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Abstract

Neural natural language generation (NLG) and
understanding (NLU) models are costly and re-
quire massive amounts of annotated data to be
competitive. Recent data programming frame-
works address this bottleneck by allowing hu-
man supervision to be provided as a set of la-
beling functions to construct generative mod-
els that synthesize weak labels at scale. How-
ever, these labeling functions are difficult to
build from scratch for NLG/NLU models, as
they often require complex rule sets to be spec-
ified. To this end, we propose a novel data pro-
gramming framework that can jointly construct
labeled data for language generation and un-
derstanding tasks – by allowing the annotators
to modify an automatically-inferred alignment
rule set between sequence labels and text, in-
stead of writing rules from scratch. Further, to
mitigate the effect of poor quality labels, we
propose a dually-regularized denoising mecha-
nism for optimizing the NLU and NLG models.
On two benchmarks we show that the frame-
work can generate high-quality data that comes
within a 1.48 BLEU and 6.42 slot F1 of the
100% human-labeled data (42k instances) with
just 100 labeled data samples – outperforming
benchmark annotation frameworks and other
semi-supervised approaches.

1 Introduction

Modern machine learning systems require large
amounts of labeled data. For many applications,
such labeled data is created by getting humans to
explicitly label each training example. However,
the standard labeling process that involves Wizard-
of-Oz (Kelley, 1984) and other crowd-sourcing ap-
proaches (e.g. (Wen et al., 2017; Coucke et al.,
2018; Budzianowski et al., 2018)) is restricted to
the level of individual examples, and so are slow
and static (Ratner et al., 2019). As a result, they
are not only costly but require relabeling for any
fine-grained domain revisions.
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Distant Annotation

MR: restaurant_name=Ristorante   food=Italian   price_range=high

Text: Ristorante is an  expensive  Italian restaurant .

Labeling Function

Figure 1: Annotation scenario: Each × represents a labeled
data instance. The annotation framework allows to generalize
from few human-labeled instances (inner) to large amounts
of weakly labeled data (outer) by building rules (alignments)
between sequence labels and text via labeling functions.

Data programming is a successful paradigm
where humans provide low cost labeling rules writ-
ten in programming languages to build imperfect
training sets, which are then denoised for further
improvements (Ratner et al., 2016a, 2017). How-
ever, two caveats exist: (1) Heuristic rules are
costly to construct from scratch as exhaustive align-
ments between text and sequence labels have to be
specified manually (Evensen et al., 2020), and espe-
cially strenuous for language generation that trans-
forms meaning representations (MR) or slots into
textual descriptions (e.g. (Reiter and Dale, 2000;
Barzilay and Lapata, 2005)) where NLG is a one-to-
many process (i.e. ). (2) Labeling functions make
decisions based on discrete rules that heavily limit
the framework capability in making fine-grained
decisions due to the lack of probabilistic informa-
tion that guides the rule inference (Chatterjee et al.,
2019).

To this end, we present a new data programming
framework where language understanding and gen-
eration data can be jointly labeled. We argue that
joint NLG/NLU annotation not only improves the
overall data quality, but provide a greater degree of
compositionality where semantic units such as slot-
value pairs can be individually controlled. We tar-
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get a weak supervision scenario (shown in Figure 1)
consisting of small, high-quality expert-labeled
data and a large set of unlabeled MR or text in-
stances. In this framework, subject-matter experts
are to use labeling rules to modify the automatically-
inferred semantic alignments between MR and text,
which are probabilistic rules that can be used for
joint NLU/NLG labeling. The rules help to con-
struct weak data via iterative denoising, before the
dually-regularized NLU and NLG models can learn
from the clean seed data to generate high-quality
data. This work makes the following contributions:

• We introduce a novel annotation framework
based on data programming that allows for
joint labeling of language understanding and
generation data. We validate the framework
on two benchmarks and demonstrates its abil-
ity to create high quality data by expanding
rules and then denoising the noisy data with
dual regularization.

