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Abstract

This paper explores a special case in multi-
lingual machine translation: so called multi-
parallel translation, where the target data for
all language pairs are identical. While multi-
parallelism offers benefits which are not avail-
able in a standard translation setting, transla-
tion models can easily overfit when training
data are limited. We introduce a regularizer,
the divergence penalty, which penalizes the
translation model when it represents source
sentences with identical target translations in
divergent ways. Experiments on very low-
resourced Indigenous North American lan-
guages show that an initially deficient multi-
lingual translator can improve by 4.9 BLEU
through mBART pre-training, and 5.5 BLEU
points with the strategic addition of mono-
lingual data, and that a divergence penalty
leads to further increases of 0.4 BLEU. Further
experiments on Germanic languages demon-
strate a improvement of 0.5 BLEU when apply-
ing the divergence penalty. An investigation
of the neural encoder representations learned
by our translation models shows that the di-
vergence penalty encourages models to learn
a unified neural interlingua.

1 Introduction

Bilingual neural translation models typically re-
quire millions of parallel sentences to achieve ad-
equate quality. A vast majority of the world’s lan-
guages lack sufficient parallel corpora, and transla-
tion efforts for low-resource languages have turned
to multilingual methods, leveraging linguistic sim-
ilarity to augment a deficient signal with plenti-
ful, albeit sometimes noisy, data from related lan-
guages (Aharoni et al., 2019; Goyal et al., 2020).
In this paper, we explore a very specific multilin-
gual translation setting: multi-parallel translation.
Here, models are trained on documents, such as
the proceedings of the European Parliament, col-
lections of subtitles, and the Bible. Each sentence

has translations in many languages, providing not
just a bilingual signal, but one that is bilingual in
many directions.

We explore a massively multi-parallel docu-
ment: the Bible, which has hundreds of translations.
While it represents a very restricted domain, the
Bible is the only parallel document available for
many languages and multi-parallel translation is,
therefore, of key importance for low-resource NLP.

Earlier work shows that multi-parallel translation
systems can in practice deliver poor results when
available training data for individual languages are
very small (Mueller et al., 2020). In this setting,
the performance of the translation models degrades
when the number of source languages is increased.
Adapting pre-trained multilingual models such as
mBART has also not led to significant progress
(Lee et al., 2022). For languages that are not
closely-related to the languages in the model, high-
quality translation remains an unsatisfied goal.

We hypothesize that this drop in performance is
a consequence of an inability of the model to learn
a neural interlingua (Johnson et al., 2017), that is,
a shared semantic representation for source lan-
guages. This prevents knowledge transfer between
languages, degrading translation performance. To
counteract this tendency, we present the divergence
penalty—a modification to the standard loss of a
multilingual translation system, which encourages
identical encoder and decoder representations for
parallel source sentences.

Our experiments on Indigenous North Ameri-
can languages show several avenues for improving
the quality of the embedding space. We are able
to stabilize the embeddings through mBART pre-
training1 and the addition of monolingual corpora,
with gains of up to 5.5 BLEU in the super-low set-
ting. It can be supplemented, however, with our di-

1In contrast to Lee et al. We hypothesize that the multi-
parallel setting may be responsible, but it is beyond the scope
of this paper.
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vergence penalty, which further coerces the embed-
dings to adopt interlingual representations. Both vi-
sual inspection of t-SNE plots (Hinton and Roweis,
2002) and quantitative examination of learned rep-
resentations show that the divergence penalty en-
courages the encoder and decoder representations
to cluster according to semantics of the source sen-
tence, regardless of source language.

This is not the first work to explore approaches
to strengthening the embedding space of a mul-
tilingual translation model. Mullov et al. (2021)
use cross-lingual word embeddings. Others have
used explicit neural interlinguas (Zhu et al., 2020),
and multiple encoders with tied attention (Vázquez
et al., 2019). More closely related to our work,
Yang et al. (2021) apply an agreement objective
which encourages similar representations for ar-
tificially code-switched sentence variants and the
original sentences. Pan et al. (2021) use contrastive
learning to encourage shared representations for
semantically similar sentences which resembles
our divergence penalty. Finally, Arivazhagan et al.
(2019) introduce an auxiliary loss which enforces
multilingual similarity to improve zero-shot trans-
lation results. All of the aforementioned works,
however, investigate translation in a substantially
higher-resourced setting and none of them investi-
gate multi-parallel translation.

