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Abstract

Multilingual neural machine translation can
translate unseen language pairs during training,
i.e. zero-shot translation. However, the zero-
shot translation is always unstable. Although
prior works attributed the instability to the dom-
ination of central language, e.g. English, we
supplement this viewpoint with the strict de-
pendence of non-centered languages. In this
work, we propose a simple, lightweight yet ef-
fective language-specific modeling method by
adapting to non-centered languages and com-
bining the shared information and the language-
specific information to counteract the instabil-
ity of zero-shot translation. Experiments with
Transformer on IWSLT17, Europarl, TED talks,
and OPUS-100 datasets show that our method
not only performs better than strong baselines
in centered data conditions but also can easily
fit non-centered data conditions. By further in-
vestigating the layer attribution, we show that
our proposed method can disentangle the cou-
pled representation in the correct direction.1

1 Introduction

Training multilingual neural machine translation
(MNMT) system requires enormous number of pa-
rameters and resources, but the zero-shot transla-
tion, namely translating unseen language pairs dur-
ing training, has shown the potential to simplify the
MNMT (Firat et al., 2017). Johnson et al. (2017)
has shown that adding language tokens, e.g. <en>,
at the beginning of a sentence allows the model to
build cross-linguistic representation by treating the
token as translation instruction specifying target
language. However, the zero-shot translation is al-
ways unstable. One possibility causing the instabil-
ity of zero-shot translation is spurious correlation
(Gu et al., 2019). The target linguistic representa-
tion captured by the model is directly and strictly

1Codes and detailed results are available in: https://
github.com/zhiqu22/AdapNonCenter

dependent on encoded source linguistic informa-
tion instead of learning specific representations for
source and target language, then combining inde-
pendent linguistic representations to generate re-
sults. Prior works (Lakew et al., 2019; Fan et al.,
2020; Rios et al., 2020; Freitag and Firat, 2020; Liu
et al., 2021) indicated that the spurious correlation
is caused by the centered data condition in which
multilingual data is constructed by bridging a cen-
tral language, e.g. English, to other non-centered
languages. The central language will dominate the
representation in the MNMT model to degenerate
the information specific to non-centered languages
since multilingual data comprises a set of bilin-
gual data constructed by coupling non-centered
languages with the central language. However, the
non-centered data condition without any central
language is also unstable in zero-shot translation.2

Therefore, simply attributing the instability of zero-
shot translation to the central language cannot fit
all cases of zero-shot translation.

We move the perspective from the domination
of the central language to the weakness of non-
centered languages. The problems of zero-shot
translation could be attributed to the strict depen-
dence of non-centered languages. Specifically, a
non-centered language would strictly depend on an-
other language as a strongly related language pair
to prohibit learning robust and independent trans-
lation instructions for zero-shot translation. Under
this hypothesis, the centered data condition is a
special case of this description, because all non-
centered languages depend on the central language.
In this light, a key to improving zero-shot transla-
tion is disentangling non-centered languages from
the strict dependence which is built in training.

Specifically, we model extra language-specific
(LS) components (Sachan and Neubig, 2018; Philip
et al., 2020; Escolano et al., 2021; Zhang et al.,
2021) adapting to non-centered languages in a

2We give specific examples in Section 4.1.

https://github.com/zhiqu22/AdapNonCenter
https://github.com/zhiqu22/AdapNonCenter
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mixing shared and LS information mode (Zhang
et al., 2021), our objective is to enhance the weak
representations for assisting the balance of cross-
linguistic representation in shared information con-
tainer to improve the quality of translation Cheng
et al. (2022); Shao and Feng (2022). Further-
more, the mixing mode can decrease the complex-
ity of LS modeling since we treat the representation
space of the MNMT model as the combination of
shared and LS information, and we no longer build
the independent representation space for each lan-
guage (Sachan and Neubig, 2018; Escolano et al.,
2021). In this motivation, we propose a simple,
lightweight yet effective method to augment feed-
forward network of Transformer (Vaswani et al.,
2017) by LS components adapting to non-centered
languages.

Our contributions are as follows:

• Our lightweight method achieves considerable
gains on multilingual and zero-shot translation
and performs stably in IWSLT17, Europarl,
TED talks and OPUS-100.

• We describe the strict dependence of non-
centered languages to supplement the prior
viewpoint of zero-shot translation, and verify
it by experiments under different data condi-
tions with and without the central language.

• Our work explores decreasing complexity in
LS modeling. We also through the analysis
via layer attribution (Dhamdhere et al., 2019)
to show the significance of our methods in
decoupling representations of MNMT.

2 Related Work

Initially, Johnson et al. (2017) laid the foundation
of zero-shot translation which endorses training the
MNMT model under the centered data condition
and put forward the thinking about the instability
of data conditions on zero-shot translation. On
this basis, Gu et al. (2019) also showed that the
performance of zero-shot translation is sensitive
to parameters for initialization, which is another
cause of instability. In this paper, we systematically
described this instability (Section 5.1) and tested it
experimentally.

