
Proceedings of the 29th International Conference on Computational Linguistics, pages 5240–5245
October 12–17, 2022.

5240

Adversarial Training on Disentangling Meaning and Language
Representations for Unsupervised Quality Estimation

Yuto Kuroda
Ehime University

kuroda@ai.cs.ehime-u.ac.jp

Tomoyuki Kajiwara
Ehime University

kajiwara@cs.ehime-u.ac.jp

Yuki Arase
Osaka University

arase@ist.osaka-u.ac.jp

Takashi Ninomiya
Ehime University

ninomiya@cs.ehime-u.ac.jp

Abstract

We propose a method to distill language-
agnostic meaning embeddings from multilin-
gual sentence encoders for unsupervised qual-
ity estimation of machine translation. Our
method facilitates that the meaning embed-
dings focus on semantics by adversarial train-
ing that attempts to eliminate language-specific
information. Experimental results on unsuper-
vised quality estimation reveal that our method
achieved higher correlations with human evalu-
ations.

1 Introduction

Quality Estimation (QE) is a task of estimat-
ing translation quality without reference sen-
tences (Specia et al., 2018). Reference-based au-
tomatic evaluation methods, such as BLEU (Pap-
ineni et al., 2002) and BLEURT (Sellam and Parikh,
2020), have contributed to research and develop-
ment of machine translation; however, end-users of
machine translation systems unlikely have such ref-
erence translations. Hence, the development of QE
methods that correlate well with human evaluation
is practically important.

Supervised QE models (Ranasinghe et al., 2020;
Fomicheva et al., 2020a; Nakamachi et al., 2020)
based on pre-trained multilingual sentence en-
coders (Conneau et al., 2020; Feng et al., 2022)
have been actively proposed in the QE competi-
tions (Specia et al., 2020). However, these mod-
els require bilingual sentence pairs with manually
labeled translation quality scores for fine-tuning.
Creating such a QE dataset is expensive because it
requires annotators who are fluent in both of source
and target languages. Therefore, supervised QE
models are limited to several major language pairs
included in the competitions.

In contrast, unsupervised QE allows quality es-
timation without human-assessed machine trans-
lation outputs. Instead of the annotated outputs,
unsupervised QE utilizes widely available parallel
corpora. Multilingual sentence encoders (Artetxe
and Schwenk, 2019a,b; Reimers and Gurevych,
2020; Conneau et al., 2020; Feng et al., 2022) are
promising for developing unsupervised QE models;
however, their sentence embeddings are dominated
by language-specific information. Due to this char-
acteristic, these sentence embeddings form clusters
by language rather than by meaning, which hinders
precise estimation of semantic similarity across
languages (Tiyajamorn et al., 2021). To address
this problem, DREAM (Tiyajamorn et al., 2021)
disentangles sentence embeddings to meaning and
language embeddings. It conducts self-supervised
learning using parallel sentence pairs in bilingual
corpora as positive examples and random pairs as
negative examples; meaning embeddings of posi-
tive pairs should be close while those of negative
pairs should be distant. However, DREAM lacks
direct supervision to eliminate language-specific
information from the meaning embeddings and its
architecture is complex.

We improve DREAM by introducing an adver-
sarial training that attempts to remove language-
specific information from the meaning embed-
dings.1 Our adversarial training eliminates the ran-
dom pairs that DREAM needs, which results in
a simpler architecture and lighter computational
costs for training. Experimental results on the
WMT20 QE task (Specia et al., 2020) revealed that
our method achieved higher correlations with hu-
man scores than previous unsupervised QE models
based on multilingual sentence encoders. Com-

1The source code for this paper is available at https:
//github.com/kuro961/MEAT.

https://github.com/kuro961/MEAT
https://github.com/kuro961/MEAT
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Figure 1: Multitask training for distilling meaning embeddings from multilingual sentence embeddings

pared to other approaches independent of multilin-
gual sentence encoders (Fomicheva et al., 2020b;
Thompson and Post, 2020), our method showed
higher correlations in low-resource language pairs.

2 Proposed Method

Our model is an autoencoder comprising two multi-
layer perceptrons, MLPM and MLPL, trained with
bilingual corpora as shown in Figure 1. The for-
mer is responsible for extracting meaning and the
latter for extracting language-specific information.
These outputs are summed to reconstruct the input
sentence embedding. We train these MLPs using
multilingual-multitask learning with the following
four loss functions.

L = LR + LC + LL + LA (1)

2.1 Reconstruction Loss LR

LR is the basis of the autoencoder training, which
ensures that a meaning embedding êM ∈ Rd and
language embedding êL ∈ Rd can reconstruct the
input sentence embedding e ∈ Rd. Here, d is the
dimension of the sentence embedding. We define
reconstruction loss with cosine similarity2 as:

LR = 1− cos(e, (êM + êL)). (2)

2.2 Cross Reconstruction Loss LC

Source and target sentences in Figure 1 are seman-
tically equivalent as they are a parallel pair. Hence,
their meaning embeddings should be interchange-
able, for which we design a cross reconstruction

2This constraint does not strictly reconstruct the input em-
bedding, because cos(·) does not take into account the vector
norm. We empirically employed cos(·) for its higher perfor-
mance than MSE used by Tiyajamorn et al. (2021).

loss LC as:

LC = 2−cos(s, (ŝL+ t̂M ))−cos(t, (t̂L+ ŝM )).
(3)

The sentence embedding in the source language s
should be reconstructed from its language embed-
ding ŝL and the meaning embedding of the target
language t̂M . Similarly, the sentence embedding
in the target language t should be reconstructed
from its language embedding t̂L and the meaning
embedding of the source language ŝM .

