military (8)
6 Veteran Military (85)
7 Biology Agriculture (88)
8 Biology Agriculture (21)

Table 11: Information for expert annotators who anno-
tate the questions, together with their assigned domains
and number of questions (# Q) in the parentheses.

aircraft that can do a touch and
go landing like a helicopter.”)

• Exclude the man holding the camera in the an-
swer if it is a first-person view video.

• Modify questions that are not independently
asked (e.g.“Where are they?”, where
“they” refers to the “paved and unpaved roads” in
the previous question. Therefore, we change the
question to “Where are the roads?” )

• Split questions that include multiple sub-
questions into several questions.

Some of the annotators from Phase 2 do not an-
notate any evidence (leaving the evidence from the
start to the end of the video). Thus, we empirically
filter out evidence longer than 1/4 of the video.

A.6 Annotator Information

Table 11 shows the expertise of each expert, to-
gether with their assigned domains of annotation
and the number of questions they annotate in their
assigned domains in Phase 1.
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Figure 10: Distribution of questions by the first four tokens. The ordering of words starts from the center to outside.

Domain top1 top2 top3

Agriculture farm agricultural understand
Natural Disaster weather people flooding
Human Survival man determine human
Geography people topography water
Military military aircraft determine

Table 12: Most common 3 words for each domain after
removing stop-words.

A.7 Dataset Analysis

Figure 10 presents question distributions in terms
of words.

Questions Types. Table 12 examines the fre-
quent words for each domain, which demonstrates
the characteristics of the domain. Take Natural
Disaster as an example, the 3 most frequent words
are used in 20.63% of sentences. Besides, Fig-
ure 4 in Section 3 lists the annotators’ self-reported
question types. One thing we observe is that
questions that start with “What” possess a large
proportion of all the questions. Such questions
might be hard to classify into certain question
typs (Castro et al., 2020), so we allow annotators
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Figure 11: Venn diagrams showing whether the question
depends on visual (scene) or audio from the original
video. The left is for the entire dataset, while the right
is for the Agriculture domain.

to choose multiple question types for a single ques-
tion. Empirically speaking, questions that start
with “is(are)”/“where”/“how many” are commonly
relevant to "Existence"/"Location"/"Number" ques-
tions. In our dataset, their distribution trend
(“is(are)”: 24.13% > “where”: 7.21% > “how
many”: 4.48%) is akin to the trend of the dis-
tribution of the reported question types (“Exis-
tence”: 45.20% > “Location”: 12.23% > “Num-
ber”: 4.59%). Moreover, although we have “hu-
man”, “man” and “people” as the most frequent
words in some domains, the most frequent words
in domains such as Military are “military”, and
“aircraft”, which demonstrates that our dataset does
not only focus on human interactions as most of
the existing datasets do.

Information Needed. As shown in the left Venn
figure in Figure 11, generally, most questions are
based on the visual (scene). Such a distribution
is also justified by the distribution of the question
types. The dominant question types we have in
Figure 4 are Motion, Spatial, Existence and En-
tity, which typically focus on visual information.
However, in Agriculture (the right Venn figure in
Figure 11), the audio-based questions take more
portion, because videos in Agriculture usually fo-
cus on farming tips, instructions for using tools, etc.
In this paper, we do not experiment with models
that use audio or transcripts from the video. Future
research might look into letting models use audio
and transcripts on our dataset.

Answer Similarity/Diversity. We have similar
and diversified answers collected in our dataset.
Figure 5 gives 2 examples: answers from the upper
example are similar to each other; for the lower
example, answers diverse a lot between Phase 1
and Phase 2 annotations or even within Phase 2.
However, all of the answers are acceptable given
the video. The similarity demonstrates the relia-

Videos 369
Duration (s) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38
Question length (#tokens) 7.09 ± 2.60
Answer length (#tokens) 8.62 ± 8.90

Evidence per answer 1.53 ± 0.76
Evidence length (s) 9.09 ± 13.45

Table 13: Annotation statistics for Phase 1. “#tokens”
represent the number of tokens.

