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Abstract
Recent breakthroughs in NLP research, such as
the advent of Transformer models have indis-
putably contributed to major advancements in
several tasks. However, few works research ro-
bustness and explainability issues of their eval-
uation strategies. In this work, we examine
the behavior of high-performing pre-trained
language models, focusing on the task of se-
mantic similarity for visual vocabularies. First,
we address the need for explainable evaluation
metrics, necessary for understanding the con-
ceptual quality of retrieved instances. Our pro-
posed metrics provide valuable insights in local
and global level, showcasing the inabilities of
widely used approaches. Secondly, adversarial
interventions on salient query semantics expose
vulnerabilities of opaque metrics and highlight
patterns in learned linguistic representations.

1 Introduction

Semantic similarity between pairs of sentences
serves a large variety of applications in the field of
natural language processing, such as document re-
trieval, text classification, question answering and
others. Even though such tasks have risen in pop-
ularity since the introduction of the Transformers
(Vaswani et al., 2017), and despite the attention
given on robustness and transparency of NLP trans-
formers (Hendrycks et al., 2020; Hsieh et al., 2019;
Baan et al., 2019) few efforts have addressed ex-
plainable evaluation (Leiter et al., 2022).

Text-Image retrieval is a real world semantic
similarity application where the task is to feed a
textual input to a system, and receive an image
as a response. Visual details of the retrieved in-
stance need to accurately correspond to the textual
descriptions, often in a fine-grained fashion. Any
mismatch between modalities can be easily per-
ceived by humans, and captured by automated met-
rics. Such evident disagreements can act as starting
points for further investigation, revealing inner pro-
cesses on the semantic matching procedures.

In this work, we aim to unveil the evaluation
strategy of semantic similarity models. Specifi-
cally, we apply pre-trained transformers on visual
vocabularies and obtain results via ranking. First,
we address the shortcomings of traditional ranking
metrics (Manning et al., 2008), which provide ei-
ther a binary answer (item found in top-k items or
not), or position-informed variants (item found in
the k-th position). However, such measures cannot
provide detailed insights regarding the contribu-
tion of the scene constituents to the rank position.
For example, if an instance is ranked in the k-th
position, items in previous k-1 positions may be
highly relevant to the ground truth one or on the
contrary, highly irrelevant. To this end, we propose
novel explainable ranking evaluation metrics that
decompose and quantify the conceptual differences
between ground truth and retrieved instances in lo-
cal and global level. Even then, we observe that
existing metrics lack a way to assess whether the
top-ranked items are actually relevant to the query.
For this reason, we construct adversarial queries
where an attribute is replaced with a conceptually
divergent one, in order to evaluate the response of
a ranking system to distorted inputs. In all cases,
frequently misperceived semantics captured by our
evaluation framework reveal patterns imprinted in
the learned representations of language models.
Our overall approach is applicable regardless of
the chosen language model or ranking system.

2 Related work

A whole new world of possibilities in NLP
has opened since the advent of the Transformer
(Vaswani et al., 2017), with successful milestones
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) serving as backbone models for
many applications. MPNet (Song et al., 2020) com-
bines permuted language modeling with masked
language modeling to overcome the shortcom-
ings of its predecessors. Towards reducing model

mailto:marialymp@islab.ntua.gr
mailto:eddiedervakos@islab.ntua.gr
mailto:gmanoliad@mail.ntua.gr
menorf@ails.ece.ntua.gr
gstam@cs.ntua.gr


3640

sizes, knowledge distillation followed in Distil-
BERT/DistilRoBERTa (Sanh et al., 2020), MiniLM
(Wang et al., 2020) and TinyBERT (Jiao et al.,
2020), as well as parameter reduction techniques
implemented in ALBERT (Lan et al., 2020) achieve
more compact models while maintaining perfor-
mance. The textual semantic similarity task was
greatly benefited by Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019), a siamese-BERT
variant that allows efficient embedding representa-
tions using the aforementioned models accordingly.

Traditional evaluation metrics such as HITS,
Mean Reciprocal Rank (MRR), precision, recall
and F-score (Manning et al., 2008) have dominated
the field of information retrieval. While these met-
rics serve the purpose of assessing the retrieved in-
formation, they do not provide explainable means
of justification. Explainable evaluation metrics
(Leiter et al., 2022) aim to address this challenge.

Lack of trust of neural methods due to biases,
outdated training, and inaccurate assumptions has
led to the need for explainable methods in language
models. Research towards that direction has uti-
lized Concept Attributions (Sai et al., 2021; Yuan
et al., 2021), Chunk Alignments (Magnolini et al.,
2016), Feature Importance (Rubino et al., 2021;
Treviso et al., 2021), or Explanations by Simplifica-
tion (Kaster et al., 2021). Adversarial examples can
also provide insights regarding the inner workings
of obscure models, and are closely related to coun-
terfactual explanations, placing them in the broader
area of explainability (Linardatos et al., 2020). Nu-
merous works address the problem of adversar-
ial examples for natural language models (Zhang
et al., 2020b), with recent methods addressing the
robustness of NLP models such as BERT through
adversarial examples/attacks (Jin et al., 2019; Li
et al., 2020). In this work, we approach adversar-
ial examples from a different perspective, first of
all tackling a different problem than classification
that most works do, and secondly by realizing the
creation of adversarial examples on the semantic
rather than the linguistic level, investigating the
effect of semantic changes on the ranking of text-
image retrieval systems.

3 Overview

Our workflow consists of three stages: Represen-
tation, ranking and explainable evaluation. We
view text-image retrieval as a query-corpus re-
trieval problem, exclusively exploiting linguistic

information for representation and ranking, while
revealing visual information only at the evaluation
stage, where we compare retrieved images with
the ground truth ones. As input, we consider a
dataset of size N that contains complex scene im-
ages Ii ∈ I, accompanied by query-corpus pairs
(qi, ci), qi ∈ Q, ci ∈ C, i = 1, 2, ..., N with each
corpus ci consisting of an arbitrary number of sen-
tences sj , j = 1, 2, ..., lc. In the representation
stage, pre-trained sentence similarity transformers
M ∈ M from SBERT embed Q, C instances in a
common vector space U . Cosine similarity scores
between query-corpus embedding pairs in U are
sorted to provide a rank Ri per query qi in the
ranking stage, with Ri either lead to success, if the
ground truth image Igi with corpus ci is returned
at the top of the rank, or failure otherwise. We
provide a visual demonstration of the ranking pro-
cedure in Figure 2. All failures per model M , i.e.
image pairs (Ig, Ir) for which Ig ̸= Ir are stored in
a set F , which is further passed to the evaluation
stage. We then employ three methods to provide
an understanding and evaluation towards failures:
transparent ranking metrics (section 4), human eval-
uation and adversarial re-ranking (section 5). The
overview of our proposal is presented in Figure 1.

3.1 Visual concepts in language
Visual vocabularies contain descriptions about real
life scenes, including objects, relationships and
attributes. Datasets that connect visual vocabular-
ies paired with images, such as Visual Genome
(Krishna et al., 2016), COCO (Lin et al., 2014)
and Flickr (Young et al., 2014) set our sources
to construct purely textual query-corpus pairs, as-
suming that necessary visual information is con-
tained within the high quality annotations of those
datasets. In particular, the annotation diversity al-
lows either shorter, global descriptions, as in Flickr
and COCO captions, or detailed descriptions in lo-
cal level, as in Visual Genome region descriptions,
concatenated in a corpus ci per image Ii.

