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Abstract

Generalized text representations are the foun-
dation of many natural language understanding
tasks. To fully utilize the different corpus, it is
inevitable that models need to understand the
relevance among them. However, many meth-
ods ignore the relevance and adopt a single-
channel model (a coarse paradigm) directly for
all tasks, which lacks enough rationality and
interpretation. In addition, some existing works
learn downstream tasks by stitches skill block
(a fine paradigm), which might cause irrational
results due to its redundancy and noise. In
this work, we first analyze the task correlation
through three different perspectives, i.e., data
property, manual design, and model-based rel-
evance, based on which the similar tasks are
grouped together. Then, we propose a hierarchi-
cal framework with a coarse-to-fine paradigm,
with the bottom level shared to all the tasks, the
mid-level divided to different groups, and the
top-level assigned to each of the tasks. This
allows our model to learn basic language prop-
erties from all tasks, boost performance on rele-
vant tasks, and reduce the negative impact from
irrelevant tasks. Our experiments on 13 bench-
mark datasets across four natural language un-
derstanding tasks demonstrate the superiority
of our method.

1 Introduction

Pre-trained language models have achieved great
success on various natural language processing
(NLP) tasks. Meanwhile, pre-train-then-fine-
tuning has gradually become the mainstream
paradigm (Devlin et al., 2019; Liu et al., 2019b;
Yang et al., 2019). The pre-training process aims
to learn a general language representation from
the large-scale corpus. Such representations can
be further fine-tuned on downstream datasets and
perform specific tasks. Though great performance

†These authors contributed equally to this work.
*Corresponding author.

has been achieved, it is costly to fine-tune and save
independent representation for each task. There-
fore, researchers propose several multi-task learn-
ing methods (Phang et al., 2018; Liu et al., 2019a;
Clark et al., 2019b) using a single-channel model
(a coarse paradigm) to solve multiple tasks.

Inspired by human learning, multi-task learning
believes that tasks can interact and boost each other.
Therefore, to obtain a more robust representation
that can handle a variety of tasks, a straightforward
idea is to fine-tune a pre-trained model on many
tasks simultaneously. Numerous previous studies
have been conducted along this path. For example,
MT-DNN (Liu et al., 2019a) uses a transformer-
based model as a shared encoder and trains it on
multiple downstream tasks (as shown in the left
side of Figure 1). By this coarse paradigm, the
representation model can be more generalized and
robust. Although it has been observed that some
combinations of tasks yield improvements, this is
not always the case. Researchers (Aribandi et al.,
2021) have also found that the impact between
tasks is a double-edged sword, meaning that some
tasks may also hurt others. Indeed, modeling het-
erogeneous tasks often require distinct representa-
tion spaces. For example, naively training natural
language inference (NLI) tasks with different hy-
pothesis types together can lead to performance
declines.

Some recent work proposes sparsely activating
multiple modules for different tasks (Tang et al.,
2022) to mitigate the negative effects across tasks.
These fine paradigms activate distinct modules
according to predefined skills for learning down-
stream tasks (as shown in the middle part of Fig-
ure 1). However, the number of parameters is also
multiplied when multiple modules are activated
for a task. This problem becomes even more se-
vere when large pre-trained language models are
applied.

To address the aforementioned problems, we



4953

Shared Layer

Task1 Task2 Task3

Head1 Head2 Head3

(1) Fully Sharing (Coarse) (2) Partial Sharing (Fine) (3) Hierarchical Sharing (Coarse-to-Fine)

Shared Layer

Layer

Layer

Task1 Task2 Task3

Head1 Head2 Head3

Layer

Layer Layer

Layer Layer

Layer

Layer

Task1 Task2 Task3

Head1 Head2 Head3

Clustering

Layer

Specific 

Layer

Specific

LayerShared Layer
Specific 

Layer

Shared Layer

Clustering 

Layer

Figure 1: The illustration of hard sharing structure, partial sharing structure, and our hierarchical sharing structure.
The three tasks and the corresponding activated paths are in different colors. In our approach, the first and second
are two relevant tasks, so they share the same task-clustering layers. Finally, they are fed into different task-specific
layers.

first conduct a correlation analysis on four natural
language understanding (NLU) categories (a total
of 13 datasets) and find that some tasks can comple-
ment one another, while others cannot. Based on
these observations, we propose three measures (i.e.,
data property, manual design, and model-based
relevance) to categorize the tasks into different
groups.