In the early stages, Mattoni et al. (2017) pointed
out that increasing corpus size can effectively im-
prove zero-shot translation. However, the spuri-
ous correlation (Gu et al., 2019) means that unrea-
sonably increasing training data could degenerate

the zero-shot translation due to strict dependence.
Since then, the concern of the centered data con-
dition was started to be discussed by several dif-
ferent strategies. Fan et al. (2020); Freitag and
Firat (2020) augmented the training data to make
all languages interconnected, which will result in
an excessive increase in training costs. Lakew et al.
(2019) explored incrementally training the MNMT
model by monolingual data, and Gu et al. (2019);
Zhang et al. (2020) generated synthetic data for
the zero-shot directions by backtranslation. These
methods transformed the zero-shot task to zero-
resource task.

Another line of work on improving zero-shot
translation is to adjust the learning of represen-
tations in the MNMT model. Lu et al. (2018);
Pham et al. (2019); Zhang et al. (2020); Liu et al.
(2021) focused on restricting the representation of
encoder outputs to be language-agnostic, but the re-
striction may reduce the performance of the model
trained by large-scale datasets. Pan et al. (2021)
aligned representations from different languages
via contrastive learning and the additional dictio-
nary. Philip et al. (2020); Yang et al. (2021); Zhang
et al. (2021) explored to enhance the influence of
LS features in the translation. Our work continues
in this direction, but with a special focus on only
enhancing the decoding step and mixing shared and
LS information.

Our work is based on LS modeling which is
the heuristic variation of Mixture-of-Experts model
(Shazeer et al., 2017), because it aims to build extra
components as experts to directionally improve lin-
guistic features. Sachan and Neubig (2018) and Es-
colano et al. (2021) built LS encoder or decoder, but
multi-encoder/decoder architecture has too many
parameters. Wang et al. (2018) divided neural cells
into LS parts and Lin et al. (2021) divided LS sub-
nets from the model, but these methods limited
the learning capacity. Bapna and Firat (2019) and
Philip et al. (2020) added LS adapters on the end
of encoder and decoder and fine tuned for LS rep-
resentations. Zaremoodi et al. (2018); Zhang et al.
(2021) explored the paradigm of constructing LS
components to assist the shared information. How-
ever, extra components always increase the cost of
modeling significantly when languages existed too
much. The investigation about the importance of
LS information specified to target language (Lee
et al., 2017; Blackwood et al., 2018; Pham et al.,
2019; Wu et al., 2021) enlightens us to limit the
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improving LS information in the decoding process
to achieve lightweight LS modeling.

3 Central Language Aware Multilingual
Neural Machine Translation

We employ Transformer (Vaswani et al., 2017) as
the backbone to construct our architecture. Con-
sider a set of m languages L = {l1, l2, . . . , lm},
we assign the first language l1 as the central lan-
guage lc. The non-centered set is the subset of
L, that is L′ = {l2, l3, . . . , lm}. We follow prior
works (Zhang et al., 2020; Liu et al., 2021; Wu
et al., 2021) to assign English as the center of
multilingual data. Given the original input se-
quence of symbol representation to the encoder
x = x1, x2, ..., xi and the output sequence gener-
ated by decoder y = y1, y2, ..., yj , we follow the
method of Johnson et al. (2017) to insert the lan-
guage token at the beginning of x as translation
instruction. Therefore, the actual input sequence is
x′ = (l,x), and we model the translation of x′ to y
with Transformer. We only build LS layers (LSLs)
parallel with the Feed-Forward Network (FFN) lay-
ers in the decoder of Transformer, and keep the
self-attention and cross-attention mechanism fixed.

The FFN of transformer consists of two fully
connected neural networks with a ReLU activation
function in between:

FFN(h) = max(0,hW1 + b1)W2 + b2 (1)

Where h is the input vector, W indicates param-
eter matrices for projections, and b indicates bias
parameter matrices. LSLs are a series of neural
networks specified to L′. Each LSL is similar to
FFN in architecture but can be relatively light in
inner size:

LSLl(h) = max(0,hWl
1 + bl1)W

l
2 + bl2 (2)

where l ∈ L′. The trade-off between shared and LS
information is difficult (Zhang et al., 2021; Wang
and Zhang, 2021), because the information that
each language carries is not absolutely equal. To
balance the shared and LS information, we intro-
duce a set of learnable scalars in each decoder layer
T = {tl2 , tl3 , . . . , tlm}. Elements of T correspond
to languages of L′ one by one, then each t connects
LS information with the shared information. We
initialize t to 0.1, then parameters3 of T are updated
during training together with other parameters.

3we report the distribution of LS information weights for
large-scale dataset (99 languages) in the Appendix C.
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Figure 1: Illustrations of our proposed architecture mod-
ified from the decoder of Transformer.

⊕
indicates

weighted plus, N is the number of decoder layers.

To differentiate the central language from non-
centered languages, the original FFN of Trans-
former’s decoder is used as the shared information
space for all languages of L, and we only con-
struct lightweight LSLs to learn independent lin-
guistic information for non-centered languages of
L′. Therefore, the complete architecture of Central
Language-aware Layer (CLL) is:

CLLl(h) =


FFN(h) + tl LSLl(h) l ∈ L′

FFN(h) l = lc
(3)

Based on the piecewise function Eq.(3), the role of
central language will be abandoned in non-centered
data conditions, namely the case of l = lc will not
be triggered. We illustrate the architecture of CLL
in Figure 1: The CLL is a component, including
lightweight LSLs and FFN, to replace the original
role of FFN in each decoder layer of Transformer.
Compared to the Mixture of Experts which is the
generalization of the gating mechanism (Shazeer
et al., 2017), a deterministic route specific to lan-
guage replaces the gate in CLL. For convenience,
we use FCLL (full CLL) to indicate that the model
in which all decoder layers are constructed in the
form of our proposed architecture.