A second class of related research falls into
the broad category of data augmentation for low-
resource translation. Sennrich and Zhang (2019)
demonstrate that neural translation can learn in
low-resource settings without significant modifica-
tions, but that these systems can be very sensitive
to hyper-parameter tuning. Currey et al. (2017)
demonstrate that the expedient method of copying
source data to the target can improve low-resource
translation quality, while Madaan and Sadat (2020)
further leverage back-translations to boost the sig-
nal of low-resource translations. Likewise, Rubino
et al. (2020) extol the virtues of monolingual data
and back-translations in low-resource settings.

2 Methods

In a multi-parallel translation setting, each sentence
in the training data has been translated into several
languages. A standard multilingual transformer
model learns from sentences in isolation, and does
not leverage co-dependencies between source sen-
tences in a multi-parallel scenario. We introduce
the divergence penalty as an auxiliary loss which

penalizes models which do not learn similar en-
coder and decoder representations for parallel sen-
tences. Within each training batch, we identify
sentences that are parallel with each other (via their
targets), and compute a pairwise cosine compari-
son of their representation vectors at each position
in the sentence. In a true interlingua, these repre-
sentations would be identical.

The transformer modifies the embedding space
at several points, and we compare three variants
that utilize a snapshot of the embeddings at a spe-
cific point. First, we calculate the cosine distance
after context-attention has been applied to the final
layer of the encoder (EP). Secondly, we calculate
the distance on the output distributions (DP). Fi-
nally, we sum the two together (BOTH). Given
a sequence r = r1, ..., rn of encoder, decoder or
joint encoder and decoder representations, the di-
vergence penalty takes the form:

LDIV (r) =

∑n
i=1

∑n
j=1(1− r>i rj)

n2

We then weight this distance (via a tunable hyper-
parameter αDIV ∈ [0, 1]), and add it to the batch
loss. Batches with parallel sources propagate
higher loss if the model has learned divergent rep-
resentations. Batches that have no multi-parallel
sentences see no modification. During training, all
parallel translations of the same target sentence are
added into the same batch.

Training is performed using the Fairseq (Ott
et al., 2019) implementation of transformers, with
3 layers and 4 attentional heads. Embedding dimen-
sions are set at 512, while the feed-forward size
is 1024. The model optimizes a label-smoothed
cross entropy using Adam(0.9, 0.98), and an in-
verse square-root learning rate schedule (5e-4 - 1e-
9). The model is run for 50 epochs, with the best
model chosen via validation loss. These settings
closely follow Nicolai et al. (2021). αDIV is tuned
for each model, with values in [0, 0.3] typically
leading to the best results.

3 Data and Architectures

Our experiments are conducted on Bible data (Nico-
lai et al., 2021) for three Indigenous language fam-
ilies of North America: Algic, Athabaskan, and
Inuit-Aleut. The target language in most of our ex-
periments is English although we also train many-
to-many translation systems. Family data sets are
constructed by concatenating individual language
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Family Language Train Test

Algic

Algonquin 7133 -
Arapaho 1024 -
Cree 30269 394
Mikmaq 7133 394
Ojibwa 9795 -
Potawatomi 1870 -
Siksika 965 -

Algic

Apache 7131 -
Carrier 8667 -
Dane-zaa 616 -
Gwich’in 7132 -
Navajo 30276 394
Tlicho 8667 394
Tsilhqot’in 602 -

Inuit-Aleut

Inuinnaqtun 4289 -
Inuktitut 30275 394
Inupiatum 7132 394
Yupik 30276 394

Germanic

Afrikaans 30249 394
Bokmål 6719 365
Danish 30276 394
Dutch 30216 394
German 30107 394
Icelandic 7000 390
Low German 7116 394
Nynorsk 6719 365
Swedish 29870 394
Swiss German 7120 393

Table 1: The number of Bible verses used for training
and testing for different languages. The New Testa-
ment consists of approximately 7130 verses, while a
full translation is approximately 30275 verses. Num-
bers are approximate due to verse-splitting techniques.

Bibles, and prepending a language tag. We addi-
tionally perform experiments on Germanic Bibles
(McCarthy et al., 2020).