Then, inspired by recent studies (Kovaleva et al.,
2019; Rogers et al., 2020) that different layers learn
information in different levels, we design a novel
hierarchical sharing framework, dubbed HMNet,
a coarse-to-fine multi-task learning paradigm for
natural language understanding (as shown in the
right side of Figure 1). Our method is a coarse-to-
fine paradigm, where the layers are divided from
the bottom up into shared, task-clustering, and task-
specific levels. We design the bottom layers as
shared, which are optimized by all tasks. There-
after, we employ distinct layers for different groups
obtained in the previous step. In this way, the rel-
evant tasks grouped in the same cluster can boost
each other, while the negative impact from tasks
in other groups can be avoided. The top layers are
totally separated for distinct tasks, so that some
task-specific information can be well-captured. It
is worth noting that each task only activates a sin-
gle module in each layer, so our model does not
require additional parameters during inference. Ex-
tensive experiments on 13 datasets show that our
method can achieve better performance on most
NLU tasks, demonstrating its superiority over ex-
isting hard sharing or partial sharing structures.

Our main contributions are three-fold:
(1) We perform a series of correlation analy-

ses (i.e., data property, manual design, and model-
based relevance) on 13 NLU tasks, which sheds
light on the positive and negative effects among the
different tasks.

(2) We design a novel hierarchical sharing frame-
work, dubbed HMNet, a coarse-to-fine multi-task
learning paradigm for natural language understand-
ing. It can better leverage the positive interactions
among different tasks while reducing the negative
influence.

(3) We conduct experiments on 13 commonly
used NLU datasets and validate the effectiveness
of our proposed method. The results demonstrate
that our framework achieves highly competitive
performance while saving over 34% parameters
than the partial sharing structure.

2 Related Work

In this section, we briefly introduce some
Transformer-based pre-trained models and recent
work on multi-task learning.

2.1 Transformer-based Pre-trained Models

Transformer is a neural structure consisting of mul-
tiple stacked self-attention modules (Devlin et al.,
2019; Liu et al., 2019b; Yang et al., 2019). With
the bidirectional attention mechanism, the model
can capture contextual information from both sides
effectively. BERT (Devlin et al., 2019) proposes a
masked language modeling objective to pre-train
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a Transformer encoder, and achieves dramatic per-
formance on several natural language understand-
ing tasks (Bowman et al., 2015; Williams et al.,
2018a; Wang et al., 2019b; Zhu et al., 2021a,b).
Since then, the pre-train-then-fine-tuning paradigm
has gradually become mainstream. Researchers
propose various new pre-training strategies to fa-
cilitate the model in several aspects (Yang et al.,
2019; Lewis et al., 2020; Raffel et al., 2020). For
example, in order to obtain a more robust model,
RoBERTa (Liu et al., 2019b) adapts several tailored
training strategies and employs more data. There
are also many methods extending the pre-training
on Transformer decoders. GPT-2 (Radford et al.,
2019) is a decoder-only structure that is pre-trained
in accordance with the language generation objec-
tives. It also performs exceptionally well on many
text generation tasks. Though pre-trained models
can be fine-tuned for distinct tasks, it is costly to
maintain a separate model for each task, especially
when the model is huge.

2.2 Multi-task Learning

Multi-task learning is an integrated learning
method in which multiple tasks share the same
structure for training simultaneously. It can en-
hance the generalization and performance of each
task. Consequently, multi-task learning can also be
applied to pre-trained language models. A typ-
ical practice is to fine-tune the pre-trained lan-
guage models by conducting multiple tasks con-
currently (Liu et al., 2019a). It is reported, how-
ever, that not all tasks can boost each other, and
that noise may also be introduced (Aribandi et al.,
2021). Therefore, it is essential to analyze the rela-
tionship between tasks before training them jointly.
Some recent work proposes addressing this issue
by sparsely activating distinct modules for different
tasks (Tang et al., 2022). This allows the modules
to be trained by relevant tasks. Unfortunately, these
approaches usually rely on predefined activation
paths, and they have to activate multiple modules
in order to achieve high performance during the
inference stage. This undoubtedly increases the
delay and cost of model application.

The main differences between our method and
others are: (1) We analyze the task correlation, and
use it to group the tasks. Relevant tasks within
the same group will be used to fine-tune the same
modules, while irrelevant tasks will not interfere
with one another. (2) Our model only activates a

single module in each layer for each task, therefore
it has the same number of parameters as a single
model.

3 Proposed Method

3.1 Overview
The overview of our method is illustrated in the
right side of Figure 1. In general, there are three
different kinds of layers in our structure: shared lay-
ers, task-clustering layers, and task-specific layers.
The shared layers are in the bottom and optimized
by all tasks. The middle part is the task-clustering
layers. Tasks that are classified as relevant (intro-
duced in the next section) will optimize the same
group of layers. The top layers are task-specific,
meaning that each task has its own module.

Our method adopts a coarse-to-fine paradigm. In
this manner, the model can obtain generalized text
representations in shared layers (a coarse-grained
manner) and effectively interact and learn accord-
ing to task correlation in the task-clustering layer
(a fined-grained manner), then send it to the task-
specific layer for specific task training.