We introduce a variation named SD that con-
structs CLL in a single decoder layer among all
layers of Transformer, namely Single-Disentangled
CLL. Inspired by the work of Liu et al. (2021), we
remove the residual connection of FFN in a middle
encoder layer to weaken the linguistic features of
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Method +Params Position
baseline None None
FCLL O(k) Decoder
SD O(k/N) Decoder
Philip et al. (2020) O(2k) All
Zhang et al. (2021) O(5k) All
Sachan and Neubig (2018) O(K) Decoder

Table 1: Number of parameters required for different
LS modeling methods. N , k and K denote the num-
ber of encoder/decoder layers, parameters per LS layer,
and parameters per encoder/decoder layer (k ≪ K),
respectively. Position indicates the position of a model
to construct LS components.

encoding. To keep the balance between weaken-
ing encoding and improving decoding, we empir-
ically build CLL in the middle decoder. Specifi-
cally, given N encoder and decoder layers of Trans-
former, we remove the residual connection of the
FFN in the encoder and replace the FFN with CLL
in the decoder at N/2 + 1th layer of both net-
works. Our experiments (Section 4.3) empirically
show that SD has comparable performance with
FCLL in small-scale datasets, although SD is more
parameter-efficient than FCLL (Table 1).

4 Experiments

4.1 Dataset

We take IWSLT17 (Cettolo et al., 2017) and restrict
4 languages from MMCR4NLP (Dabre and Kuro-
hashi, 2019) to verify basic abilities of multilingual
and zero-shot translation. We follow Philip et al.
(2020) to experiment on TED talks (Qi et al., 2018)
and restrict top 20 languages. We also experiment
on OPUS-100 (Zhang et al., 2020) to exhaustively
explore the capacity of our proposed method in the
large-scale dataset. English is the central language
of those cases.

To show the strict dependence of non-centered
languages, we design two different cases without
central language, namely all languages in the set
are non-centered. We extract and reorganize Eu-
roparl v7 (Koehn et al., 2005) from MMCR4NLP:
1) Triangle case, where each language appears at
the target and source sides only once. Our moti-
vation is to build the strict dependence under the
non-centered data condition, and each language
pair has more training data than IWSLT. Figure 2a
shows its translation directions we designed. 2)
Square case, that is designed for avoiding strict
dependence as indicated in Figure 2b. Our moti-

it

de nl
(a)

Zero-Shot

Supervised

fr

de

it

es

(b)

Figure 2: Illustration supervised and zero-shot direc-
tions for Triangle and Square cases.

vation is to avoid completely interconnecting all
languages (Fan et al., 2020; Freitag and Firat, 2020)
while building balanced data conditions.

We list details of datasets in Appendix B. And
all cases are evaluated via official test sets.

4.2 Experimental Setup

We employ Fairseq (Ott et al., 2019), the open-
source implementation, of Transformer (Vaswani
et al., 2017) as backbone. Generally, we apply the
Moses tokenizer4 for tokenization and detokeniza-
tion, and use SentencePiece (Kudo and Richardson,
2018) to learn subword vocabulary. Although the
detail of training subword vocabulary for each case
has differences, we always train the joint vocabu-
lary including the source and target side, and set
share-all-embedding in Fairseq. To prevent the
unbalanced data size of English-centered datasets
from training subword vocabulary, the Sentence-
Piece model is trained by data aggregated from
monolingual resources rather than paired resources.
We use Adam (Kingma and Ba, 2017) optimizer
with the inverse square root schedule in all cases
and set different learning rates for different datasets.
For fair comparisons, we not only reproduce the
Transformer (Vaswani et al., 2017) as Baseline but
also reproduce the work of Liu et al. (2021) in all
cases, which is denoted by Residual. We always
adopt the same hyperparameters setting to prior
works and train corresponding subword vocabulary
via details described by these works. Specifically,
as for the settings for cases of IWSLT, Triangle and
Square, we follow the setting of Liu et al. (2021);
as for models trained by TED talks and OPUS-100,
we follow the setting of Philip et al. (2020) and
Zhang et al. (2020), respectively.

We experimented with IWSLT, Triangle, and
Square five runs with different random seeds
[1,2,3,4,5], to compute the variance for verifying
the instability caused by parameters, and other ex-

4https://github.com/moses-smt/
mosesdecoder

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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Supervised: IWSLT Triangle Square TED OPUS-100
Method en→ →en sup. sup. en→ →en en→ →en
Baseline 31.51 32.93 25.75 32.04 24.23 28.92 19.50 27.60
Philip et al. (2020) 24.85 31.21
Zhang et al. (2020) 21.39 27.50
Residual 31.24 32.65 26.25 31.85 22.80 28.19 20.38 26.67
SD 31.63 32.51 26.50 31.97 23.94 28.33 23.60 28.01
FCLL 31.76 33.00 26.91 32.14 25.32 28.13 26.17 29.33

Table 2: Averaged BLEU scores on supervised directions. en→ denotes translating from en (lc) to L′ and →en
denotes translating to en from L′; sup. indicates supervised directions in non-centered cases. Residual follows Liu
et al. (2021) to modify residual connection.