3.2 Optimal embedding representation
Obtaining an overall representation of a corpus ci
is not trivial, as existing transformers can handle
up to a certain number of input tokens per sentence.
To resolve this, we can independently embed each
corpus sentence sj ∈ ci, j = 1, 2, ..., lc using a
model M ∈ M, and then calculate the average of
all vectors vcj . Therefore, uci = 1

lc

∑lc
j=1 v

c
j ∈ U

serves as the averaged representation for ci. An-
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Figure 1: Overview of our workflow towards explainable evaluation.

Figure 2: A closer look at ranking procedure. Green
lines denote ground truth matchings, while red lines
indicate matchings selected from maximum cosine sim-
ilarity scores between query and corpus embeddings.

other approach is to leverage state-of-the-art ab-
stractive summarizers (Zhang et al., 2020a; Raffel
et al., 2020) to obtain a meaningful shorter ver-
sion of ci while maintaining semantics as much as
possible, and then apply M ∈ M only once per
ci. Query representations uci ∈ U are produced by
inserting each qi ∈ Q in a model M ∈ M, or by
averaging over representations when qi comprises
from more than one sentences.

3.3 Ranking

Given a model M , each query representation
uqi ∈ U is paired with all corpus representations
{uc1, uc2, ..., ucN} ∈ U , and cosine similarity scores
are calculated for each pair. Higher cosine sim-
ilarity scores yield more similar representations,
therefore sorting from higher to lower scores pro-
vides the ranking Ri per qi. The process is repeated
for all N images resulting in N2 calculations.

Traditional metrics evaluate the ranking success,
coarsely indicating the representation quality of
each M ∈ M. Recall@k returns the proportion
of ground truth images found in top-k ranked in-
stances for all queries q1, q2, ...qN , given that each
qi has only one ground truth ci. Mean Recipro-
cal Rank (MRR) is the averaged of the inverse of
the ground truth rank position ranki for each ci
given qi, considering the top-k items: MRR@k =
1
N

∑N
i=1

1
ranki

for each ranki ≥ k. We calculate

Recall@k and MRR@k for k=5, 10, N . Also, we
calculate the median rank position for all ci.

4 Explaining failures

We count as failure fi = (Ig, Ir)i ∈ F any instance
of a ground truth image Igi with corpus ci that
was not ranked in the first position (ranki ̸= 1)
given qi; instead another image Iri ̸= Igi with
cr ̸= ci achieved rankr = 1. Following the ’blind’
evaluation strategy of traditional ranking metrics,
we provide a measure of retrieval failures as the
cardinality of the failure set: F = |F| for each M .

However, it is not possible to verify if Iri can
accurately satisfy qi without exploiting visual infor-
mation. To this end, we exploit visual annotations
and human perception to quantify the suitability
of each Iri ∈ fi with respect to qi. By decompos-
ing all semantics that contribute to the suitability
of each Iri we obtain a discrete and transparent
conceptual measure of similarity between (Ig, Ir)i.

4.1 Towards explainable evaluation metrics

We design four evaluation stages for all failures fi,
starting from more influential concepts and mov-
ing towards less prevalent details. Visual concepts
are focused on scene objects. For fair comparison
with traditional ranking metrics, we demonstrate a
query-agnostic evaluation approach: we compare
concepts between retrieved and ground truth im-
ages without considering query semantics. In the
next paragraphs we drop i subscript for simplicity.

Concept agreement - CA Considering V as a
set of visual concepts, concept agreement mea-
sures the percentage of ground truth concepts V(Ig)
contained in the retrieved concept set V(Ir) over
all V(Ig) concepts for each fi. Let V(g,r) =
V(Ig) ∩ V(Ir) the set of common concepts:

CAf =
|V(g,r)|
|V(Ig)| , f = (Ig, Ir)
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Higher CA indicates higher concept similarity.
For example, if V(Ir) = {Dog,Frisbee,Park}
and V(Ig) = {Dog,Ball,Park}, then the CA=2

3 .
On the other hand, if V ′(Ir) = {Cat,Fish}, then
CA=0, as no overlap exists. This way we can con-
fidently conclude that the first retrieved image is
conceptually closer to the ground truth than the sec-
ond, and by extension the model used to retrieve
the first image is better with respect to CA.

Non-common concept similarity - NCS aims
to provide a distance measure between con-
cepts present exclusively in either V(Ig) or
V(Ir). For example, we would expect the
set {Dog,Frisbee,Park} to be more similar to
{Dog,Ball,Park} than {Dog,Cat,Park}, since
the non-common concept Frisbee is conceptually
closer to Ball than Cat. Mathematically, let Dg =
V(g,r)−V(Ir) and Dr = V(g,r)−V(Ig), with both
Dg, Dr ̸= ∅. Other than that, Dg and Dr may con-
tain different number of concepts. Then, a measure
of concept distance can be provided by calculating
the path similarity score ps of corresponding Word-
Net (Fellbaum, 1998) synset pairs, based on the
shortest available path between those two concepts.
Path similarity ps ranges between 0 and 1.

An optimistic NCS metric returns the maximum
possible cumulative ps averaged over the number
of pairs, by appropriately selecting concept pairs
between non-empty Dg and Dr. The maximization
of NCS requires a dynamic programming solution,
as naive strategies taking into account all possible
Dg and Dr pairs would yield a factorial amount of
combinations. To trespass this prohibitive complex-
ity, we create a bipartite graph G = (Dg, Dr, E)
from Dg and Dr: all concept nodes from the one
set are matched with all the nodes of the other via
edges ey ∈ E, y = 1, 2, ..., |Dg| × |Dr|, while
no edges are allowed within the same set. Edge
weights wey correspond to WordNet ps scores be-
tween synsets of connected nodes.

Consequently, the maximum weight bipartite
matching on G refers to pairing Dg and Dr con-
cepts so that the cumulative edge weight is max-
imized. An optimized version of the Hungarian
algorithm (Kuhn, 1955; Galil, 1986) implemented
by NetworkX1 reduces the computational complex-
ity of finding the maximum ps to O(|V |3), where
|V | = max(|Dg|, |Dr|).

Therefore, NCS can be written as:

1NetworkX max weight matching

NCSf = avg(max_weight_match(G)),
G = (V(g,r) − V(Ir), V(g,r) − V(Ig), E))

Higher NCS scores reveal more similar concepts.

Concept enumeration - CE Real world
scenes may contain repeated instances of
same-class concepts, forming concept multisets
Vm = {(V1, |V1|), (V2, |V2|), ..., (Vx, |Vx|)},
where V1,V2, ...,Vx denote concept categories,
and |V1|, |V2|, ..., |Vx| cardinalities per category.
The cardinality per concept category is called
concept multiplicity in the multiset. CE penalizes
differences in multiplicities between common
concepts of Ig and Ir for each fi:

CEf =
x∑

j=1

||Vj(Ig)| − |Vj(Ir)||Vj(Ig)=Vj(Ir)

Higher CE scores demonstrate higher enumera-
tion disagreement, deeming lower CE values more
favorable. For example, if Ig contained 10 dogs and
1 frisbee {(Dog, 10), (Frisbee, 1)}, a retrieved Ir
with 1 dog and 1 frisbee would have CE=9, while
an I ′r with 10 dogs and 1 ball would have a CE=0.
Therefore, the first image yields a worse CE score
than the second, even though the second would
have worse CA and NCS scores than the first one.