• We present a preliminary study to demon-
strate the compositionality of the framework
by showing that it can perform automatic do-
main revisions of MR slots without any rela-
beling efforts. This is especially beneficial in
use of annotation tools where frequent data
revisions are needed.

2 Related Work

Distant Supervision in Language Understand-
ing. Learning with weak supervision is a well-
studied area that is popularized by the rise of
data-driven neural approaches (Ratner et al., 2017;
Safranchik et al., 2020; Bach et al., 2017; Wu et al.,
2018; Jiang et al., 2018). In particular, recent liter-
ature explore knowledge distillation from rules by
either guiding the individual layers (Li and Sriku-
mar, 2019) or training the model weights within
constraints of the rule based system using a stu-
dent and teacher model (Hu et al., 2016). Simi-
larly, Snorkel and other techniques (Ratner et al.,
2016b; Bach et al., 2017; Varma et al., 2019) rely
on domain experts manually developing heuristics
for noisy labels. However, these approaches are
largely limited to NLU tasks and focus on provid-
ing discrete heuristics for tasks such as relations.
Thus, our work serves to bridge this gap by (1) pro-
viding a way to more readily create texts, and (2)
including probabilistic scores for labels.

Weak Supervision for Language Generation.
Past works on semi-supervised learning consider
settings with a large set of unlabeled data as in
machine translation (Artetxe et al., 2017; Lample
et al., 2017), or more relevantly the joint learning
framework for training NLU and NLG (Tseng et al.,
2020; Su et al., 2020; Schmitt and Schütze, 2019)
that also considers a small labeled data. In partic-
ular, unsupervised statistical machine translation
(e.g. (Artetxe et al., 2018; Lample et al., 2018))
utilizes statistical alignment models (Brown et al.,
1993) that automatically infer explicit alignments
between phrases in source and target sentences.
Our work exploits this explicit alignment by treat-
ing them as a modifiable rule set1, then using it to
noisily synthesize weak data, allowing for annota-
tion of NLU and NLG labels.

3 Annotation Framework Summary

Here we formally describe the joint annotation
framework. Let X denote the set of meaning repre-
sentation2 (MR) instances and Y denote the text se-
quences. In our setting, we have (1) a seed dataset
S which consists of k labeled pairs, and (2) a large
unlabeled MR or text set U where |U | ≫ k > 0.
The annotation framework targets the creation of la-
beled samples L = {(x1, y1), . . . , (xn, yn)} where
xt ∈ X is an MR instance and yt ∈ Y is its corre-
sponding text. To do so, we construct a probabilis-
tic rule set based on the seed data S (see §4) and
outline this process in Figure 2. In particular, we
draw the connection between the rule set composi-
tionality and coverage to data denoising and high-
light the framework advantages. The resulting rule
set allows to create a large set of noisily-labeled
data, where the framework then learns from the
mixture of clean (seed) and noisy data in the pro-
cess of data denoising (see §5) to create a higher
quality set of data.

4 Rule Set Construction

We use the rule set to define the semantic alignment
between MR and text. For instance, in a “cuisine”
domain, the fast food slot can be aligned with slot
value “Macdonald” and other related terms, and
likewise for each value that might be associated
with more than one slot. This relationship can

1This is similar to phrase table pruning (Zens et al., 2012;
Galbrun, 2009).

2They can be seen as sequence labels.
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  LF1: If a phrase is a restaurant_name is present and MR contains "restaurant_name", return 1

  LF2: If a phrase is in the list of food and MR contains "food", return 1 else return 0

  LF3: If a phrase is in price_range and MR contains "price_range", return 1 else return 0

Pruning

restaurant_name=blue spice   food=Indian  price_range=high    customer_rating=average 

Blue spice  is an  expensive  Indian restaurant  with  an average customer rating .