3.2 Task Relevance Analysis
Existing multi-task learning framework assumes
that all tasks can facilitate each other. However,
researchers have also reported the negative effect
caused by irrelevant tasks (Aribandi et al., 2021).
To investigate the influence of each task, we de-
vise three methods from different perspectives to
measure the task relevance.

Data Property Since all tasks we study are based
on natural language texts, we first analyze the rele-
vance between tasks through the property of their
data. Specifically, we consider the syntactic infor-
mation and employ vocabulary co-occurrence to
measure task relevance. Formally, given datasets of
two tasks denoted as Ds and Dt, where s and t stand
for source and target, we compute the vocabulary
co-occurrence as follows:

rcs = |Vs ∩ Vt|/|Vs|, (1)

rct = |Vs ∩ Vt|/|Vt|, (2)

where Vs and Vt are the vocabulary of the source
and target datasets, respectively, rcs measures the
ratio of words in the source dataset that are shared
with the target datasets, and rct represents the
opposite. Intuitively, a higher value of rcs indi-
cates a higher impact of the target task on the



4955

MNLI QNLI RTE SNLI IMDB SST-2 QQP STS-B MRPCMultiRC0

1

2

3

4

5

6
Pe

rf
or

m
an

ce
 Im

pr
ov

em
en

t (
%

)

MNLI QNLI RTE SNLI IMDB SST-2 QQP STS-B MRPCMultiRC

2

1

0

1

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t (

%
)

Figure 2: Influence of other tasks on the BoolQ dataset (left) and influence of the BoolQ dataset on others (right).

source task. Note that this metric also considers
the data size, as a larger dataset usually contains
more words. For example, MNLI (Williams et al.,
2018b), as the largest dataset, has a large vocab-
ulary co-occurrence with others. It can provide
some basic language knowledge for other tasks.
Conversely, WNLI (Wang et al., 2019b) is a small
dataset with only hundreds of samples, and it may
have limited impacts on other tasks. Due to the
space limitation, we show the entire results in Ap-
pendix A.

Manual Design Inspired by a recent work that
designs various paths for different tasks (Tang et al.,
2022), we also examine the tasks artificially. Based
on the manually designed task purpose, we divide
them into four groups. i.e., Natural language infer-
ence, sentiment classification, similarity and para-
graphing, and question answering. We assume
tasks that have the same purpose supply the same
systematic information for models. For instance,
the NLI tasks generally rely on the models’ judg-
ment according to the deep semantics information
between premise and hypothesis, while the ques-
tion answering tasks ask the model to infer the
answer from the passage according to the question.
These tasks and their category will be reported in
Section 4.1.

Model-based Relevance In addition, to manu-
ally analyze the task or data, we further propose
measuring task relevance using neural networks.
Previous studies have demonstrated the advantages
of multi-task learning (Liu et al., 2019a), notably
that relevant tasks can enhance each other’s per-
formance. Consequently, task relevance can be
inferred by comparing the performance difference
between training two tasks independently and train-
ing them jointly. Concretely, for a source and a
target task, we fine-tune two models (we use BERT
in our experiments) respectively for them. Their

average performance is denoted as fs and ft. Af-
terward, we fine-tune another model (BERT) for
the two tasks through standard multi-task learning.
The corresponding performance is denoted as fjs
and fjt. Finally, we can compute the task relevance
as the performance improvement:

rms = (fjs − fs)/fs, (3)

rmt = (fjt − ft)/ft, (4)

where rms reflects the influence of the target task on
the source task, while rmt represents the opposite.
We calculate the relevance for all tasks, and the
results about BoolQ as an example in Figure 2 to
highlight the asymmetrical relevance between tasks.
The complete form is shown in Appendix A. In Fig-
ure 2, we find that most tasks have a positive impact
on BoolQ, even though the data property and the
purpose of these tasks are very different. BoolQ,
on the other hand, harms other tasks. One possible
reason is learning for QA needs more complicated
information and learning on other tasks can sup-
ply this information to improve the performance
of BoolQ. But as for other tasks, the information
obtained by learning in BoolQ like noise damages
the learning of themselves.

Since the asymmetrical relevance between task
pairs, we consider the fully shared model is harm-
ful to some tasks in multi-task learning. Inspired
by Rogers et al., we consider that the improvement
of word-level information training in the low layer
occurs a positive impact mostly, whereas the more
negative impact is sourced from the damage of the
deep semantic learning in the middle and top lay-
ers. As a result, we propose a hierarchical sharing
method for multi-task learning. It is based on a
hierarchical sharing of the task with different rel-
evance to leverage more positive interaction and
reduce the negative impact of multi-task learning.
More detail about the structure is described in the
next section.
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3.3 HMNet

We propose a hierarchical multi-task learning
framework (HMNet) based on task relevance. It is
built on Transformer (Vaswani et al., 2017), which
has been widely applied in NLP tasks.1 We omit
the details of Transformer and refer readers to the
original paper. As shown in the right side of Fig-
ure 1, HMNet has three different kinds of Trans-
former layers from the bottom up. All tasks will
first pass the shared layers, then, each task will go
through task-clustering layers according to their
task group (introduced later). Finally, each task has
its own task-specific layer, and the associated head
is used to accomplish the task.