Size disagreement - SD Even in cases where
there is a high agreement of objects and multiplic-
ities between Ig and Ir, disagreement in object
sizes may correspond to semantically divergent
scenes. For example an image with a dog in the
foreground (large bounding box) is different than
an image of a dog in the background (small bound-
ing box). To capture this difference, we design an
optimistic SD metric which returns the area dif-
ferences of bounding boxes DA = |Ag − Ar| for
all available object matchings. Such matchings oc-
cur by pairing concepts of the same category u be-
tween Ig and Ir up to the point that no more unique
pairs can be constructed. This is equivalent of cre-
ating bipartite graph Gu = (Vu(Ig),Vu(Ir), E),
where Vu(Ig),Vu(Ir) belong in the same u and
edge weights wey , ey ∈ E, y = 1, 2, ..., |V(Ig)| ×
|V(Ir)| denote the area difference DA between con-
cept nodes. Pairing concepts with similar bound-
ing box areas can be considered as the optimal
choice, therefore node pairs connected by lower
edge weights wey are preferred. Finding the min-
imum weight matching provides the most similar
pairs size-wise, and can be solved in polynomial

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html
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time using the NetworkX2 implementation of Karp
algorithm (Karp, 1978). The matching process is
repeated for all concept categories in the multiset
Vm, resulting in a set of graphs Gm:

SDf =
Vu∈Vm∑

avg(min_weight_match(Gu)),

Gu = (Vu(Ig),Vu(Ir), E), Gu ∈ Gm

A simplified binary version of SD increases a
sum if area differences of paired concepts are above
a predefined threshold TD.

4.2 Human evaluation via crowdsourcing

Query-agnostic evaluation regards all scene seman-
tics, even if in fact they are not present in the query.
On the other hand, incorporating query informa-
tion at evaluation stage conditions concept impor-
tance upon the presence of a concept in the query,
forming a query-informed evaluation strategy. We
conducted query-informed human evaluation exper-
iments considering all failures in F and penalizing
semantic disagreements only if those semantics are
mentioned in qi. Evaluators were primarily asked
to mark which salient semantics were clearly mis-
interpreted in retrieved images with respect to the
given query among the options: object class, ob-
ject color, object enumeration, action, size, details.
Otherwise, if Iri can be considered as conceptually
similar to Igi , it is marked as successful alterna-
tive. Additionally, the overall retrieval quality is
cross checked via qualitative ratings, assessing the
conceptual similarity between Igi , Iri given qi. De-
spite being unfair to compare with the -stricter-
automated metrics, we expect lower values for ob-
ject enumeration and size failure classes comparing
to CE, SD metrics.

The crowdsourcing experiment reveals the most
frequently misinterpreted attributes or combina-
tions of attributes. Loss of conceptual informa-
tion can be either attributed to dataset quality, i.e.
salient query semantics not present in corpus, or on
the capacity of the linguistic representations. Key-
word matching between qi and ci excludes cases
where the ground truth query-corpus pair contains
very few common concepts, enabling the remain-
ing samples to reveal patterns within the learned
representations.

2NetworkX min weight full matching

5 Adversarial re-ranking

We create adversarial queries q → q∗ targeting key
attributes and produce respective representations
in U , upon which adversarial rankings R∗ per q∗

are extracted. Figure 3 provides the causal graph
of adversarial interventions for any qi ∈ Q.

5.1 Substituting salient attributes

We perturb salient semantics in queries qi ∈ Q,
producing q∗i ∈ Q∗, and evaluate the changes oc-
curring in the rank. An appropriate non-minimal
adversarial perturbation must conceptually reverse
salient semantics, be focused on an individual se-
mantic each time, and the resulting query q∗i should
be linguistically correct. With respect to those
requirements and in order to restrict the search
space of adversarials, we target substituting ob-
ject attributes. Initially, generic adversarial queries
include replacing attributes with their antonyms.
More refined subsequent adversarials focus on re-
placing object colors and sizes; such substitutions
are discrete, fast and controllable.

Antonyms are extracted via relevant WordNet
functions for any adjective present in a query. If
more than one antonyms are returned, one is ran-
domly picked to substitute the actual word.

Color substitution refers to changing colors
present in the sentence with another distant color.
Color distance is provided via the RGB values of
Matplotlib colors3. We set a proximity threshold to
ensure perceptually non-negligible color changes.
Two possible substitutions are attempted: either
considering all RGB colors (color-all), or colors
only mentioned in the dataset (color-in).

Size substitution is an antonym substitution spe-
cialized in sizes. Words such as large, big, enor-
mous, huge are substituted with a random choice
among small, little, minor, tiny and vice versa.

5.2 Re-ranking evaluation

Adversarial query representations uq∗i ∈ U of
q∗ ̸= q with uci ∈ U of corpus ci may directly
influence the final ranking R∗ when rank∗i < ranki
or inversely rank∗i >ranki. Intuitively, any non-
negligible perturbation of q should result in worse
position rank∗i >ranki, as the adversarial query rep-
resentation uq∗i would diverge from ci comparing

3Matplotlib colors

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.matching.minimum_weight_full_matching.html
https://matplotlib.org/3.3.3/gallery/color/named_colors.html
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to uqi , due to the substitution of the actual seman-
tic with a conceptually different one. However,
given the relative nature of ranking, some instances
may stay in the same position rank∗i =ranki, or even
go higher. Ascending in the rank does not imply a
better q∗i , ci matching, except if their in between co-
sine similarity increases; instead, the distorted rep-
resentations push lower previously higher-ranked
instances, virtually improving some rank∗i . In any
case, we expect all ranking metrics to perceptibly
drop, as we pull apart ground truth matchings in U .

Figure 3: Conventional causal graph (left) and adversar-
ial intervention causal graph (right) when q → q∗.

6 Experiments

We implement the same experimental strategy on
Flickr8k, Flickr30k and VG∩COCO datasets, ob-
taining query-corpus representations in a common
semantic space U for a variety of models M ∈ M.
The code for our experiments is provided in sub-
mitted supplementary material.

6.1 Ranking results

We focus on presenting experiments on
VG∩COCO of N=34k images, which is
the most challenging: the dataset size N itself, as
well as the more detailed region descriptions of Vi-
sual Genome which comprise a larger corpus set C,
require accurate linguistic representations in order
to retrieve more relevant images. Table 1 presents
a subset of ranking results on VG∩COCO.

6.2 Optimal model choice

Selected language models are designed for seman-
tic similarity, and according to the datasets they
have been pre-trained on, they can be divided
in: all- models pretrained and fine-tuned on 1B
sentence pairs from multiple sources; multi-qa-
trained on 215M diverse question-answer pairs,
learning to map queries to passages; stsb- mod-
els trained on the STSbenchmark, which contains
sentence pairs annotated with similarity scores;
paraphrase- models with more than 86M para-
phrase sentence pairs containing more challenging
and uncurated characteristics comparing to STSb;

nq- models trained with 100k real Google search
queries mapped to Wikipedia passages; nli- models
incorporate natural language inference data pairs
(premise/hypothesis), included in AllNLI dataset.

By conducting a large number of experiments to
estimate the performance of such models on visual
vocabularies, we observe certain patterns in ranking
results. In all experiments, most paraphrase mod-
els consistently outperform the rest. Paraphrasers
have been pre-trained on image captions (COCO,
Flickr), which actually serve as paraphrasing data:
during the construction of these datasets, annota-
tors have independently produced varying descrip-
tions for the same concepts. Query-corpus pairs
can be viewed as the one being a paraphrase of the
other, thus paraphrasers have learned a suitable rep-
resentation for this matching, together with their
exposure to visual vocabularies.

6.3 Explainable evaluation
In all following experiments, we consider results
from the best performing model MiniLM-L3 on
VG∩COCO. In total, F=28817 queries failed to
retrieve their corresponding ground truth Ig.