B
i-d

ire
ct

ed
 R

ul
es

MR

Text

Figure 2: Depiction of the labeling process, where x̂, ŷ denote the noisy labels. Labeling functions are shown as textual
descriptions, which are used to filter bi-directed rules below. In bi-directed rules, rules not removed by labeling functions are
shown in bold. For more labeling functions see Appendix ??.

be captured by the explicit many-to-many3 rules
derived from the MR-text pairs, which connects
NLU and NLG as they are then explicitly linked
with the alignments.

To build the rule set, we initialize the rule set in
three steps: (1) We first generate new in-domain
data using the pretrained language model (GPT-2)
– this helps to increase data size and diversify the
text distribution. (2) From this augmented data, we
automatically initialize the rule set (phrase table)
using a statistical alignment model. (3) Finally, we
prompt the subject-matter experts to explicitly mod-
ify the alignments between phrases in MR and text
with labeling functions, as these alignments help to
refine the semantic relationships. Specifically, the
aligned pairs are provided to experts where they are
asked to write labeling functions to prune the non-
matching phrases that contain incorrect semantic
alignments (See Figure 2).

4.1 Diversifying Rule Set Diversity

To increase the diversity (and thus coverage) of the
eventual annotation rule set generated, we perform
an initial augmentation of the seed labeled data set
S with additional weakly-labeled data, thus pro-
ducing a larger but more diverse weakly-labeled
dataset (L). We first generate additional MR via
value swapping for each MR slot as in Chang et al.
(2021a), then use GPT-2 (Radford et al., 2019)
to perform conditional data-to-text generation as
in Harkous et al. (2020); Mager et al. (2020). These
works showed that fine-tuning GPT-2 on the joint
distribution of MR and text for text-only genera-

3Relatedly, NLU is many-to-one and NLG is one-to-
many (Tseng et al., 2020).

tion yields decent performance. Given the sequen-
tial MR representation and a sentence in the seed
labeled data, we maximize the joint probability
pGPT-2(X,Y ), where each sequence is concatenated
into “[MR] x1 · · ·xM [TEXT] y1 · · · yN”. The
fine-tuned LM conditions on the augmented MR
sample set to generate the in-domain text4, and
thus produces the augmented dataset with noisy
texts. Similarly, for conditional MR generation
with pGPT-2(Y,X), we apply the same process with
text and MR flipped in the concatenation.

While the weak labels expands the seed data, it
creates noisy data by introducing false correlations
between MR and text. In what follows we discuss
the creation of the rule set and the use of labeling
functions that help to mitigate this noise.

4.2 Rule Set Initialization.

We extend the idea of a phrase table in statistical
machine translation to be the rule set in our con-
text: from the noisy augmented data L, we derive
a rule set that is constructed based on the fertility-
based5 alignment model (GIZA++) (Och and Ney,
2003)6 optimized using the EM algorithm (Demp-
ster et al., 1977). This allows to obtain the semantic
correspondences (or probabilistic rule set) Ri→j ⊆
{(i, j, Pi→j) : i = 1 · · · |x|; j = 1 · · · |y|} where
i and j refer to positions in flattened MR x and
text sequence y, and Pi→ĵ is the probability of

4We adopt the top-k random sampling with both k =
2 and k = 15 to encourage diversity and ensuring correct
outputs (Radford et al., 2019)

5Fertility is defined as the number of words that correspond
to a semantic unit.

6http://www.statmt.org/moses/giza/
GIZA++.html

http://www.statmt.org/moses/giza/GIZA++.html
http://www.statmt.org/moses/giza/GIZA++.html
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aligning the ith semantic unit in x to the jth unit
in y. Each semantic correspondence can be seen
as a bi-directed edge of a rule that connects se-
mantic units (or phrases) in MR to phrases in text,
where the granularity of each semantic unit is deter-
mined by the feature-based phrase-based alignment
model (Brown et al., 1993). Thus, we can likewise
induce Rj→i ⊆ {(j, i, Pj→i)} as the rule set that
can be derived for either NLU or NLG inferences.
We discuss the resolution of potential conflicts be-
tween rules in §5.