Some languages have a full Bible translation
available, while most only have a subset. See Ta-
ble 1 for details. Evaluation is performed on lan-
guages with full Bible translations, as well as one
ultra low-resource language for each family: Inu-
piatum (Inuit-Aleut), Mikmaq (Algic), and Tlicho
(Athabaskan). For the sake of this paper, we con-
sider “low-resource” to represent languages that
have complete Bible translations of 30,000 sen-
tences. “Ultra low-resource” languages are those
that have only 7,000 sentences in the New Testa-
ment.

For development and testing, we sample each
book of the New Testament at a rate of 1% for test,

and a further 1% for development. All datasets
are segmented using a joint source-target Byte Pair
Encoding with a vocabulary size of 16,000. Explo-
rations varying the vocabulary size suggested that
this was a reasonable, stable choice for these data
sets.2

Models are learned using a modified version of
the Fairseq (Ott et al., 2019) implementation of
transformers. Each model is trained with 3 layers
and 4 attentional heads, with an embedding size
of 512, and a feed-forward size of 1024. Models
are optimized using Adam(0.9, 0.98), and an in-
verse square root learning schedule starting at 1e-7.
Models are trained for a maximum of 50 epochs,
with a batch size of 2000 tokens. Dropout is 50%,
while attentional dropout is 30%.

4 Experiments

In our experiments, we investigate the performance
of different multi-parallel configurations on our In-
digenous and Germanic data. We start by training
baseline bilingual X-to-English (2L) and multilin-
gual F-to-English systems (M2E), where X is an
Indigenous or Germanic language and F is one of
the Indigenous language families or the Germanic
family. We also continue training on mBART (Liu
et al., 2020) for a maximum of 50 epochs.3

Indigenous languages Table 2 shows that apart
from Mikmaq, Indigenous M2E translators see a
sharp decrease in performance from their bilingual
analogues–even for ultra low-resource languages.
The average BLEU score drops from 10.5 points
for bilingual translations models to 6.1 for multilin-
gual models. For Indigenous languages, mBART
shows the importance of the language model in
multilingual translation. A strong target language
model, even in another domain, is enough to learn
a model that improves notably over the bilingual
one.

Turning to the second sub-table (Raw) in Table 2,
we observe that instituting a divergence penalty on
the encoder (EP) restores almost all of the quality of
the higher-resource languages, and improves ultra
low-resource translation performance by 1 BLEU.
The decoder penalty (DP) results in a slight 0.2

2Our code and datasets are available at anonymized/
for/review.

3Since mBART does not contain any of our Indigenous lan-
guages, we tokenize them with the English tokenizer, and use
a language identifier to guide the source-to-English translation.
Inuktitut is written in its own script, which likely explains its
underperformance.

anonymized/for/review
anonymized/for/review
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Baselines Raw +E2E
Lang 2L M2E M2M mBART EP DP BOTH M2E +EP +DP +BOTH
Cree 17.7 13.7 3.4 19.4 13.7 13.7 13.8 16.1 16.1 17.1 16.3
Navajo 12.1 4.1 2.7 12.0 10.0 4.6 10.8 12.6 12.6 12.9 12.6
Yupik 12.7 4.1 2.4 16.8 13.6 4.1 13.7 14.8 14.3 14.3 14.7
Inuktitut 13.0 3.7 2.6 1.6 14.0 3.7 13.3 14.7 14.7 15.0 14.9
Average Full 13.9 6.4 2.8 12.5 12.8 6.5 12.9 14.6 14.4 14.8 14.6
Mikmaq 4.2 9.8 3.0 7.9 8.4 9.8 8.4 9.8 9.8 9.6 10.4
Tlicho 7.6 3.7 2.5 9.4 9.1 4.2 9.8 11.3 11.3 12.1 11.3
Inupiatum 5.9 3.5 2.3 14.4 11.5 4.1 11.8 12.4 12.2 13.0 12.3
Average NT 5.9 5.7 2.6 10.6 9.7 6.0 10.0 11.2 11.1 11.6 11.3
Average All 10.5 6.1 2.7 11.6 11.5 6.3 11.7 13.1 13.0 13.4 13.2

Table 2: Translation results. The baselines compare other data augmentation strategies - 2L is a bilingual model;
M2E is plain many-to-English translation; M2M is many-to-many translation, and mBART is the 25 language
mBART model. The Raw columns apply the divergence penalties to the encoder (EP), decoder (DP) and a combi-
nation of both (BOTH) of the baseline M2E model. +E2E adds in a source-target copy of the English Bible.