Zero-Shot: IWSLT Triangle Square TED OPUS-100
Method Z.S. O.R. Z.S. O.R. Z.S. O.R. Z.S. O.R. Z.S. O.R. F.T. O.R.
Baseline 16.97 13.95 1.97 93.68 31.18 0.74 10.66 4.16 3.97 63.96 10.11 13.92
Philip et al. (2020) 12.94
Zhang et al. (2020) 4.02 54.57 11.98
Residual 20.37 1.80 16.60 4.95 30.30 0.77 12.54 3.85 5.14 38.54 11.38 18.30
SD 21.35 2.03 19.07 0.92 31.26 0.75 13.03 3.94 4.87 44.07 12.95 12.54
FCLL 21.15 2.05 20.56 0.13 31.49 0.74 14.14 3.74 6.31 34.46 13.65 11.09

Table 3: Averaged BLEU scores on zero-shot directions. Z.S. column indicates results of zero-shot translation; O.R.
denotes the off-target ratio measured by %; F.T. indicates results after fine-tuning, we follow Zhang et al. (2020) to
fine-tune 6 languages existing in zero-shot testing.

periments are trained with seed 1. To evaluate
results of all experiments, we translate the official
test set with beam size 4, and evaluate the transla-
tion results by sacreBLEU (Papineni et al., 2002;
Post, 2018). We also employ the langdetect5, which
can identify the language of one sentence, to count
the off-Target ratio, namely how many sentences
are not translated to the correct language. We list
detailed experimental settings in Appendix A.

4.3 Results

As described in Table 2, our proposed methods
achieve small improvements measured by averaged
BLEU scores on supervised directions of IWSLT
(+0.25/+0.07), Triangle (+1.16), Square (+0.1),
TED (+1.09/-0.79), and OPUS-100 (+6.67/+1.73)
compared to Baseline. Liu et al. (2021) specu-
lated that the basic Transformer would overfit more
on the supervised direction, and the improvement
of zero-shot could hurt supervised translation (Gu
et al., 2019; Zhang et al., 2020; Liu et al., 2021).
The performance of Residual (Liu et al., 2021)
degenerated in TED (-1.43/-0.73) and OPUS-100
(+0.88/-0.93), since the model weakened LS in-
formation by trading the generalization ability for

5The tool is not accurate, so, it is just for observing gen-
eral tendency. (https://github.com/Mimino666/
langdetect)

zero-shot translation. However, our proposed meth-
ods benefit from the additional improvement of de-
coding the target language by LS modeling (Sachan
and Neubig, 2018; Philip et al., 2020). This im-
provement can counteract the insufficiency of ty-
ing artificial language tokens to instruct translation
(Arivazhagan et al., 2019). The results of SD can
empirically prove the positive impact of CLL, since
the performance of SD, which only constructs one
CLL, is always between FCLL and Residual on
supervised directions. Moreover, the performance
of FCLL shows a marked difference (+1.09/-3.08)
from the work of Philip et al. (2020). We speculate
that the reason is lacking LS structure of lc and
benefiting from the mixture of shared and LS in-
formation in CLL. This hypothesis can explain the
stable improvements of CLL on Triangle (+1.16)
and Square (+0.1) where no lc exited in training
data. We conduct ablation experiments to show the
mechanism of CLL in Section 5.4.

Table 3 demonstrates that our methods always
give the best scores on zero-shot translations in
our experiments. Based on the gain of zero-shot
and gain of en→ (Table 2), CLL always positively
impacts non-centered languages. In IWSLT, SD
performs better than FCLL (+0.2) and performs
near FCLL in other cases. It indicates that stacking
LS structures is not always optimal for improv-

https://github.com/Mimino666/langdetect)
https://github.com/Mimino666/langdetect)
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Zero-Shot Supervised
Baseline Residual SD Baseline Residual SD

(1) 14.31 15.06 16.55 20.80 20.17 21.97
(2) 15.08 16.45 17.01 24.60 24.38 24.24

Table 4: Averaged BLEU scores of integrating de. Row
(1) and Row (2) shows results in Liwslt → de and de
→ Liwslt, respectively.

ing zero-shot translation. It also proves combining
tweaking encoding information and improving de-
coding information would be effective for zero-shot
translation. In Triangle, our methods perform sta-
bly in the extreme data condition where Baseline
totally failed. In Square, all cases have similar per-
formances since these languages do not have strict
dependence. Results in TED and OPUS-100 show
that our methods also run well in the large-scale
dataset. Moreover, we follow Zhang et al. (2020) to
fine tune the model by back-translation (Gu et al.,
2019) for 6 languages of zero-shot testing, and
FCLL achieves a gain of +3.54 BLEU scores to
Baseline. These two points show the proposed
CLL is orthogonal with other methods excluding
LS modeling.

We further noticed that, in Table 2, the perfor-
mances of all models on zero-shot directions in
Square are comparable with each other, and our
methods performed stably in Triangle where Base-
line is totally failed. The stability of Square case
shows the key to improving zero-shot translation is
not only large training data (Mattoni et al., 2017),
but also the balance of training (Shao and Feng,
2022). The results of Triangle prove CLL is stable
in zero-shot translation since it would not be in-
fluenced by different data conditions. This feature
ensured the effective utilization of shared infor-
mation. This feature can be proved by the value
of off-target rate in Table 3. Given the cost of
establishing consistent semantic representation in
shared information, confusion about different lin-
guistic features is an inevitable result because the
shared information container leads to coupling su-
pervised translation pairs both in theory and prac-
tice, however, our proposed methods are always at
a relatively lower rate.