In the following paragraphs, we first introduce
the details of the layers, followed by the task clus-
tering process.

Shared layers The shared layers are stacked in
the bottom of HMNet. We design bottom layers
as shared since it has been demonstrated that they
capture low-level semantic or structural informa-
tion in existing pre-trained models (Jawahar et al.,
2019). We believe that such information is univer-
sally contained in all texts, so all tasks collaborate
to optimize the shared layers.

Task-clustering layers Based on our task rele-
vance analysis, we cluster the tasks into various
groups. For tasks within the same cluster, the same
(set of) clustering layers will be optimized. As
illustrated on the right side of Figure 1, the first
two tasks are grouped into one cluster, so they op-
timize the first set of clustering layers. On the
contrary, only the third task tunes the second set of
clustering layers. With the task-clustering layers,
relevant tasks can optimize the same set of param-
eters, enabling the sharing of their knowledge. In
the meantime, the irrelevant tasks can be isolated,
thereby eliminating the noise.

Task-specific layers Task-specific layers are in
the top of our HMNet. According to recent
studies (Jawahar et al., 2019), the top layers of
pre-trained language models typically learn task-
specific knowledge. Therefore, we separate all
tasks and let them have their own Transformer lay-
ers. There is also a head associated with each task-
specific layer to accomplish the task. For example,

1Other structures, such as convolutional or recurrent net-
works, may also be compatible with our method. This is left
for future work.

a linear classifier with an activation function is of-
ten applied for classification tasks.

Clustering Process In our task relevance anal-
ysis, we propose three methods to measure the
task relevance. Among them, the manual de-
sign can directly group the tasks into different
clusters. For the other two methods, we employ
an unsupervised clustering method, i.e., k-means.
Particularly, given a source task S, and n target
tasks {T1, · · · , Tn}, we can compute the relevance
scores {rST1 , · · · , rSTn} by Equation (2) or (4).2

Then, we treat the n scores as features and apply k-
means clustering algorithm. Finally, the tasks can
be grouped into k clusters. The grouping results
are given in the Appendix A.

Remark Different from traditional multi-task
learning that shares all layers among all tasks, our
HMNet only shares layers at the bottom (a coarse-
grained manner). The higher layers are shared by
only relevant tasks or used alone(a fined-grained
manner). Since the layers close to specific tasks
are separated, our method can alleviate the contra-
diction between tasks. On the other hand, each task
only activates one channel at each layer, so the total
parameters are comparable with a single-channel
model. This is much more efficient than sparsely
activated structures.

3.4 Optimization

HMNet is based on a multi-layer Transformer,
which is similar to existing pre-trained language
models, such as BERT (Devlin et al., 2019). There-
fore, we use BERT as the backbone model to ini-
tialize the parameters in each layer. Then, each
task has its own path (as described earlier), and
we can use it to fine-tune the corresponding layers.
The training process our method is summarized
in Algorithm 1. In each epoch, a mini-batch bt is
packed, and the HMNet is updated by the path for
the dataset Di.

4 Experiment

4.1 Datasets and Evaluation Metrics

We conduct experiments on 13 NLU tasks and com-
pare the performance of our HMNet with other
baselines. These tasks can be grouped into four
categories:

2Since the task correlations are asymmetric, scores such
as rTS may also work.
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Algorithm 1: Training Process
Initialize model parameters from pre-trained BERT;
Set the max number of training epoch Em;
Prepare data
for i in 1, 2, · · · , N do

Pack the dataset Di into minibatch Bi;
end
Multi-task learning
for epoch t in 1, 2, · · · , Em do

Merge all the datasets: B = B1 ∪B2 · · · ∪BN ;
Shuffle B;
for bt in B do

// bt is a mini-batch of task t;
Feed bt into shared layers → bs

t ;
Feed bs

t into task-clustering layers → bc
t ;

Feed bc
t into task-specific layers → bt

t;
Feed bt

t into task-specific head;
Compute loss and gradient;
Update model;

end
end

(1) Natural Language Inference (NLI): These
tasks aim to determine whether a hypothesis is
entailed, contradicted, or undetermined given a
premise. They require the model to measure the log-
ical coherence between two sentences. We select
six datasets: MNLI (Williams et al., 2018b), QNLI,
RTE, WNLI (Wang et al., 2019b), CB (Wang et al.,
2019a), and SNLI (Bowman et al., 2015).

(2) Sentiment Classification: These tasks ask
the model to classify the sentiment polarity of
a sentence (i.e., positive or negative). We use
IMDB (Maas et al., 2011) and SST-2 (Socher et al.,
2013) datasets.