Local evaluation The real power of our proposed
metrics lies in local level. We present an example
from the color and details failure category below.
Given a query qi (caption), Figure 4 shows the
ground truth Igi (left) and the retrieved Iri (right).

Figure 4: A herd of zebras grazing in a lush green field

The set of ground truth object synsets
is {trunk.n.01, hill.n.01, tree.n.01, sky.n.01,
field.n.01, branch.n.01, head.n.01, leg.n.01,
leaf.n.01, zebra.n.01, mane.n.01} of cardinality
11, and the set of retrieved ones is {grassland.n.01,
field.n.01, zebra.n.01, mane.n.01, grass.n.01} of
cardinality 5. Common synsets are {zebra.n.01,
mane.n.01, field.n.01} of cardinality=3, result-
ing in CAi=27.28%. Regarding NCS, the con-
structed bipartite graph G contains |V |=10, |E|=16,
and the best matched synset pairs according
to the maximum weight matching are {hill.n.01,
grassland.n.01} with ps=0.111, and {tree.n.01,
grass.n.01} with ps=0.167. The average ps for all
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 13.31 26.93 34.31 18.18 19.16 20.45 34 86.69
paraphrase MiniLM L12 14.24 29.89 38.34 19.89 21.02 22.37 24 85.76
paraphrase MiniLM L3 15.31 30.92 39.48 20.97 22.11 23.42 23 84.69
paraphrase MiniLM L6 14.39 30.01 38.51 19.96 21.10 22.46 24 85.61
paraphrase TinyBERT L6 14.55 30.38 39.12 20.27 21.43 22.82 22 85.45
paraphrase albert base 13.12 27.83 36.11 18.43 19.54 20.91 28 86.88
paraphrase albert small 14.56 30.25 39.04 20.23 21.40 22.75 23 85.44
paraphrase distilroberta 14.51 30.39 38.91 20.23 21.36 22.74 22 85.49
paraphrase mpnet 13.99 28.99 37.40 19.39 20.50 21.84 26 86.01
stsb distilroberta base 13.41 27.04 34.28 18.32 19.28 20.55 35 86.59
stsb mpnet base 14.05 28.26 35.93 19.23 20.24 21.49 32 85.95
stsb roberta base 13.69 27.38 34.79 18.67 19.65 20.92 34 86.31

Table 1: Rank results on the VG∩COCO dataset for our best 12 models. Full Table (11) in Appendix.

matched pairs leads to NCSi=0.139. Common ob-
ject enumeration provides the following multisets:
Vg
m = {zebra.n.01, 5, field.n.01, 1, mane.n.01, 1}

and Vr
m ={zebra.n.01, 7, field.n.01, 1, mane.n.01,

5}. Therefore, CEi= 6. As for SD for TD=1,
3 bipartite graphs are created for the 3 common
synsets. The first graph Gmane contains |V |=6 and
|E|=5, resulting in 1 minimum weight matching of
weight DA=2.30≥ TD. Therefore SDmane=1=SDi.
The second graph Gzebra consists of |V |=11 and
|E|=28, resulting in 4 minimum weight matchings,
from which none trespassed the threshold TD, re-
sulting in SDzebra=0, thus maintaining SDi=1. Fi-
nally, the Gfield graph of |V |=2 and |E|=1, leads to
1 minimum weight matching of weight DA=1.369≥
TD, resulting in SDfield=1, which increases the to-
tal sum SDi=2. Having in total 6 matches for all
three graphs, the averaged SDi=33.3% for this fi.

Perceptually, a major Igi , Iri disagreement can
be attributed to not satisfying lush, green attributes
rather than semantics addressed by our metrics. In-
deed, human evaluators rated Iri-qi relevance with
6/10 on average and all of them marked details and
color as the failure categories. As for traditional
ranking metrics, Igi was placed in rankgi=294
with reciprocal rank score of 0.0034 and R@k=0,
k=1,5,10. Obviously, we cannot extract much in-
formation in local level about how much Igi and
Iri conceptually deviate and what we should poten-
tially regard and request from retrieved instances
(colors such as green instead of yellow, details
such as lush instead of arid) to ascend in the rank.
To this end, we conclude that traditional ranking
metrics are only helpful in a very abstract level.

Human evaluation Results regarding misper-
ceived semantics classes are presented in Table
2. The 82.52% of evaluated image pairs resulted in
one semantic class disagreement, while the remain-
ing 14.56% and 2.91% contained two and three
semantic class disagreements respectively. The av-
erage rating over all classes was 8.47/10.

First, human evaluation experiments can indicate
the degree of strictness of our automated metrics,
as any query-agnostic metric may over-penalize
semantics present in the Igi and ci but not in qi.
Indeed, query-informed variants of our metrics are
more relaxed. Moreover, patterns in reported fail-
ures also indicate patterns imprinted in the learned
linguistic representations. Traditional ranking met-
rics cannot derive such fine-grained observations.

Altern- Obj. % Action Detail
atives % class color enum. size % %
23.30 5.83 17.48 11.65 6.14 7.77 54.37

Table 2: Semantics disagreement percentage per class

Rules in failures The frequent class of success-
ful alternatives indicates that even when automatic
metrics consider an Iri as failure, it may actually
be a conceptually correct answer to qi. Qualita-
tive analysis over successful alternatives further
demonstrated that almost all (Igi , Iri) pairs of this
class were visually divergent, even though concep-
tually equivalent. Also, details and object color
failure classes appeared often enough, indicating
that those semantics are rather bypassed in order for
others to be preserved. Combinations of semantics
did not present any significant pattern; all seman-
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tics co-occurrences appeared in less than 10% of
the evaluated instances. However, we did observe
some frequent rules, which can be translated as:
if semantic A disagrees, then semantic B will dis-
agree as well. The rule action→details (if action
appears then details will appear) is observed in
54.37% of the instances containing action; object
enumeration →object color covers 17.48% of the
instances containing color; finally, the reverse rule
object color→object enumeration was observed in
11.65% of the instances containing enumeration.

Global evaluation We present global query-
agnostic results for our metrics. Despite our met-
rics being more meaningful in local level, global
evaluation is useful for model benchmarking.

With 134630 common concepts between all
(Ig, Ir)i ∈ F , the average concept agreement (CA)
value is 22.29%, meaning that on average almost
the 1/4th of Ig concepts appear in Ir.

With 903987 non-common concepts between
all (Ig, Ir), and 134630 common ones, we re-
trieve 627833 and 110839 WordNet synsets respec-
tively. The maximum weight matching between
non-common synsets results in 184747 maximum
weight matchings, equivalent to the 29.43% of all
non-common synsets. Averaging over matchings
(WordNet path similarities) for all (Ig, Ir), pro-
vides the average non-common concept similarity
(NCS) score of 0.122.

With 41244 concept sets of same multiplicity
and 69595 of different multiplicities regarding
matched concept categories for all (Ig, Ir), most
common concept enumeration (CE)=1 and aver-
age CE=8.638 instances for concepts of the same
category reveals that in most cases there are not
major enumeration differences.

Focusing on the binary SD, we set the area differ-
ence threshold TD=100%, increasing size disagree-
ment (SD) by 1 iff DA ≥ 1 between two concept
bounding box areas. Thus, average SD=20.35%
for all (Ig, Ir), indicating that around 1/5th of com-
mon objects have non-negligible size differences.

Our metrics in global level reveal some extra ca-
pabilities. Most lower-ranked instances contained
erroneous annotations, allowing a post-hoc dataset
cleaning step that could not have been automati-
cally realized otherwise.