4.4 Integrating a new language by few data

The ability to integrate a new language by few data
is crucial for low-resource languages when extend-
ing a trained MNMT model. To verify this ability
of CLL, we fine tune trained SD in IWSLT and
extend it to German (de) using bilingual language

IWSLT Triangle Square
sup. zero. sup. zero. sup. zero.

Baseline 0.021 5.280 0.220 0.210 0.001 0.016
Residual 0.067 0.270 0.004 0.900 0.003 0.055
SD 0.012 0.051 0.018 0.900 0.002 0.001
FCLL 0.025 0.074 0.018 0.140 0.004 0.014

Table 5: Variance computed from averaged BLEU
scores among five runs in IWSLT, Triangle, and Square
with different random seeds. sup. and zero. indicate
supervised translation and zero-shot translation, respec-
tively. Smaller variance means a more stable result.

pairs (en ↔ de) with 15K sentences per direction,
we also fine tune Baseline and Residual as compari-
son. We follow Liu et al. (2021) to set hyperparam-
eters and update subword vocabulary, as described
in Appendix A. Table 4 shows that SD performs bet-
ter on zero-shot translation, which indicates CLL
contributes the cross-lingual knowledge transfer,
which indicates that our method is flexible in incor-
porating low-resource languages.

5 Discussion and Analyses

5.1 Instability of Zero-Shot Translation
In this paper, we describe the instability from two
related perspectives: 1) Instability of training; 2)
Instability of data conditions. For the first point,
Table 5 shows the variance for different models
counted from five experiments with different seeds
for initialization. The small value of variance on su-
pervised translation among the four models shows
that supervised training always is a relatively stable
process. However, the training process of zero-
shot translation is sensitive to initial parameters
(Gu et al., 2019), since the variance of zero-shot
translation is always higher than the variance of su-
pervised translation. Our methods always achieved
the lowest variance on zero-shot translation. For
the second point, Table 3 shows that Baseline has
completely lost its ability of zero-shot translation
in Triangle, although the amount of training sam-
ples of Triangle is relatively higher than IWSLT
that can result in a good performance on zero-shot
translation. On the other hand, Square performs
excellently on zero-shot translation and its perfor-
mance is even closing to the performance of su-
pervised translation (Table 3), although it is non-
centered data condition as same as Triangle and
it is not completely interconnecting all languages
(Fan et al., 2020; Freitag and Firat, 2020). These
comparisons proved that the data condition impacts
the learning of zero-shot translation.
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Condition it→nl ro→it nl→ro
(1) Baseline 18.69 16.43 14.13
(2) (1)+additional pairs 23.27 22.17 21.61
(3) (2)+reduce data 22.35 21.31 20.96

SD 22.13 20.27 20.42

Table 6: Variation of different conditions in IWSLT. SD
is the performance under original setting.

We further notice that Baseline has a high vari-
ance in IWSLT yet a small variance in Triangle.
We speculate that the strict dependence of non-
centered languages caused instability, and the de-
gree of dependence influences the expression of
instability. Specifically, Baseline tends to build
cross-linguistic representations in IWSLT, but the
strict dependence would couple representations of
non-centered languages to the central language to
lead to a high off-target ratio in testing zero-shot
translation (Table 3). And the higher variance of
Baseline in IWSLT means that the model may find
a special set of initial parameters to escape from the
negative influence of strict dependence. Moreover,
the small variance of Baseline in Triangle means
that the model completely cannot find a special set
among the five times experiments, since Triangle
has the most severe dependence of non-centered
languages.

To prove our speculation, we create two artifi-
cial setups based on IWSLT to re-train Baseline and
show results measured by BLEU in Table 6. Specif-
ically, for Row (2), we append three language pairs
(it → ro, ro → nl, nl → it) with 30k sentences per
pair to balance the dependence (Rios et al., 2020);
for Row (3), we sample a random subset of 90K
sentences from training data of IWSLT of 145K
sentences per translation direction and we append
additional pairs as (2). These substantial gains (up
to +7.48) of Row (2) in Table 6 proved our view-
point that data conditions impact the performance
of zero-shot translation. Once the model disentan-
gled the strict dependence by appending additional
pairs, the model would achieve considerable gains
(up to +6.83), although the training samples have
been reduced to be smaller than the original setting
shown by Row (1). Moreover, the performance of
SD is comparable to these artificial cases.

So far we can conclude that the strict dependence
of non-centered languages closely influences the
zero-shot translation. And our motivation for dis-
entangling the dependence by improving the weak
representations of non-centered languages is effec-

Method Supervised Zero-Shot Off(%)
Residual 32.57 20.74 1.67
FCLL 32.95 21.00 1.52
SD 32.48 21.16 1.97
Residual w/o t 23.72 0.56
FCLL w/o t 32.88 20.85 1.35
SD w/o t 32.62 19.46 2.10

Table 7: Averaged BLEU scores of models training
without language tokens (w/o t) in IWSLT.

it→ ro→ nl→
ro nl it nl it ro

FCLL 21.14 21.92 20.43 22.12 19.45 20.98
Omitted -0.16 -0.08 -0.37 -0.21 -0.87 -0.74
SD 20.88 22.13 20.27 22.75 20.42 20.51
Omitted -1.79 -1.40 -2.13 -1.68 -2.41 -2.59

Table 8: Variation of BLEU scores after omitting lan-
guage tokens in testing.

tive. We will discuss the mechanism of CLL in
Section 5.4.