2.3 Language Embedding Loss LL

The source and target languages are different. To
ensure that language embeddings of source and tar-
get are distinctive each other, we design a language
embedding loss LL as:

LL = max(0, cos(ŝL, t̂L)). (4)

2.4 Adversarial Loss LA

We improve DREAM by giving direct supervision
that eliminates language-specific information from
the meaning embeddings. For this aim, we intro-
duce an adversarial loss LA that decrease language-
identifiability from the meaning embeddings.

First, as an adversarial model that attempts to
identify the language of the input sentence from its
meaning embedding, we use the following multi-
class classifier MLPD:

ŷ = softmax(MLPD(êM )). (5)

MLPD is trained using the cross-entropy loss:

LD = −
∑
j

yj log ŷj . (6)

Note that Equation (6) is the loss function for train-
ing MLPD, and is not included in Equation (1) for
training MLPM and MLPL.
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With the adversarial model, we define LA that
supervises MLPM to derive meaning embeddings
from which languages are unidentifiable. Specif-
ically, LA makes the distribution of ŷ close to a
uniform distribution:

LA = − 1

N

∑
j

log ŷj , (7)

where N is the number of language types in the
training data. Adversarial training is performed si-
multaneously with the model training; Equation (6)
trains the adversarial model to achieve higher lan-
guage identifiability from the meaning embeddings
while Equation (7) makes the meaning embeddings
less language-identifiable.

2.5 Application to QE
Once our model is trained, we can use MLPM to
disentangle meaning embeddings from sentence
representations generated by multilingual sentence
encoders. We compute a QE score by a cosine
similarity between meaning embeddings of source
sentence s and translation output t:

cos(ŝM , t̂M ). (8)

3 Evaluation

We evaluated the effectiveness of the proposed
method in an unsupervised QE task.

3.1 Setting
Dataset Following the previous work (Tiya-
jamorn et al., 2021), we used six language pairs
included in the WMT20 QE task3 (Specia et al.,
2020). For each language pair, the test set consists
of 1k pairs of source and machine-translated out-
put sentences manually labeled with a translation
quality score. The evaluation metric is Pearson cor-
relation coefficients between these human scores
and model predictions.

We trained our model on the publicly available
bilingual corpora that were used to train the tar-
get machine translation systems (Ott et al., 2019).
We used bilingual corpora of 1M sentence pairs
for high-resource (en-de and en-zh), 200k for
medium-resource (ro-en and et-en), and 50k for
low-resource (ne-en and si-en) language pairs.4

3https://github.com/facebookresearch/
mlqe

4We sampled the same numbers of parallel sentences as
in Tiyajamorn et al. (2021) from http://www.statmt.
org/wmt20/quality-estimation-task.html for
fair comparison.

Model All the MLPs in our model are single-
layer feedforward networks. As a multilingual sen-
tence encoder to disentangle meaning embeddings,
we used LaBSE5 (Feng et al., 2022) with Hug-
gingFace Transformers (Wolf et al., 2020), which
achieved the best performance in DREAM (Tiya-
jamorn et al., 2021). We used a [CLS] embed-
ding as a sentence embedding. The parameters of
LaBSE were frozen and only those of MLPs in
our method were updated during training using the
parallel corpora.

We used a batch size of 512, Adam (Kingma
and Ba, 2015) optimizer with a learning rate of
1e − 5. We employed early stopping for training
with a patience of 10 using a validation loss of
Equation (1). The validation set was created by
randomly sub-sampling 10% of the training set.

Comparison We compared our method to
DREAM.6 Besides, we compared to unsuper-
vised QE methods that compute cosine similari-
ties of original sentence embeddings of LaBSE,
LASER7 (Artetxe and Schwenk, 2019a,b), mS-
BERT8 (Reimers and Gurevych, 2020), and
BERTScore9 (Zhang et al., 2020). Following the
pre-training setup of each model, max-pooling of
final layer outputs of the BiLSTM was used as
a sentence embedding on LASER, and similarly,
mean-pooling was used on mSBERT.

We also compared to other approaches that do
not depend on multilingual sentence encoders as a
reference. D-TP (Fomicheva et al., 2020b) and
Prism (Thompson and Post, 2020) are unsuper-
vised QE methods based on an encoder-decoder
model. Predictor-Estimator10 (Kim et al., 2017;
Kepler et al., 2019) is a supervised method em-
ployed as the baseline for the WMT20 QE task.