Global results regarding our proposed metrics
for all the models are presented in Table 3. More-
over, we offer some additional insights:

• Object hit: total number of common objects

found between ground truth - wrongly re-
trieved images (Ig, Ir) at top-1 position.

• Object miss: total number of ground truth
objects not found in top-1 retrieved images.

• Matched % synsets: Percentage of ground
truth synsets found in top-1 retrieved images
out of all ground truth synsets.

• Average % object enumeration disagreement:
percentage of objects having the wrong num-
ber of instances between ground truth and top-
1 retrieved over all ground truth objects (both
having right or wrong number of instances).

As observed, the various explainable metrics in-
dicate different models as best/worst performers,
revealing that fine-grained evaluation may disagree
with traditional coarse evaluation, while providing
some useful insights.

6.4 Adversarial re-ranking evaluation

Adjectives were substituted by their antonyms in
the 30.93% of total queries, while color and size
substitutions occurred in the 47.04% and 30.77%
of queries respectively, producing q∗i ̸= qi. Up-
dated query representations resulted in re-ranking
of instances; specifically, on average almost 70% of
instances changed position in R∗ comparing to R
as presented in Table 4. Adv.query column refers to
number of perturbed queries, while Lower, Higher,
Same columns refer to the position change.

By qualitatively assessing adversarial failures,
we observe that adversarially perturbed semantics
are rather bypassed in favor of preserving object
class. Even if this could imply representation ro-
bustness, on the other hand it can be attributed to
language model biases towards object identities. In
any case, existing ranking metrics cannot indicate
potential biases, patterns and rules in the linguistic
representations due to their opaque nature.

6.5 Non-explainable evaluation vulnerabilities

Overall, despite the re-arrangements of individual
instances, R∗ was only marginally altered in global
level for any of the adversarial perturbations ac-
cording to all query-agnostic metrics (Table 5).
Therefore, either by providing meaningful and rel-
evant queries or conceptually divergent ones, the
response of a semantic similarity system is virtually
the same. This invariance over non-minimal inter-
ventions generally questions the trustworthiness of
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Name CA NCS CE SD obj obj matched % avg% enum
↑ ↑ ↓ ↓ hit ↑ miss ↓ synsets ↑ disagr.↓

all distilroberta 21.75 0.12 9.14 20.02 136025 932261 29.43 2.40
all MiniLM L12 21.72 0.12 8.88 19.88 134188 920214 29.23 2.35
all MiniLM L6 21.90 0.12 8.91 19.53 135687 926717 29.27 2.39
all mpnet base 21.74 0.12 9.14 19.24 135278 926724 29.44 2.39

all roberta large 21.85 0.12 9.13 19.60 136720 935614 29.42 2.39
multi qa distilbert cos 21.84 0.13 9.06 16.97 140754 1007800 30.60 2.49

multi qa MiniLM L6 cos 21.93 0.13 8.69 18.86 141399 1008889 30.21 2.45
multi qa mpnet base cos 21.87 0.13 9.24 16.69 140455 1004153 30.54 2.52

nli distilroberta base 22.12 0.12 8.89 19.68 138882 943947 29.75 2.45
nq distilbert base 21.39 0.12 9.03 17.53 139608 1020776 30.27 2.38

paraphrase albert base 22.13 0.12 8.92 19.71 136867 927060 29.52 2.43
paraphrase albert small 22.40 0.12 8.89 19.48 136319 909759 29.69 2.47
paraphrase distilroberta 22.28 0.12 8.63 19.49 135679 911325 29.32 2.39
paraphrase MiniLM L12 22.28 0.12 8.69 20.05 136102 910631 29.23 2.39
paraphrase MiniLM L3 22.29 0.12 8.64 20.35 134630 903987 29.43 2.42
paraphrase MiniLM L6 22.07 0.12 8.61 19.37 134623 914535 29.46 2.37

paraphrase mpnet 22.26 0.12 8.71 19.46 136482 911716 29.08 2.39
paraphrase TinyBERT L6 22.15 0.12 8.55 19.67 134808 916573 29.17 2.36

stsb distilroberta base 22.09 0.12 8.91 19.99 136181 928388 29.81 2.45
stsb mpnet base 21.84 0.12 9.10 19.95 133670 916167 29.58 2.41
stsb roberta base 22.04 0.12 8.90 19.68 135544 925948 29.75 2.44
stsb roberta large 21.10 0.12 8.29 20.11 134706 961836 29.18 2.24

xlm distilroberta paraphrase 22.08 0.12 9.05 19.35 138934 951708 29.60 2.44

Table 3: Results from our proposed metrics plus some additional information occurring from our metrics per model

opaque ranking metrics, highlighting even more the
need for explainable evaluation. Even then, query
semantics are not taken into account, generally ex-
posing query-agnostic evaluation against adversar-
ial attacks: even if the best possible answer to a
query is returned based on similarity measures, how
can we ensure that it is good enough in terms of
actual relevance? The query-corpus relevance can
be easily and explicitly measured via their common
concepts, an approach followed in query-informed
evaluation. To this end, we conclude that explain-
able and, even better, query-informed metrics are
necessary to ensure evaluation robustness.

Adv. Adv. rank∗ %
Change query Lower Higher Same
Antonym 10523 41.30 27.73 30.97
Color-all 16007 48.29 24.04 27.68
Color-in 16007 49.73 22.35 27.92
Size 10471 37.26 28.28 34.46

Table 4: Changes for all adversarial perturbations.

Adv. Recall (%) MRR (%) Fails
Change @1 @10 @10 @all (%)
Original 15.31 39.48 22.11 23.42 84.69
Antonym 15.13 38.82 21.76 23.07 84.87
Color-all 14.52 38.16 21.15 22.48 85.48
Color-in 14.52 38.05 21.12 22.46 85.48
Size 15.19 39.32 21.97 23.29 84.81

Table 5: Rank results on adversarial queries.

7 Conclusion

In this work, we presented an evaluation framework
for text-image retrieval and experimented with pre-
trained transformer-based semantic similarity mod-
els. Our approach achieved in capturing representa-
tion patterns and evaluation shortcomings of widely
used metrics in local and global level. As future
work, we aspire to extend our automated metrics to
include attributes and spatial relationships between
concepts, and produce adversarial re-rankings us-
ing verb antonyms, singular-plural sentence trans-
formations and rare synonyms of salient concepts.
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A Appendix

A.1 Qualitative results of retrieved vs ground
truth pairs

The following Figures 5, 6, 7, 8 demonstrate some
interesting results regarding retrieved images and
their ground truth matchings with respect to a given
query. Images to the left correspond to the retrieved
image Iri , while images to the right denote the
ground truth image Igi with respect to a query qi
appearing in the caption. The caption also mentions
the failure category the images belong, according
to human evaluation results.

A.1.1 Human evaluation details
We present some distributions regarding human
evaluation experiments. Figure 9 regards the rating
distribution according to our evaluators’ perception

Figure 5: Successful alternative.Many people are relax-
ing under their umbrellas on the beach.

Figure 6: Object color.A vase sitting on a table with
white flowers in it.

Figure 7: Object enumeration.A dirt bike rider perform-
ing a stunt while in the air.

Figure 8: Detailed semantics.A cat playing with a shoe
in a grassy field.

of ground truth-retrieved image relevance with re-
spect to the given query. Figure 10 presents the
number of failed semantics categories per image.