5.2 Translation Instructions

We re-train our models in IWSLT without language
tokens (Johnson et al., 2017), and Table 7 shows
the result. First, slight performance gains were
observed on supervised directions in FCLL and
SD. Figure 3 is a heat map showing self-attention
weights of FCLL with and without language to-
kens. Figure 3a shows one possibility is artificial
language tokens (Johnson et al., 2017) might dis-
turb the semantic representation for actual words,
since the language token <ro> dominated in self-
attention weights. Figure 3b shows the distribu-
tion of actual words weights by training without
language tokens. Figure 3c presents the attention
weights when omitting <ro> in testing the model
trained with language tokens, and we observed a
similar tendency with the plot in Figure 3b.

Second, Table 7 shows our methods stably main-
tain cross-linguistic representation although no lan-
guage tokens were inserted to instruct translation
directions both for supervised and zero-shot direc-
tions. On the contrary, other methods completely
lost their ability of zero-shot translation. These
analyses indicate that CLL has a strong capability
to instruct multilingual translation.

5.3 Full Layers vs. Single Layer

To verify whether the number of CLL affects the
performance of MNMT model, we translate the test
set omitting artificial language tokens by trained
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(a) CLL (b) CLL w/o token (c) CLL omitted token

Figure 3: Maps of Self-Attention in which translating one sentence of ro → it.

Figure 4: Variation of BLEU scores in which training
on different CLL layers. (1) modified the residual con-
nection as SD; (2) did not modify it.

FCLL and SD in IWSLT. Table 8 demonstrates the
model with more CLL layers has stronger robust-
ness since scores of FCLL degenerated less than
SD. To further investigate the effect of the num-
ber of CLL layers, we re-train Transformer mod-
els with different numbers of CLL layers based
on IWSLT in two cases. Specifically, in case (1),
we modify the residual connection of models as
same as the operation of SD, but we do not mod-
ify any architecture in encoder of Transformer in
case (2). Then, we follow the idea of Liu et al.
(2021) to remove the CLL layers in the decoder
from the top-most and bottom-most positions until
the configuration in which only a single CLL layer
is preserved in the middle-position decoder among
all decoders of these models.

Figure 4 shows that the zero-shot performance
of models in (2) degenerated with the reduction of
the number of CLL layers, although the supervised
performance always kept in the same magnitude.
It proves that the increase in the number of CLL
layers has a positive impact on the zero-shot trans-
lation. However, almost no clear variations were
observed in (1) of Figure 4. One possibility of the

supervised zero-shot
it→ nl→ de→ it→ nl→ de→

(1) 26.80 26.28 26.00 18.44 19.80 16.36
(2) 25.19 25.77 25.56 0.64 0.75 1.02
(3) 24.85 24.46 25.49

Table 9: Averaged BLEU scores of ablation study. Row
(1) shows results in Triangle; Row (2) shows results after
ablation; Row (3) means to calculate scores of zero-shot
translation by treating the supervised translation results
as reference data.

it→de Ablated LSL of de from CLL

Input:
<de> la quarta priorità concerne l’attenzione
che occorre prestare ai nuovi rischi.

Expected
Output:

die vierte priorität gilt den neuen risiken.

Actual
Output:

de vierde prioriteit is de aandacht die moet
worden besteed aan nieuwe risico ’s.

Table 10: Ablated testing SD trained in Triangle. The
output of the model rolls back to nl (Dutch, the super-
vised direction).

lower supervised performance of (1) when com-
pared with (2) in Figure 4 is the weaken language
specific information in the encoder by removing
the residual connection (Liu et al., 2021). Likewise,
the zero-shot performance of (1) is not sensitive
to the variation of the number of CLL layers since
weakening the capacity of the encoder could par-
tially offset CLL’s gains in decoder. We conclude
that the architecture of SD is relatively-optimal in
small-scale dataset because it is lightweight yet
comparable with FCLL, and FCLL is more stable
where data condition is complex or large.

5.4 Disentangling Coupled Representation

Ablation Study To investigate the significance
of CLL, we ablate LSL from CLL of trained SD
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(a) IWSLT:it → ro (b) IWSLT:en → ro (c) Triangle:de → nl

Figure 5: Visualization of layer attributions. ffn indicates FFN, lsl means LSLs, 1 or 2 means it is 1st or 2nd fully
connected neural network of this component. A higher absolute value indicates more contribution for result.

in Triangle, namely only use FFN, to re-translate
the test set. Row (2) of Table 9 show the degen-
eration of supervised translation is not significant,
but completely losing zero-shot translation capa-
bility. However, we observed that the zero-shot
translation rollbacks to supervised directions after
ablation via analyzing failure cases. As shown in
Table 10, the zero-shot translation of it → de will
be biased to it → nl due to ablating the layer of
de6. Thus, we calculated the BLEU scores of zero-
shot translation by treating the test set of it → nl as
reference data in testing Row (3) of Table 9. The
slight degeneration of Row (3) strongly proved that
FFN has built a consistent semantic representation
which has been coupled to supervised directions.