Crowd annotated answers 932
Expert annotated answers 182
Total 1114

Answer per question 1.22 ± 0.69
Answer length (#tokens) 9.45 ± 7.46

Evidence per answer 0.89 ± 0.72
Evidence length (s) 10.43 ± 5.81

Table 14: Annotation statistics for Phase 2. “#okens”
represents the number of tokens.

bility of the Phase 2 annotation. Meanwhile, the
diversified answers help to better evaluate models.

B Annotation Statistics

Tables 13 and 14 list the statistics for annotation in
Phase 1 and Phase 2, respectively.

C Details of Multi-task Learning

Tables 15 and 16 report the model performances un-
der different sets of α, β for Equation (1). We high-
light the rows we report in Table 4 in Section 4.2,
Table 4 in Section 4.2, Table 5 in Section 5.2, and
Table 5 in Section 5.2.

D Experiment Results

Figures 12 and 13 report Multi-Task model’s
performance on Video QA by ROUGE-2, and
ROUGE-L, respectively. Figure 14 demonstrates
that ROUGE scores follow a similar trend as men-
tioned in Section 6.

D.1 Ablation Study on Video Evidence
Selection

To investigate whether the vision part is indeed
needed by the baseline models for the Video Evi-
dence Selection task, we conduct an ablation study
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β R1 R2 RL IOU-F1

0.5 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8 3.7 ± 2.4
1.0 32.2 ± 0.7 17.6 ± 0.5 31.0 ± 0.6 1.9 ± 1.7
1.5 33.8 ± 0.3 18.0 ± 0.9 32.5 ± 0.3 1.5 ± 0.1

Table 15: We set α = 1 throughout all the experiments, and report the corresponding MultiT+V,SE performances
on Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores). We highlight the row we report in
Table 4 in Section 4.2 and Table 4 in Section 4.2.

β R1 R2 RL IOU-F1

0.5 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6 1.2 ± 0.1
1.0 33.4 ± 0.6 18.4 ± 0.2 32.1 ± 0.6 1.4 ± 0.3
1.5 32.8 ± 0.3 18.3 ± 0.3 31.7 ± 0.2 1.0 ± 0.2

Table 16: We set α = 1 throughout all the experiments, and report the corresponding MultiT+V,IO performances on
Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores). We highlight the row we report in
Table 5 in Section 5.2 and Table 5 in Section 5.2.

Model name IOU-F1

T5 IOrandom 1.1 ± 0.3
T5 IO 1.1 ± 0.2
T5 SErandom 2.7 ± 1.9
T5 SE 4.5 ± 0.8

Table 17: Ablation study on Video Evidence Selection.
We feed T5 IOrandom and T5 SErandom the question
concatenated with a random sequence, while we feed
T5 IO and T5 SE the question with the actual video
sequence.

using T5 IO and T5 SE (introduced in Section 5).
We take a random sequence of the same length as
the original video sequence and feed the random
sequence instead of the original video sequence
to the model. Table 17 shows the results of the
comparison between these different settings. T5
IO performs roughly the same as T5 IOrandom,
which indicates that the model struggles to utilize
visual information. T5 IO even underperforms
the random baseline which can achieve an IOU-
F1 score of 2.5 ± 0.3 (as shown in Table tab:few-
shot-evidence-results-10-epochs). However, T5
SE outperforms T5 SErandom, suggesting that T5
SE uses visual features to locate the evidence of
the question.
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Figure 12: Multi-Task ROUGE-2 scores for Video
QA when tuned on a single domain (y-axis) and tested
against each domain (x-axis).



5635

Natural Disaster

Human Survival
Milita

ry

Agriculture

Geography

Natural Disaster

Human Survival

Military

Agriculture

Geography

17.6 14.3 15.9 16.9 16.4

27.7 28.5 27.7 28.2 27.8

29.6 29.5 28.6 28.9 28.8

20.9 21.7 22.1 21.7 22.1

6.9 19.1 16.4 17.1 6.1

10 15 20 25

Figure 13: Multi-Task ROUGE-L scores for Video
QA when tuned on a single domain (y-axis) and tested
against each domain (x-axis).
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Figure 14: MultiT+V,SE performance on different ques-
tion types for Video QA. For each question type, we
report ROUGE-1, ROUGE-2, and ROUGE-L scores
from left to right. We can see that different ROUGE
scores follow similar trends, we only report ROUGE-1
in Table 6 in Section 6.