A.2 Analyzing adversarial position changes

Antonym-based queries Substituting adjectives
with their antonyms was applicable on 10523
queries which resulted in updated embedding rep-
resentations: the cosine similarity cos(uqi , u

q∗
i ) <

1. By exclusively considering adversarial in-
stances with updated representations uqi ̸= uq∗i ,
we observed that 4346 instances (41.30%) were
ranked lower than the original ones, 2918 instances
(27.73%) were ranked higher, and 3259 instances
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Figure 9: Human evaluation ratings (1-10).

Figure 10: Number of marked disagreeing semantics
per Igi , Iri pair for all evaluated image pairs in F .

(30.97%) remained in the same position.

Size-based queries 10471 queries of the dataset
where perturbed with respect to size-oriented
words. Consequently, 3902 instances (37.26%)
were ranked lower than the original ones, 2961 in-
stances (28.28%) were ranked higher, and 3608
instances (34.46%) remained in the same position.

Color-based queries 16007 queries that contain
colors were adversarially perturbed. Regarding the
color-in) experiment and by considering adversar-
ial instances with updated representations, 7960
instances (49.73%) were ranked lower, 3578 in-
stances (22.35%) were ranked higher, and 4469
instances (27.92%) remained in the same position.
In the color-all experiment, we observe that 7729
instances (48.29%) were ranked lower than the orig-
inal ones, 3848 instances (24.04%) were ranked
higher, and 4430 instances (27.68%) remained in
the same position.

Those results are summarized in Table 4.

A.3 Ranking results
In this section we present all ranking experiments
conducted in this work. Those include all 3 datasets
(Flickr8K, Flickr30K and VG∩COCO) and rep-
resentation choices (summarizing with T5 (Raf-
fel et al., 2020) or pegasus (Zhang et al., 2020a)
abstractive summarizers before using an SBERT
model, or embed corpus sentences intependently
using an SBERT model and then calculate the aver-
aged embedding representation).

Tables 6, 7, 8 refer to Flickr8K experiments;
Tables 9, 10 refer to Flickr30k experiments; finally,
11, 12, 13 refer to VG∩COCO experiments.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.4486 0.6670 0.7477 0.5307 0.5418 0.5504 2 55.14
all MiniLM L6 0.4354 0.6568 0.7392 0.5183 0.5294 0.5380 2 56.46
all distilroberta 0.4699 0.6972 0.7754 0.5557 0.5662 0.5744 2 53.01
all mpnet base 0.4664 0.6872 0.7669 0.5503 0.5610 0.5692 2 53.36
all roberta large 0.4858 0.7081 0.7900 0.5700 0.5811 0.5886 2 51.42
multi qa MiniLM L6 cos 0.3662 0.5687 0.6541 0.4411 0.4526 0.4628 3 63.38
multi qa distilbert cos 0.3797 0.5874 0.6738 0.4583 0.4699 0.4795 3 62.03
multi qa mpnet base cos 0.3990 0.6097 0.6990 0.4784 0.4904 0.4996 3 60.10
nli distilroberta base 0.4011 0.6256 0.7152 0.4864 0.4984 0.5076 2 59.89
nq distilbert base 0.3260 0.5363 0.6187 0.4037 0.4149 0.4255 4 67.40
paraphrase MiniLM L12 0.5289 0.7602 0.8338 0.6173 0.6273 0.6337 1 47.11
paraphrase MiniLM L3 0.5064 0.7337 0.8183 0.5933 0.6047 0.6115 1 49.36
paraphrase MiniLM L6 0.5138 0.7497 0.8259 0.6044 0.6147 0.6212 1 48.62
paraphrase TinyBERT L6 0.5685 0.8060 0.8758 0.6604 0.6700 0.6749 1 43.15
paraphrase albert base 0.4776 0.7167 0.7957 0.5684 0.5789 0.5864 2 52.24
paraphrase distilroberta 0.5296 0.7643 0.8399 0.6197 0.6298 0.6361 1 47.04
paraphrase mpnet 0.4936 0.7318 0.8118 0.5846 0.5953 0.6022 2 50.64
stsb distilroberta base 0.4106 0.6219 0.7044 0.4902 0.5013 0.5109 2 58.94
stsb mpnet base 0.4334 0.6517 0.7359 0.5159 0.5272 0.5356 2 56.66
stsb roberta base 0.4206 0.6354 0.7201 0.5017 0.5131 0.5224 2 57.94
stsb roberta large 0.3678 0.5694 0.6575 0.4426 0.4545 0.4643 3 63.22
xlm distilroberta paraphrase 0.4138 0.6382 0.7255 0.4979 0.5096 0.5187 2 58.62

Table 6: Rank results for Flickr8k. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.3139 0.5285 0.6213 0.3932 0.4056 0.4169 5 68.61
all MiniLM L6 0.3100 0.5193 0.6143 0.3870 0.3996 0.4106 5 69.00
all distilroberta 0.3421 0.5717 0.6600 0.4281 0.4400 0.4508 4 65.79
all mpnet base 0.3242 0.5410 0.6347 0.4051 0.4176 0.4285 4 67.58
all roberta large 0.3548 0.5818 0.6787 0.4391 0.4521 0.4624 3 64.52
multi qa MiniLM L6 cos 0.2262 0.3965 0.4789 0.2887 0.2996 0.3115 12 77.38
multi qa distilbert cos 0.2351 0.4092 0.4928 0.2993 0.3104 0.3220 11 76.49
multi qa mpnet base cos 0.2406 0.4306 0.5197 0.3103 0.3220 0.3337 9 75.94
nli distilroberta base 0.2856 0.4928 0.5852 0.3626 0.3748 0.3864 6 71.44
nq distilbert base 0.1646 0.3058 0.3766 0.2165 0.2258 0.2376 28 83.54
paraphrase MiniLM L12 0.4071 0.6581 0.7492 0.5008 0.5131 0.5222 2 59.29
paraphrase MiniLM L3 0.3864 0.6281 0.7266 0.4772 0.4904 0.4999 3 61.36
paraphrase MiniLM L6 0.3960 0.6470 0.7391 0.4902 0.5024 0.5119 2 60.40
paraphrase TinyBERT L6 0.4390 0.6995 0.7941 0.5376 0.5505 0.5584 2 56.10
paraphrase albert base 0.3618 0.6014 0.6937 0.4517 0.4642 0.4745 3 63.82
paraphrase albert small 0.4110 0.6699 0.7594 0.5083 0.5207 0.5300 2 58.90
paraphrase distilroberta 0.4085 0.6667 0.7613 0.5042 0.5169 0.5253 2 59.15
paraphrase mpnet 0.3856 0.6233 0.7186 0.4752 0.4881 0.4976 3 61.44
stsb distilroberta base 0.2886 0.4881 0.5746 0.3625 0.3741 0.3855 6 71.14
stsb mpnet base 0.3105 0.5185 0.6043 0.3879 0.3995 0.4106 5 68.95
stsb roberta base 0.2971 0.5008 0.5882 0.3725 0.3843 0.3957 5 70.29
stsb roberta large 0.2488 0.4173 0.5044 0.3110 0.3226 0.3346 10 75.12
xlm distilroberta paraphrase 0.2814 0.4899 0.5857 0.3579 0.3708 0.3821 6 71.86