Layer Attributions The layer attribution7 can
quantify the contributions of one component by in-
tegrated gradients (Sundararajan et al., 2017). We
designed 3 scenarios to observe these attributions in
details: a) The zero-shot translation based on cen-
tered case; b) The supervised translation based on
centered case; c) The zero-shot translation based on
non-centered case. Figure 5 demonstrates: 1) FFN
always plays the main role in translation; 2) Gener-
ally, the contributions of CLL are on the contrary
of FFN in LS words, but they have similar contribu-
tions in common words, especially the punctuation.

These results proved our viewpoint in Section 5.1
again. Specifically, the shared representations built
in FFN potentially enable cross-linguistic trans-
ferring, but the strict dependence of non-centered
languages would hamper freely transferring since
cross-linguistic information is coupled with super-
vised translation directions. Therefore, the signif-

6we report more examples in Appendix D in which includ-
ing long and short sentences in different cases.

7We employ Captum (https://github.com/
pytorch/captum) for computing attributions.

icance of LSL in CLL practically is to provide
independent LS information to disentangle the cou-
pled representation, namely counteract the negative
influence of the dependence, to present a correct
LS representation in decoding.

6 Conclusion

In this work, we supplement the theory of zero-
shot translation with the strict dependence of non-
centered languages, and we describe the instability
of zero-shot translation. To counteract the influ-
ence of the dependence, we proposed a simple
yet effective method that employs LS modeling
by adapting to non-centered languages. Our anal-
ysis based on layer attribution demonstrated that
LS information is conducive to disentangling the
coupled model representation. Our experiments on
various datasets and different data conditions show
that our proposed method outperforms in perfor-
mance and complexity.

7 Ethical Considerations

The potential ethical risk of our work is the usage of
multilingual datasets including IWSLT, Europarl,
TED talks and OPUS-100, since these datasets
might contain social biases, especially in the Eu-
roparl, in which predominant European languages
might constitute stereotypes. Those biases would
be represented in the trained model and could be
amplified by integrating one new language out of
trained language families since no special treatment
is performed to mitigate the biases. Generally, this
method can be landed in the industry under suffi-
cient anti-prejudice measures.
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A Detailed Settings

IWSLT & Triangle & Square We follow Liu
et al. (2021) to set 5 encoder/decoder layers with 8
attention heads, embedding size of 512, inner size
of 2048, dropout rate of 0.3, dropout rate of CLL
layer of 0.3, maximum learning rate of 0.0005 and
label smoothing rate of 0.1. However, we decrease
dropout rate to 0.1 and dropout rate of CLL layer
to 0.2 in Square that is a bigger case than others.
The size of subword vocabulary is 40K for each
case. In training, we set the maximum batch size
per GPU to 4,000 tokens, and train on 4 GPUs.
We train for 100K steps for IWSLT and Triangle,
but train for 500K steps for Square. We sample
the supervised and zero-shot translation directions
from the dev set of MMCR4NLP as the validation
dataset in training.

TED talks We follow Philip et al. (2020) to set
6 encoder/decoder layers with 4 attention heads,
embedding size of 512, inner size of 1024, dropout
rate of CLL layer of 0.3, maximum learning rate of
0.0005 and label smoothing rate of 0.1. However,
we set the dropout rate to 0.2 to get better perfor-
mances. The size of subword vocabulary is 70K. In
training, we set the maximum batch size per GPU
to 4,000 tokens, and train on 4 GPUs. We train for
90 epochs to ensure models convergent. We only
sample dev sets of supervised directions translat-
ing as the validation dataset in training. We also
follow Philip et al. (2020) to use mixed-precision
(Ott et al., 2018) in training.

OPUS-100 We follow Zhang et al. (2020) to set
6 encoder/decoder layers with 8 attention heads,
embedding size of 512, inner size of 2048, dropout
rate to 0.1, dropout rate of CLL layer of 0.2, maxi-
mum learning rate of 0.0007 and label smoothing
rate of 0.1. We directly reuse their published sub-
word vocabulary8. In training, we set the maximum
batch size per GPU to 6,000 tokens, and train on
8 GPUs9 for 500K steps. We follow Zhang et al.
(2020) to sample top 200 sentences in dev sets of
supervised directions translating as the validation
dataset in training.

In fine-tuning, we follow Zhang et al. (2020)
to back-translate the training resource to get the
pseudo resource, then we merge real and pseudo re-
sources to train 4 epochs, and we update the pseudo

8https://github.com/bzhangGo/zero
9We use Fairseq command line of –update-freq 2 to simu-

late the efficiency of 8 GPUs by 4 GPUs.

training resource after each epoch in training. We
set 500 warm-up steps at the beginning of fine-
tuning, reset the optimizer, and training with maxi-
mum learning rate of 0.0003.