3.2 Result

The first set of rows in Table 1 indicates the perfor-
mance of the original sentence embeddings from
LaBSE and their meaning embeddings derived by
DREAM and our method. While both DREAM

5https://huggingface.co/
sentence-transformers/LaBSE

6https://github.com/nattaptiy/qe_
disentangled

7https://github.com/facebookresearch/
LASER

8https://huggingface.
co/sentence-transformers/
stsb-xlm-r-multilingual

9https://github.com/Tiiiger/bert_score
10https://github.com/Unbabel/OpenKiwi

https://github.com/facebookresearch/mlqe
https://github.com/facebookresearch/mlqe
http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
https://github.com/nattaptiy/qe_disentangled
https://github.com/nattaptiy/qe_disentangled
https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
https://github.com/Tiiiger/bert_score
https://github.com/Unbabel/OpenKiwi
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High Resource Medium Resource Low Resource

Model en-de en-zh ro-en et-en ne-en si-en Avg.

LaBSE 0.084 0.036 0.705 0.550 0.545 0.455 0.396
DREAM 0.196 0.197 0.724‡ 0.578 0.636 0.568 0.483
Ours 0.215‡ 0.222‡ 0.717 0.587† 0.634 0.571 0.491

LASER 0.105 0.106 0.705 0.463 - 0.325 0.341
mSBERT 0.130 0.287 0.766 0.512 0.467 0.418 0.430
BERTScore 0.134 0.143 0.746 0.568 0.562 0.549 0.450

D-TP 0.259 0.321 0.693 0.642 0.558 0.460 0.489
Prism 0.464 0.303 0.829 0.694 - - 0.573
Predictor-Estimator 0.145 0.190 0.685 0.477 0.386 0.374 0.376

Table 1: Pearson correlation coefficients measured on WMT20 QE task (Superscripts of ‡ and † indicate statistically
significant differences of p < 0.01 and 0.05, respectively, compared to DREAM.)

and our method consistently outperformed LaBSE,
our method achieved larger improvements. These
results confirm that our method with adversarial
training further enhanced the ability of meaning
embedding distillation of DREAM.

The second set of rows shows the performance of
previous unsupervised methods based on multilin-
gual sentence encoders. Our method outperformed
these methods on most language pairs. Particularly,
it showed higher scores on low-resource language
pairs, and achieved the highest correlation with hu-
man scores on average for all language pairs. It is
notable that our method outperformed mSBERT on
four out of six language pairs, which had sentence
similarity estimation in its pre-training.

The last set of rows shows the performance of
other QE models independent of multilingual sen-
tence encoders. Our method achieved higher scores
than the supervised QE model, Predictor-Estimator,
for all language pairs.

D-TP and Prism achieved higher scores than ours
in high-resource language pairs, but our method
outperformed them in low-resource language pairs.
Although D-TP assumes that users can access to the
parameters of a machine translatioin model for QE,
such a situation is practically limited because in
general, machine translation systems are black-box
to end-users (e.g. online machine translation ser-
vices). Prism requires a large-scale bilingual corpus
for training its encoder and decoder from scratch,
which restricts its applicability to low-resource lan-
guage pairs.

LR LC LL LA Avg.

(a) ✓ 0.393
(b) ✓ ✓ 0.086
(c) ✓ ✓ 0.075
(d) ✓ ✓ 0.427

(e) ✓ ✓ ✓ 0.439
(f) ✓ ✓ ✓ 0.297
(g) ✓ ✓ ✓ 0.482
(h) ✓ ✓ ✓ 0.488

Table 2: Pearson correlation coefficients in ablation

3.3 Ablation Study

Table 2 shows the results of the ablation study. The
upper rows show the performance when LR is com-
bined with one other loss function, and the lower
rows show the performance when each loss func-
tion is excluded from the proposed method, mea-
sured on WMT20 QE task.

The first set of rows (rows (a) to (d)) shows that
adversarial loss LA has the largest contribution on
its own. In contrast, cross reconstruction loss LC

and language embedding loss LL largely deterio-
rated the performance of LR. However, interest-
ingly, the second set of rows (rows (e) to (h)) show
that the performance drop is largest when LL is
removed. These results indicate that LL is cru-
cial when combining different loss functions. We
presume that LL has an effect that meaning and
language information are separated into the corre-
sponding embeddings. In other words, it prevents
that meaning information leaks to language embed-
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dings. In summary, these analyses revealed two
loss functions that most contribute to the perfor-
mance of the proposed method: LL and LA, and
these should be used together.

4 Summary and Future Work

We introduced adversarial training to disentangle
meaning embeddings from sentence representa-
tions of multilingual sentence encoders for unsu-
pervised QE. Our method consistently improves
the performance of a state-of-the-art multilingual
sentence encoder.

Our future work includes exploring ways to uti-
lize language-specific embeddings for QE in terms
of fluency of sentences. Combined with the present
method of assessing the adequacy of sentences, a
better QE may be achieved. We will also apply our
method for disentangling styles and meanings of
sentences for the style-transfer research.
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