Table 7: Rank results for Flickr8k - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.2396 0.4336 0.5203 0.3097 0.3210 0.3328 9 76.04
all MiniLM L6 0.2330 0.4190 0.5135 0.3016 0.3133 0.3267 9 76.70
all distilroberta 0.2605 0.4645 0.5556 0.3359 0.3475 0.3602 7 73.95
all mpnet base 0.2519 0.4479 0.5429 0.3239 0.3369 0.3498 8 74.81
all roberta large 0.2686 0.4789 0.5695 0.3457 0.3576 0.3708 6 73.14
multi qa MiniLM L6 cos 0.1754 0.3163 0.3908 0.2258 0.2362 0.2482 25 82.46
multi qa distilbert cos 0.1856 0.3353 0.4126 0.2402 0.2501 0.2624 21 81.44
multi qa mpnet base cos 0.2008 0.3569 0.4363 0.2572 0.2681 0.2794 18 79.92
nli distilroberta base 0.2221 0.4070 0.4964 0.2888 0.3007 0.3143 11 77.79
nq distilbert base 0.1456 0.2712 0.3359 0.1905 0.1993 0.2110 40 85.44
paraphrase MiniLM L12 0.3061 0.5358 0.6390 0.3909 0.4041 0.4156 4 69.39
paraphrase MiniLM L3 0.2876 0.5024 0.6038 0.3663 0.3800 0.3930 5 71.24
paraphrase MiniLM L6 0.2960 0.5234 0.6233 0.3804 0.3928 0.4055 5 70.40
paraphrase TinyBERT L6 0.3223 0.5667 0.6696 0.4126 0.4262 0.4381 4 67.77
paraphrase albert base 0.2830 0.4909 0.5925 0.3596 0.3731 0.3856 6 71.70
paraphrase albert small 0.3071 0.5387 0.6398 0.3922 0.4058 0.4185 4 69.29
paraphrase distilroberta 0.3082 0.5404 0.6417 0.3938 0.4071 0.4185 4 69.18
paraphrase mpnet 0.2903 0.5055 0.6077 0.3701 0.3840 0.3964 5 70.97
stsb distilroberta base 0.2249 0.4028 0.4875 0.2891 0.3006 0.3132 12 77.51
stsb mpnet base 0.2369 0.4217 0.5086 0.3049 0.3161 0.3279 10 76.31
stsb roberta base 0.2298 0.4101 0.4989 0.2948 0.3063 0.3194 11 77.02
stsb roberta large 0.1884 0.3359 0.4144 0.2420 0.2524 0.2648 20 81.16
xlm distilroberta paraphrase 0.2231 0.4032 0.4967 0.2880 0.3008 0.3142 11 77.69

Table 8: Rank results for Flickr8k - Pegasus (Zhang et al., 2020a) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.3076 0.5155 0.6063 0.3848 0.3969 0.4075 5 69.24
all MiniLM L6 0.2961 0.5021 0.5924 0.3727 0.3849 0.3956 5 70.39
all distilroberta 0.3276 0.5439 0.6357 0.4082 0.4204 0.4310 4 67.24
all mpnet base 0.3233 0.5372 0.6304 0.4030 0.4155 0.4259 4 67.67
all roberta large 0.3381 0.5633 0.6527 0.4223 0.4343 0.4445 4 66.19
multi qa MiniLM L6 cos 0.2397 0.4205 0.5042 0.3058 0.3169 0.3281 10 66.19
multi qa distilbert cos 0.2530 0.4379 0.5252 0.3210 0.3327 0.3440 9 74.70
multi qa mpnet base cos 0.2730 0.4683 0.5555 0.3453 0.3570 0.3681 7 72.70
nli distilroberta base 0.2770 0.4780 0.5718 0.3512 0.3638 0.3750 6 72.30
nq distilbert base 0.2131 0.3841 0.4653 0.2760 0.2868 0.2983 14 78.69
paraphrase MiniLM L12 0.3687 0.6148 0.7074 0.4606 0.4731 0.4831 3 63.13
paraphrase MiniLM L3 0.3437 0.5826 0.6764 0.4328 0.4453 0.4559 3 65.63
paraphrase MiniLM L6 0.3526 0.5938 0.6888 0.4425 0.4553 0.4657 3 64.74
paraphrase TinyBERT L6 0.4199 0.6844 0.7850 0.5198 0.5333 0.5421 2 58.01
paraphrase albert base 0.3294 0.5548 0.6482 0.4132 0.4257 0.4365 4 67.06
paraphrase albert small 0.3831 0.6416 0.7432 0.4799 0.4935 0.5032 3 61.69
paraphrase distilroberta 0.3796 0.6224 0.7230 0.4705 0.4840 0.4937 3 62.04
paraphrase mpnet 0.3476 0.5804 0.6730 0.4341 0.4466 0.4570 3 65.24
stsb distilroberta base 0.2765 0.4716 0.5626 0.3487 0.3610 0.3724 7 72.35
stsb mpnet base 0.2935 0.4958 0.5846 0.3680 0.3799 0.3909 6 70.65
stsb roberta base 0.2864 0.4888 0.5757 0.3612 0.3729 0.3840 6 71.36
stsb roberta large 0.2410 0.4207 0.5037 0.3067 0.3178 0.3292 10 75.90
xlm distilroberta paraphrase 0.2816 0.4832 0.5732 0.3559 0.3679 0.3790 6 71.84

Table 9: Rank results Flickr30k. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.2068 0.3845 0.4710 0.2721 0.2836 0.2955 13 79.32
all MiniLM L6 0.2012 0.3739 0.4595 0.2645 0.2758 0.2877 14 79.88
all distilroberta 0.2242 0.4159 0.5083 0.2948 0.3072 0.3193 10 77.58
all mpnet base 0.2138 0.3975 0.4837 0.2812 0.2927 0.3047 12 78.62
all roberta large 0.2373 0.4321 0.5264 0.3091 0.3217 0.3337 9 76.27
multi qa MiniLM L6 cos 0.1380 0.2665 0.3357 0.1847 0.1939 0.2051 42 86.20
multi qa distilbert cos 0.1443 0.2820 0.3552 0.1942 0.2039 0.2152 35 85.57
multi qa mpnet base cos 0.1515 0.2976 0.3733 0.2049 0.2150 0.2267 29 84.85
nli distilroberta base 0.1856 0.3556 0.4401 0.2477 0.2590 0.2712 16 81.44
nq distilbert base 0.0951 0.1963 0.2530 0.1317 0.1392 0.1493 100 90.49
paraphrase MiniLM L12 0.2740 0.4970 0.5988 0.3560 0.3696 0.3817 6 72.60
paraphrase MiniLM L3 0.2493 0.4630 0.5649 0.3274 0.3410 0.3534 7 75.07
paraphrase MiniLM L6 0.2644 0.4810 0.5825 0.3441 0.3577 0.3700 6 73.56
paraphrase TinyBERT L6 0.3032 0.5555 0.6688 0.3958 0.4109 0.4230 4 69.68
paraphrase albert base 0.2400 0.4428 0.5389 0.3142 0.3271 0.3394 8 76.00
paraphrase albert small 0.2759 0.5140 0.6218 0.3627 0.3771 0.3897 5 72.41
paraphrase distilroberta 0.2803 0.5082 0.6119 0.3639 0.3777 0.3897 5 71.97
paraphrase mpnet 0.2584 0.4687 0.5664 0.3351 0.3482 0.3603 7 74.16
stsb distilroberta base 0.1800 0.3424 0.4263 0.2395 0.2507 0.2627 18 82.00
stsb mpnet base 0.1965 0.3724 0.4557 0.2605 0.2717 0.2836 15 80.35
stsb roberta base 0.1904 0.3547 0.4389 0.2503 0.2615 0.2735 17 80.96
stsb roberta large 0.1456 0.2811 0.3543 0.1945 0.2042 0.2159 34 85.44
xlm distilroberta paraphrase 0.1792 0.3467 0.4286 0.2403 0.2513 0.2635 18 82.08