BLEU improvement over the initial multilingual
model. This makes sense, as the decoder requires
a strong encoder representation to learn success-
ful translations. Combining encoder and decoder
penalties (BOTH) gives a 5.6 BLEU improvement
over the M2E model and a 1.2 BLEU improve-
ment over bilingual models. The improvement
over bilingual models for ultra low-resource lan-
guages is substantial at 4.1 BLEU. Furthermore,
for two of our ultra low-resource languages, BOTH
also outperforms mBART, suggesting that while
a strong target language model is important, fo-
cused embedding space modification can also lead
to improvements.

Rather than augment the mBART architecture
with our penalty, we instead mimic the language
model through the addition of monolingual English-
to-English (E2E) examples: from each English tar-
get sentence in our training data, we generate a new
translation example with identical source and target
sentence, and append the example to our multilin-
gual training set.4 When applying the divergence
penalty, English is treated as an additional source
language in the training set.

Adding monolingual data mimics mBART, push-
ing both low and higher-resource languages beyond
the divergence penalty alone. Adding the encoder
penalty on top of E2E does not improve results.
However, the decoder penalty leads to a further
average improvement of 0.3 BLEU, while the com-
bination BOTH fares slightly worse. We hypothe-
size that monolingual data and the encoder penalty
behave similarly, anchoring multilingual represen-

4We also experimented with back-translation, but the qual-
ity of the back-translated training data were very poor, and
hurt model quality, overall. We hypothesize that this is a result
of the small size of our training sets, which do not allow us to
learn a back-translation model of sufficient quality.

Lang. 2L M2E +EP +DP +BOTH
Afrikaans 27.4 25.7 25.7 25.9 25.7
Danish 26.5 26.5 26.5 25.9 26.5
German 25.5 25.9 25.9 25.8 25.9
Dutch 26.4 25.9 25.9 26.2 25.9
Swedish 23.7 23.9 23.9 24.7 23.9
Ave. Full 25.9 25.6 25.6 25.7 25.6
Swiss German 12.5 21.4 21.4 21.3 21.4
Low German 12.0 19.2 19.2 19.7 19.2
Nynorsk 12.6 22.3 22.3 22.9 22.3
Bokmål 12.2 22.4 22.4 23.2 22.4
Icelandic 11.3 18.9 18.9 19.2 18.9
Ave. NT 12.1 20.8 20.8 21.3 20.8
Ave. All 19.0 23.2 23.2 23.5 23.2

Table 3: Germanic results.

tations in encoder space and allowing translations
to cluster around the English representations. We
explore this further in Section 5.

Germanic languages For our Germanic lan-
guage experiments, all models are trained with
E2E data because this strategy was found to be
universally beneficial for Indigenous languages.
In contrast to Indigenous languages, none of the
Germanic languages see a drop in performance
from bilingual to multilingual translation models
as demonstrated in Table 3. Multilingual models
substantially improve performance for the ultra
low-resource Germanic languages where average
performance improves by 8.7 points BLEU. For
Germanic languages, EP does not result in improve-
ments but DP improves performance for ultra low-
resource languages by an average 0.5 points BLEU.
A combination of EP and DP does not provide fur-
ther gains in BLEU.

5 Analysis

To understand how the encoder and decoder penal-
ties affect multi-parallel translation models, we use
t-SNE to plot the encoder representations of source
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Encoder PenaltyBaseline M2E NAV: júdah bikéyahgi béthlehem nílíinii, 
júdahgi naat'áanii danilíinii bitahdóó doo 
akéédę́ę́' ánít'ée da, [...]

TLI: ‘judea nèk'e, kòt̨a bethlehem gòyeh 
sìı ekǫ kòt̨a gòlaa hazǫò ̨nahk'e 
wet'àaɂà hǫt'e. [...]

ENG: » bethlehem in the land of judah , 
you are not the least of the leading cities 
of judah . [...]