(3) Similarity and Paraphrase: These tasks
aim at determining whether two sentences have
the same or similar meaning. The semantic rela-
tionship between two sentences is vital in these
tasks. We choose three commonly used datasets:
QQP (Wang et al., 2019b), STS-B (Cer et al., 2017),
and MRPC (Dolan and Brockett, 2005).

(4) Question Answering: This task requires
the model to answer a question by reasoning on a
given paragraph. BoolQ (Clark et al., 2019a) and
MultiRC (Khashabi et al., 2018) datasets are used.

Detailed statistics of benchmark datasets are
mentioned in Appendix B.

4.2 Baseline

We compare with our HMNet with three other train-
ing methods:

Single-Task fine-tuning: We fine-tune a pre-
trained BERT for each task independently. As a
result, 13 models are obtained in total.

Multi-Task fine-tuning: Following MT-
DNN (Liu et al., 2019a), we use the pre-trained
BERT as a shared encoder and add a task-special
head for each task. During fine-tuning, all parame-
ters are optimized by all tasks jointly. With multi-
task learning, only one model needs to be trained
and saved.

SkillNet-style fine-tuning: This is a sparsely
activated multi-task learning structure proposed
by Tang et al. (2022). They design seven basic
skills, such as getting the semantic meaning of a
sequence and understanding a question. Then, they
divide typical NLU tasks into five categories, each
requiring a unique skill combination. The skill
module is implemented by adding multiple FFN
layers into the original Transformer structure. This
model is also initialized by a pre-trained BERT.
However, as each task activates multiple skill mod-
ules, compared with our method and other base-
lines, on average 1.0× more parameters (i.e., 223M
vs. 110M) are used in inference.

4.3 Implementation details
For a fair comparison, all methods are initialized by
the bert-base-uncased checkpoint with the
same seed. The batch size is 32, the max length of
sequence is 512, and the initial learning rate is 2e-5,
which is linearly decayed. AdamW (Loshchilov
and Hutter, 2019) optimizer is applied. We train all
methods for three epochs.

For the NLI and text similarity & paraphrase
tasks, similar to the vanilla BERT, we concate-
nate the sentence pair by adding a separator token
[SEP] and a head token [CLS]. For the sentiment
classification task, the input is a single sentence,
so we only add a head token [CLS]. For the QA
task, we concatenate the question, passage, and
answer, then separate them by two [SEP] tokens.
A head token [CLS] is also added at the begin-
ning of the sequence. All tasks are performed in
similar ways, namely processing the embedding of
the [CLS] token by a linear layer with a softmax
activation function, and output the probability of
each category. The default setting of HMNet has
eight shared layers, two task-clustering layers, and
two task-specific layers.

4.4 Experimental Results
Table 1 shows the results on all datasets. In general,
our HMNet performs better than other baselines on
most datasets and achieves the best result in terms
of the average score. This clearly demonstrates the
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Metric Single-task Multi-task SkillNet HMNetd HMNetmd HMNetm

NATURAL LANGUAGE INFERENCE
MNLI (m/mm) Acc. 85.0/84.6 84.5/84.8 84.5/84.6 84.8/84.6 84.7/85.2 84.8/84.9
QNLI Acc. 91.6 90.9 90.7 90.8 91.0 91.1
RTE Acc. 66.1 79.7 77.6 73.3 79.4 81.2
WNLI Acc. 56.3 56.3 56.3 56.3 56.3 56.3
CB Acc. 67.8 80.3 85.7 87.5 82.1 82.1
SNLI Acc. 91.0 91.3 91.1 91.0 91.4 91.1

SENTIMENT CLASSIFICATION
IMDB Acc. 93.9 93.9 94.1 93.8 93.9 93.9
SST-2 Acc. 92.3 93.1 92.5 93.2 92.3 93.0

SIMILARITY AND PARAPHRASE
QQP Acc. 90.9 90.7 91.0 90.9 91.0 90.9
STS-B Corr. 85.8 85.5 86.0 86.9 87.5 87.4
MRPC Acc. 83.3 81.4 85.7 88.2 90.4 88.5

QUESTION ANSWERING
BoolQ Acc. 71.4 77.9 80.7 79.0 79.1 80.3
MultiRC F1a 65.2 68.4 68.1 68.9 66.7 68.4

Average Score - 80.4 82.8 83.5 83.5 83.7 84.0
# Params Activated - 110M 110M >166M 110M 110M 110M
# Overall Params - 110M 110M 450M 231M 240M 231M

Table 1: Results of all methods on 13 datasets. The best results are in bold. HMNet is our proposed method, and
the subscript stands for three task relevance metrics, i.e., data property (d), manual design (md), and model-based
relevance (m). During inference, SkillNet has to activate at least two channels, thus the number of parameters is
larger than 166M. In contrast, our HMNet only activates one channel at each layer, which requires less parameters.