Table 10: Rank results Flickr30k - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 13.31 26.93 34.31 18.18 19.16 20.45 34 86.69
all MiniLM L6 13.07 26.80 34.26 18.02 19.02 20.29 35 86.93
all distilroberta 12.20 26.10 33.58 17.22 18.22 19.55 35 87.80
all mpnet base 12.64 26.12 33.82 17.45 18.47 19.78 35 87.36
all roberta large 12.01 25.63 33.42 16.87 17.91 19.24 35 87.99
multi qa MiniLM L6 cos 9.29 20.10 26.77 13.14 14.03 15.29 60 90.71
multi qa distilbert cos 9.22 20.35 27.04 13.16 14.04 15.32 57 90.78
multi qa mpnet base cos 9.53 21.03 27.81 13.63 14.52 15.79 55 90.47
nli distilroberta base 11.73 24.94 32.33 16.48 17.46 18.75 39 88.27
nq distilbert base 8.03 17.95 23.95 11.53 12.32 13.54 76 91.97
paraphrase MiniLM L12 14.24 29.89 38.34 19.89 21.02 22.37 24 85.76
paraphrase MiniLM L3 15.31 30.92 39.48 20.97 22.11 23.42 23 84.69
paraphrase MiniLM L6 14.39 30.01 38.51 19.96 21.10 22.46 24 85.61
paraphrase TinyBERT L6 14.55 30.38 39.12 20.27 21.43 22.82 22 85.45
paraphrase albert base 13.12 27.83 36.11 18.43 19.54 20.91 28 86.88
paraphrase albert small 14.56 30.25 39.04 20.23 21.40 22.75 23 85.44
paraphrase distilroberta 14.51 30.39 38.91 20.23 21.36 22.74 22 85.49
paraphrase mpnet 13.99 28.99 37.40 19.39 20.50 21.84 26 86.01
stsb distilroberta base 13.41 27.04 34.28 18.32 19.28 20.55 35 86.59
stsb mpnet base 14.05 28.26 35.93 19.23 20.24 21.49 32 85.95
stsb roberta base 13.69 27.38 34.79 18.67 19.65 20.92 34 86.31
stsb roberta large 10.32 22.13 28.71 14.60 15.47 16.73 53 89.68
xlm distilroberta paraphrase 11.59 24.62 31.87 16.26 17.23 18.52 40 88.41

Table 11: Rank results for VG∩COCO. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.0989 0.2072 0.2684 0.1378 0.1459 0.1575 68 90.11
all MiniLM L6 0.0923 0.2004 0.2601 0.1313 0.1393 0.1509 71 90.77
all distilroberta 0.1034 0.2184 0.2834 0.1445 0.1532 0.1654 56 89.66
all mpnet base 0.0906 0.1969 0.2608 0.1286 0.1370 0.1488 69 90.94
all roberta large 0.1125 0.2340 0.2994 0.1563 0.1650 0.1769 52 88.75
multi qa MiniLM L6 cos 0.0496 0.1132 0.1558 0.0719 0.0776 0.0872 189 95.04
multi qa distilbert cos 0.0519 0.1172 0.1580 0.0748 0.0802 0.0901 181 94.81
multi qa mpnet base cos 0.0509 0.1233 0.1718 0.0764 0.0827 0.0931 148 94.91
nli distilroberta base 0.0914 0.1931 0.2502 0.1281 0.1357 0.1470 82 90.86
nq distilbert base 0.0364 0.0914 0.1285 0.0560 0.0609 0.0698 249 96.36
paraphrase MiniLM L12 0.1365 0.2794 0.3579 0.1882 0.1987 0.2113 31 86.35
paraphrase MiniLM L3 0.1165 0.2497 0.3239 0.1645 0.1743 0.1872 38 88.35
paraphrase MiniLM L6 0.1258 0.2643 0.3386 0.1756 0.1855 0.1983 35 87.42
paraphrase TinyBERT L6 0.1272 0.2652 0.3446 0.1767 0.1873 0.2001 33 87.28
paraphrase albert base 0.1215 0.2534 0.3263 0.1687 0.1784 0.1909 40 87.85
paraphrase albert small 0.1233 0.2572 0.3331 0.1715 0.1815 0.1942 37 87.67
paraphrase distilroberta 0.1274 0.2621 0.3355 0.1760 0.1857 0.1984 36 87.26
paraphrase mpnet 0.1362 0.2778 0.3552 0.1873 0.1976 0.2103 31 86.38
stsb distilroberta base 0.0891 0.1900 0.2450 0.1250 0.1323 0.1436 85 91.09
stsb mpnet base 0.0993 0.2094 0.2715 0.1389 0.1471 0.1589 66 90.07
stsb roberta base 0.0962 0.2019 0.2618 0.1339 0.1419 0.1534 72 90.38
stsb roberta large 0.0662 0.1506 0.2035 0.0959 0.1029 0.1141 109 93.38
xlm distilroberta paraphrase 0.0749 0.1735 0.2313 0.1102 0.1178 0.1292 90 92.51

Table 12: Rank results for VG∩COCO - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.0896 0.1898 0.2466 0.1257 0.1332 0.1439 91 91.04
all MiniLM L6 0.0847 0.1829 0.2373 0.1199 0.1271 0.1380 95 91.53
all distilroberta 0.0946 0.2050 0.2660 0.1342 0.1423 0.1537 73 90.54
all mpnet base 0.0903 0.1918 0.2489 0.1267 0.1344 0.1452 86 90.97
all roberta large 0.0997 0.2070 0.2669 0.1383 0.1462 0.1574 74 90.03
multi qa MiniLM L6 cos 0.0490 0.1106 0.1541 0.0706 0.0764 0.0855 211 95.10
multi qa distilbert cos 0.0494 0.1136 0.1555 0.0722 0.0777 0.0869 208 95.06
multi qa mpnet base cos 0.0497 0.1145 0.1573 0.0722 0.0778 0.0874 191 95.03
nli distilroberta base 0.0755 0.1656 0.2194 0.1074 0.1145 0.1250 113 92.45
nq distilbert base 0.0436 0.1000 0.1390 0.0636 0.0688 0.0776 251 95.64
paraphrase MiniLM L12 0.1154 0.2395 0.3076 0.1600 0.1690 0.1808 50 88.46
paraphrase MiniLM L3 0.1030 0.2211 0.2870 0.1453 0.1540 0.1659 58 89.70
paraphrase MiniLM L6 0.1103 0.2278 0.2964 0.1526 0.1617 0.1735 54 88.97
paraphrase TinyBERT L6 0.1141 0.2373 0.3063 0.1583 0.1675 0.1796 48 88.59
paraphrase albert base 0.1003 0.2122 0.2757 0.1405 0.1490 0.1608 62 89.97
paraphrase albert small 0.1086 0.2269 0.2934 0.1512 0.1601 0.1722 53 89.14
paraphrase distilroberta 0.1140 0.2345 0.3026 0.1573 0.1664 0.1785 49 88.60
paraphrase mpnet 0.1099 0.2304 0.2973 0.1536 0.1625 0.1744 53 89.01
stsb distilroberta base 0.0751 0.1612 0.2145 0.1061 0.1131 0.1236 114 92.49
stsb roberta base 0.0783 0.1676 0.2211 0.1104 0.1174 0.1281 110 92.17
stsb roberta large 0.0586 0.1359 0.1844 0.0857 0.0921 0.1022 145 94.14
xlm distilroberta paraphrase 0.0706 0.1563 0.2066 0.1009 0.1075 0.1178 127 92.94

Table 13: Rank results for VG∩COCO - Pegasus (Zhang et al., 2020a) summarizer. Bold entries indicate best
results.