Figure 1: Example t-SNE plots of multilingual encoder representations for baseline M2E models and models with
encoder penalty. The square plot represents encoder representations for 4 different sentences - each point represents
a single encoder representation, and each sentence is represented by a different color. When we zoom in on the red
cluster (representing the sentence shown on the right), we show Navajo representations in light blue and Tlicho in
green.

sentences for our baseline multilingual Athabaskan
model and a model trained with the encoder penalty
in Figure 2.5 Sentences are color-coded. For ex-
ample, red dots include representations for one
Tlicho and one Navajo source sentence with iden-
tical English translations. When we Zoom into
the red cluster, showing Navajo representations in
light blue and Tlicho in green, we can see that rep-
resentations for the baseline multilingual system
(Baseline M2E) form very tight clusters. However,
in many cases, these cluster according to source
language. This indicates that the model has failed
to learn truly multilingual representations, which
would instead cluster according to semantics of the
source sentence, rather than source language.

When we add in the encoder penalty (Encoder
Penalty), we see a significant correction. Tlicho
and Navajo representations for equivalent source
sentences now intermingle in a joint red cluster.
Models supplemented by monolingual data also
seem to cluster representations by meaning (in-
cluded in Appendix A), demonstrating a similar
tendency which supports our conclusion that both
monolingual data augmentation and the encoder
penalty strengthen learning of shared multilingual
representations. The decoder penalty does not seem
to have a similar effect (see appendix A).

The visual interpretation of t-SNE plots is con-
firmed via mathematical analysis. We calculate the
centroid of each cluster (formed by representations
for a particular source language and sentence ID),
and determine the average cosine distance between
centroids for clusters having the same sentence ID
across languages. Formally, let R(i, l) be the set
of representations for language l and sentence ID

5We first use PCA to project into R10, and then use t-SNE
to further project the results to R2. t-SNE plots ran for a
maximum of 150,000 iterations, with perplexity of 30.

i, and let µ(i, l) be the centroid of R(i, l). We then
compute: d =

∑n
i=0 dist(µ(i, l1), µ(i, l2))/n,

where dist is cosine distance and n is our num-
ber of sentences. We compute these numbers over
the entire test set for language l1 and l2. Comparing
Navajo and Tlicho for the Athabaskan languages
family, the baseline M2E model has an average dis-
tance of 0.1950, while the EP decreases the value
dramatically, to 0.0018.

6 Conclusion

Multi-parallel translation has the ability to leverage
cross-lingual information to supplement a weak
low-resource translation signal, but not all lan-
guages can benefit. We have introduced a diver-
gence penalty that forces multi-parallel models to
learn shared embedding spaces that improve the
quality of the translation. On its own, the penalty
improves the quality of ultra low-resource Indige-
nous translation by 4.1 BLEU over a bilingual
model, and by more than 4.3 BLEU over a deficient
multilingual alternative. Furthermore, monolingual
data provides a strong target for multilingual em-
beddings, but is complemented by our penalty for
a further increase of 0.4 BLEU. This trend contin-
ues even when the the number of large translation
corpora is increased.
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A Encoder Space Plots

Decoder Penalty E2E

NAV: júdah bikéyahgi béthlehem nílíinii, 
júdahgi naat'áanii danilíinii bitahdóó doo 
akéédę́ę́' ánít'ée da, [...]

TLI: ‘judea nèk'e, kòt̨a bethlehem gòyeh 
sìı ekǫ kòt̨a gòlaa hazǫò ̨nahk'e 
wet'àaɂà hǫt'e. [...]

ENG: » bethlehem in the land of judah , 
you are not the least of the leading cities 
of judah . [...]

Figure 2: Example t-SNE plots of multilingual encoder representations for M2E models with decoder penalty (on
the left) and augmented with English monolingual data (on the right). Each color in the original plot encodes
representations for parallel source sentences both in Tlicho and Navajo. When we zoom in on the red cluster, we
show Navajo representations in light blue and Tlicho in green. We can see that the decoder penalty does not help
the model to learn shared encoder representations. Instead the representations of the Tlicho and Navajo sentences
form distinct clusters. When we instead apply mononlingual data augmentation, the representations for the Tlicho
and Navajo sentences cluster by meaning and we get shared multilingual representations. For a reason unknown
to us, function words, punctuation and language tags form a tight cluster in the lower right corner of the plot when
using monolingual data augmentation.
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