superiority of our proposed HMNet. We further
have the following observations:

(1) Comparing the performance between single-
task and multi-task learning, it is evident that the
latter can bring improvement for most tasks. Fur-
thermore, this enhancement is related to the size of
the datasets. Specifically, for the large dataset, such
as MNLI and QQP (both of which have more than
300k training samples), the single-task learning
can perform slightly better than multi-task learning.
This implies that not all tasks can complement each
other, and for those tasks with sufficient training
data, adding extra tasks may not improve or even
degrade performance. The potential reason is that
the data in other tasks are collected from different
domains and require models with distinct capabil-
ities. Simply combining them will result in noise.
For QA tasks, multi-task learning often leads to bet-
ter performance. Indeed, QA is more complicated
than other tasks, thus training on other tasks can
be beneficial (e.g., better capture the relationship
between question and answer). Some recent stud-
ies (Aribandi et al., 2021; Aghajanyan et al., 2021)
have reported that incorporating massive tasks may
alleviate the negative effect between tasks. It is in-
teresting to investigate if our model can be further
improved by adding more tasks, and we leave this
as future work.

(2) Sparsely activated (SkillNet-style) methods
can achieve better performance than single-/multi-
task learning. Its advantages stem from two per-
spectives: First, this method groups tasks according
to their requiring skills, so the tasks rely on similar
skills can enhance one another (e.g., both NLI and
semantic similarity judgment rely on the skill of un-
derstanding how two text segments interact), while
avoiding noise from other used skills. On the other
hand, since multiple skill modules are activated,
more parameters improve the model’s capacity.

(3) Our HMNet with three different task rele-
vance measurements can consistently outperform
all baseline methods. Specifically, HMNet brings
more than 0.7% absolute improvement over multi-
task learning in terms of average score. We at-
tribute this improvement to our architecture of task-
clustering and task-specific layers. Instead of shar-
ing all layers, HMNet gradually separates the tasks
in higher layers, so that the general language knowl-
edge can be accumulated while the noise can be
filtered out. Different from SkillNet-style methods,
our HMNet only activates one channel at each layer,
so its number of parameters is identical to a vanilla
BERT. Surprisingly, HMNet with fewer parameters
can even perform better. This demonstrates again
the effectiveness of our proposed task clustering
and the hierarchical sharing structure.
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Figure 3: Influence of different numbers of shared layers
in HMNet.

4.5 Further Analysis

Influence of Shared Layers In HMNet, we de-
sign the bottom layers as fully shared, whilst the
higher layers are only shared by task clusters or are
task-specific. This approach is motivated by the
hypothesis described in Section 3.2, which argues
that the positive influence between tasks comes
from capturing more general language knowledge
at the bottom layer, and the negative impact comes
from the noise brought by task interaction in the
middle and top layers. To prove this hypothesis, we
experiment on using different numbers of shared
layers to investigate their effect. This experiment
is conducted on the MNLI and BoolQ datasets. We
train HMNet on them and report their performance
accordingly. Since only two tasks are considered,
we categorize them into two clusters, so the task-
clustering layers are transformed into task-specific.
The results are shown in Figure 3. We can observe
that the performance of MNLI has minor changes
as it contains sufficient training data. On the con-
trary, the result of BoolQ increases significantly
when shared layers are used (from zero to eight).
This reflects the advantage of multi-task learning.
However, when more shared layers are employed
(more than eight), the performance degrades. This
confirms our assumption that task-specific knowl-
edge is often learned in the upper layers, which
supports our design of gradually separating tasks
from the bottom up.

Different Metrics for Task Relevance In Sec-
tion 3.2, we devise three different metrics for
task relevance, i.e., data property, manual design,
and model-based relevance. Their performance is
shown in Figure 4 and the right side of Table 1. We
can see: First, HMNet can outperform other base-
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Figure 4: Results of average score with respect to differ-
ent layer combinations.

lines with any task relevance assessment. This high-
lights the significance of task clustering in multi-
task learning. Moreover, the result demonstrates
the adaptability of our method with regard to the
evaluation of task relevance. As an early explo-
ration of the effect of task relevance on multi-task
learning, the three metrics we have provided are
very preliminary. We believe that a more accurate
task relevance could bring further improvement.
Second, the model-based similarity performs the
best. With the help of deep neural models, the task
relevance in high dimensions can be better captured.
Such relevance is hard to be observed by humans or
extracted from shallow data properties. In addition,
quantifying the tasks’ relevance from the perspec-
tive of the model can narrow the gap between task
clustering and multi-task learning. Notably, though
better performance is obtained, the model-based
metric needs additional cost on model training. The
other two metrics can avoid it.