Integrating de in IWSLT Based on the trained
model in IWSLT, we learn a new SentencePiece
model with 10K vocabulary size to acquire a dic-
tionary for de. Then we append the new dictionary
to the end of the previously learned dictionary of
IWSLT, meanwhile, we keep the order of the previ-
ous part unchanged. Due to the increased number
of unique tokens, we resize token embedding and
initialize new vectors as the average of existing
embedding perturbed by random noise. When fine-
tuning, we set the learning rate as the value at the
end of the previous training, freeze parameters of
CLL layers of existing languages, initialize param-
eters of CLL layers for de by averaging existing
CLL layers, and include the original training data
of IWSLT to prevent the shared information from
tending to translate de.

https://github.com/bzhangGo/zero
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B Dataset Details
Dataset
case

Languages
# zero-shot
directions

# sent.
per direction

IWSLT {en, it, ro, nl} 6 145K
Europarl
Triangle

{ , it, nl, de} 3 200K

Europarl
Square

{ , fr, it, de, es} 4 1M

TED { en, ar, bg, de, es, fa, fr, he, hu, it, ja,
ko, nl, pl, pt-br, ro, ru, tr, vi, zh-cn }

342 140K ~210K

OPUS-100

{ en, an, as, be, bg, bn, br, bs, ca, cs, cy,
da, de, el, es, fa, fr, fy, ga, gd, gl, gu, hi,
hr, hy, is, it, ku, li, lt, lv, mk, mr, nb, ne,
nl, nn, no, oc, or, pa, pl, ps, pt, ro, ru, sh,
si, sk, sl, sq, sr, sv, tg, uk, ur, wa, yi, az,
kk, ky, tk, tr, tt, ug, uz, dz, my, zh, et, fi,
hu, se, id, km, mg, ms, vi, ig, rw, xh, yo,

zu, kn, ml, ta, te, eo, eu, ja, ko, ka, mn, th}

30 2K ~1M

Table 11: Overview of datasets. The underline denotes the lc, and the underline with blank represents non-centered
condition, i.e. no English.

C Distribution of Language-Specific Information Weights

Languages of OPUS-1000.0

0.1

0.2

0.3

0.4

0.5

Indo-European
Afro-Asiatic
Turkic

Sino-Tibetan
Uralic
Austronesian

Niger-Congo
Dravidian
Others

Figure 6: Averaged weights over all layers in FCLL model. The x-coordinate is sorted by languages showed in
Table 11. For languages with the same amount of training resources, languages from the same language family have
relatively similar weights.



5265

D Translation Examples of Ablation
Supervised: it→nl Ablated LSL of nl from CLL Language

Input:

<nl> parlo adesso per esperienza personale: da anni nell’industria dell’aviazione
civile e con la commissione siamo infarciti di deregolamentazione, eppure,in re-
lazione ai diritti aeroportuali, ci viene detto adesso che la risposta è la regolame-
ntazione.

it

Expected Output:

ik spreek nu namens mijzelf: al vele jaren wordt ons nu binnen de burgerlucht-
vaartindustrie en met de commissie een dieet voorgeschoteld van deregulatie en
toch, waar het gaat om luchthavenbelasting, wordt ons nu verteld dat regelgeving
het antwoord is.

nl

Actual Output:
ik spreek nu uit persoonlijke ervaring: al jaren in de burgerluchtvaartindustrie en
met de commissie zijn we gedwongen tot deregulering, maar wat de luchthaven-
gelden betreft, wordt ons nu gezegd dat het antwoord de regelgeving is.

nl

Input: <nl> tutte le cose importanti sono già state dette. it
Expected Output: al het belangrijke is reeds gezegd. nl
Actual Output: al het belangrijke is reeds gezegd. nl
Supervised: de→it Ablated LSL of it from CLL Language
Input: <it> der verbraucher hat ein recht darauf, das zu wissen. de
Expected Output: il consumatore ha il diritto di saperlo. it
Actual Output: il consumatore ha il diritto di saperlo. it
Zero-Shot: it→de Ablated LSL of de from CLL Language

Input:
<de> il recepimento di parte dell’acquis nel primo pilastro apre la strada alla co-
munitarizzazione di questa politica e consente di adottare anche rimedi in relaz-
ione alla nebulosa schengen, come amava chiamarla il mio predecessore.

it

Expected Output:
mit der teilweisen übernahme des acquis in den ersten pfeiler stehen uns nun alle
wege offen, diese politik zu vergemeinschaften und licht in la nébuleuse scheng-
en zu bringen, wie es mein vorredner beschrieb.

de

Actual Output:
de omzetting van een deel van het acquis in de eerste pijler maakt de weg vrij vo-
or de communautarisering van dit beleid en maakt het mogelijk dat er ook oplos-
singen worden gevonden voor de nebulosa schengen, zoals mijn voorganger zei.

nl

Input: <de> la quarta priorità concerne l’attenzione che occorre prestare ai nuovi rischi. it
Expected Output: die vierte priorität gilt den neuen risiken. de
Actual Output: de vierde prioriteit is de aandacht die moet worden besteed aan nieuwe risico ’s. nl
Zero-Shot: nl→it Ablated LSL of it from CLL Language

Input:
<it> die solidariteit en die noodzaak tot samenwerking geldt ook als zich in de
toekomst problemen voordoen, bijvoorbeeld bij interne migratiestromen.

nl

Expected Output:
questa sicurezza e la necessità di una collaborazione sono essi stessi potenziali
problemi futuri, ad esempio per quanto riguarda la migrazione interna.

it

Actual Output:
diese solidarität und die notwendigkeit der zusammenarbeit gelten auch in zu-
kunft, z. b. in bezug auf die migrationsströme.

de

Table 12: Some examples of translation by trained SD in the Triangle, in which ablating LS layers from CLL. The
long sentence of supervised translation has degeneration compared with short sentences but is kept in the correct
direction. These zero-shot translations are biased to supervised directions.