Influence of Different Layer Combinations
HMNet has three different kinds of layers, so their
different combinations may influence the perfor-
mance. We conduct an experiment by tuning the
number of layers at each level. For clarity, we use
{x, y, z} to denote a HMNet with x shared layers,
y task-clustering layers, and z task-specific layers.
Experimental results are shown in Figure 4. Using
eight shared layers yields the optimal performance.
In comparison to traditional multi-task learning
that shares all layers, HMNet with more than six
shared layers can obtain better results. This im-
plies that sharing all layers is not an effective strat-
egy for multi-task learning, and our hierarchical
sharing structure can mitigate the negative effect
across tasks. Besides, when equipping with the
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model-based similarity, HMNet outperforms multi-
task learning with any combination of shared, task-
clustering, and task-specific layers. This reflects
the robustness of our method and validates that the
excellent performance of our method stems from
our HMNet architecture and the consideration of
task relevance rather than finely tuned hyperparam-
eters.

5 Conclusion and Future Work

In this work, we explore task correlation and
built a hierarchical multi-task learning framework.
Our framework adopts a coarse-to-fine manner, in
which the tasks are gradually separated from the
bottom up. By doing so, it can reap the benefits
of multi-tasking learning at the lower layers while
avoiding its harmful impact on the upper layers.
Extensive experiments on several challenging NLU
datasets showed that our model achieves better per-
formance than existing strategies. Further experi-
ments indicated that our methods are flexible with
the choice of task relevance metrics, and robust
with the hyperparameter selection. As a prelim-
inary study on incorporating task relevance into
multi-task learning, there are several potential fu-
ture directions, such as new backbone models and
task relevance metrics.
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Figure 5: Per head attention maps’ cosine similarity
between fine-tuned model and co-trained model using
positive task pair(QQP & RTE). Darker colors means
greater differences. left: QQP right: RTE

Figure 6: Per head attention maps’ cosine similarity
between fine-tuned model and co-trained model using
negative task pair(MRPC & RTE). Darker colors means
greater differences. left: MRPC right: RTE

A The Clustering Results

As described in Section 3.2, we group these tasks
from three prospects, i.e., data property, manual
design, and model-based relevance.

As for the data property of datasets, Table 2 re-

ports the task relevance of all 13 datasets. Based on
these features, we cluster all tasks into three groups
using k-means. {WNLI, CB}, {MultiRC, RTE,
SST-2, MRPC, STS-B}, {QQP, QNLI, BoolQ,
IMDB, SNLI, MNLI} is the grouping results.

As for the model-based relevance, the results are
shown in Table 3. Similarly, we cluster these tasks
using k-means. The outcomes are {CB, WNLI,
QQP, RTE}, {MRPC, QNLI, BoolQ, IMDB, SST-
2}, {MultiRC, STS-B, SNLI, MNLI}.

B Dataset Statistics

The statistic of all datasets are shown in Table 4.

C Attention Map Similarity

Following previous work (Liu et al., 2019a; Rogers
et al., 2020), we compare the attention maps be-
tween fine-tuned model and the co-trained model
to explore the behavior during multi-task learning.
As shown in Table 3, the relevance between RTE
and QQP is relatively positive and that between
RTE and MRPC is relatively negative. We conduct
some experiments using these tasks to explore the
training difference between positive task-pair and
negative pairs. Figure 5 compares the similarity
between positive task pair (QQP & RTE), and Fig-
ure 6 compares the negative task-pair (MRPC &
RTE). As shown in these figures, regardless of the
positive pair or negative pair, the attention map of
the bottom six layers is very similar, while that of
the top two layers is different. Compared Figure 5
with Figure 6, we can see the attention map in the
positive pair is more similar in the middle layers.
Therefore, when considering the model structure,
we set the bottom layers as shared to learn general
knowledge from all tasks. Accordingly, the higher
layers are designed as more task-specific.
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MNLI QNLI RTE WNLI CB SNLI IMDB SST-2 QQP STSB MRPC BoolQ MultiRC

MNLI 100.00% 92.83% 97.64% 99.58% 99.42% 98.50% 95.70% 99.21% 93.46% 98.29% 98.21% 93.83% 98.76%
QNLI 94.40% 100.00% 98.11% 98.32% 98.01% 95.02% 94.00% 96.55% 94.19% 97.71% 98.02% 95.31% 97.55%
RTE 52.42% 51.80% 100.00% 84.72% 81.73% 59.25% 52.99% 65.23% 52.26% 74.24% 74.11% 54.11% 66.54%

WNLI 5.50% 5.34% 8.72% 100.00% 24.80% 7.47% 5.63% 9.90% 5.51% 10.64% 9.77% 5.75% 8.78%
CB 10.62% 10.29% 16.26% 47.93% 100.00% 13.76% 10.87% 18.86% 10.61% 18.95% 18.44% 11.00% 16.15%

SNLI 69.92% 66.33% 78.35% 95.94% 91.44% 100.00% 70.87% 84.65% 68.98% 83.62% 80.12% 69.19% 80.05%
IMDB 93.74% 90.55% 96.68% 99.72% 99.67% 97.80% 100.00% 99.69% 91.86% 97.45% 97.06% 92.13% 97.41%
SST-2 44.45% 42.54% 54.44% 80.31% 79.12% 53.43% 45.60% 100.00% 44.07% 58.34% 57.02% 44.68% 56.31%
QQP 92.93% 92.11% 96.79% 99.09% 98.80% 96.63% 93.25% 97.80% 100.00% 97.67% 97.40% 93.65% 97.13%
STSB 41.08% 40.17% 57.80% 80.52% 74.18% 49.24% 41.59% 54.43% 41.06% 100.00% 67.28% 42.43% 54.52%

MRPC 43.97% 43.15% 61.80% 79.12% 77.30% 50.53% 44.36% 56.97% 43.85% 72.06% 100.00% 45.47% 57.67%
BoolQ 87.67% 87.58% 94.18% 97.20% 96.27% 91.07% 87.88% 93.19% 88.01% 94.84% 94.90% 100.00% 93.29%

MultiRC 57.48% 55.84% 72.14% 92.43% 88.03% 65.64% 57.88% 73.15% 56.86% 75.92% 74.98% 58.11% 100.00%

Table 2: Task relevance based on data property. It is computed by the vocabulary co-occurrence between the task
pair as Equation (2).

MNLI QNLI RTE WNLI CB SNLI IMDB SST-2 QQP STS-B MRPC BoolQ MultiRC

MNLI 0.00% -0.10% 15.96% 50.00% 47.31% 0.75% -0.29% 0.00% -0.14% -0.96% -1.87% 5.93% 6.42%
QNLI -0.54% 0.00% 2.13% 21.43% 26.37% 0.24% -0.09% -0.62% -0.06% 0.43% -0.69% 5.38% 1.58%
RTE -0.47% -0.32% 0.00% 7.14% 10.45% 0.25% 0.10% -0.98% -0.03% -0.10% -1.95% 0.67% 1.03%

WNLI -0.28% -0.32% -3.19% 0.00% 2.62% 0.08% 0.08% -0.74% -0.03% -0.16% -0.39% 0.59% -0.18%
CB -0.35% 0.02% 0.00% 7.14% 0.00% -0.30% -0.09% -0.49% 0.04% 0.35% -0.50% -0.17% 0.29%

SNLI -0.19% -0.64% 11.70% 64.29% 33.51% 0.00% -0.17% -1.85% -0.12% -1.23% -3.16% 3.19% 3.16%
IMDB 0.01% 0.00% -1.06% 14.29% 30.95% -0.03% 0.00% -0.74% -0.16% 0.52% 0.79% 0.38% 0.68%
SST-2 0.21% -0.02% 1.06% 14.29% 33.58% 0.09% -4.24% 0.00% 0.02% -0.76% -1.98% 4.71% 0.53%
QQP -0.77% -0.82% 3.19% 0.00% 7.48% 0.09% -0.41% -2.21% 0.00% -1.63% -2.85% 1.89% -0.19%

STS-B -0.12% 0.04% 5.85% 57.14% 13.07% 0.13% 0.03% -1.23% 0.05% 0.00% 1.15% 3.15% 1.48%
MRPC -0.21% 0.02% 2.66% 21.43% 13.07% -0.01% -0.01% 0.25% -0.11% -0.23% 0.00% 1.77% 0.22%
BoolQ -0.35% -0.36% -2.66% 21.43% 33.58% -0.15% -0.05% -0.62% -0.03% 1.18% -1.24% 0.00% -0.26%

MultiRC -0.37% -0.20% 4.26% 71.43% 10.38% -0.07% -0.04% -1.48% 0.04% 0.70% 0.27% 1.64% 0.00%

Table 3: Model-based task relevance. It is computed by performance improvement as Equation (4).

Corpus #Train #Dev #Test #Label Metrics

NATURAL LANGUAGE INFERENCE
MNLI 393K 20k 20k 3 Accuracy
QNLI 108k 5.7k 5.7k 2 Accuracy
RTE 2.5k 276 3k 2 Accuracy
WNLI 634 71 146 2 Accuracy
CB 250 57 250 2 Accuracy/F1
SNLI 549k 9.8k 9.8k 3 Accuracy

SENTIMENT CLASSIFICATION
IMDB 25k 0k 25k 2 Accuracy
SST-2 67K 872 1.8k 2 Accuracy

SIMILARITY AND PARAPHRASE
QQP 364k 40k 391k 2 Accuracy/F1
STS-B 7K 1.5k 1.4k 1 Pearson/Spearman corr
MRPC 3.7k 408 1.7k 2 Accuracy/F1

QUESTION ANSWERING
BoolQ 9.4k 3.3k 3.2k 2 Accuracy
MultiRC 5.1k 953 1.8k 2 F1a/EM

Table 4: Summary of the 13 datasets.
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