4.3 Building Labeling Functions
We ask a group of annotators to write Python code
snippets within the time limit of an hour each.
We denote these code snippets as labeling func-
tions (LFs). Each labeling function follows basic
rule relations, as shown in figure 2, and returns
one of the possible values: 1, −1, 0 (“valid”/“not
valid”/“undetermined”). To prune the rule set, we
apply the labeling functions to each rule, and judge
whether the given rule is strictly invalid or not.
Two types of LFs are designed: (1) slot-specific
LFs: one LF is written for each slot identified in
the MR, as all the decisions related to the slot can
be grouped together. For certain slots, such as
“restaurant_name”, a basic dictionary of correct
slot values is collected as to verify if mappings are
correct. (2) general LFs help to eliminate false
rules across all slots. One example is the rule that
links a conjunction of text with a specific slot of the
MR. Using the general LFs, such incorrect rules
can be removed altogether. Rules marked as “un-
determined” by the LFs are preserved and will be
further evaluated by the denoising mechanism. For
instance, the phrase “is a” may remain aligned with
“restaurant_name” as no LF may have marked it as
“not valid”.

4.4 Rule Coverage and Compositionality
MRs are structured and compositional as they typ-
ically consist of attributes in the form of flat or
tree-structured slot-value pairs (Balakrishnan et al.,
2019). Here, we define the compositionality of a
rule set as the average percentage of rules that cor-
rectly correlate MR and text over all slots. In our
framework, rule sets can be manipulated to directly
reflect high-level requirements in dialogue – such
as the need to remove or add values to a slot in both
MR and text for domain revisions. For slot removal,
this can be done directly via the addition of label-
ing functions to remove specific attributes from

MR and text altogether. An important trade-off
exists between rule coverage and compositionality
– higher rule coverage leads to lower composition-
ality, since a larger rule set tends to make more
erroneous correlations between MR and text.

In what follows we describe the process of data
denoising, in which the framework learns to utilize
both the noisy and clean data.

5 Data Denoising

Label bias is a well-studied problem (Lafferty et al.,
2001) where the frequency of some transitions
will far outweigh the others even when they have
roughly the same probability mass. Beneficially,
the joint use of both NLU/NLG models helps to
mutually shape the probability masses in token-
label pairs. Figure 3 represents a simple finite-state
model designed to map the two words “good” and
“review” to their respective labels. Suppose that the
observation sequence is “good review”. From start-
ing states 0 and 1, “good” matches both potential
label transitions “price” and “rating”, so the prob-
ability mass gets distributed rather equal among
those two transitions.

1 2 3

4 5 6

0

Figure 3: Example of resolving label bias: we place the
token-label pairs (xt:yt) on transitions rather than states.

While the two paths will be roughly equally
likely, but if one of the two labels is slightly more
common in the training set (i.e. price), the transi-
tions out of the start state will slightly prefer this
corresponding transition, and yielding incorrect
correlations. However, having both NLU and NLG
models alleviate this bias since we now have two
“versions” of the sequence in states {1, 2, 3} and
{4, 5, 6} that can help to break the ties and shape
the probability mass according to the sequential
information.

Thus, we initialize noisy data with rules using
the statistical base models and then training the
denoising models to distill from the mixture of
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noisy and clean data. This is done by iteratively
creating noisy labels with rules and then refining
these labeled data for higher quality ones. Further,
we maintain both statistical NLU and NLG models
for iterative joint labeling in the process.

5.1 Overview of the Denoising Mechanism
The denoising mechanism is achieved by first for-
mulating the NLG model p(y|x) as Brown et al.
(1993):

p(y|x) ≈
m=|y|∑
j=1

l=|x|∏
i=0

t(yj |xi)a(i|j,m, l) (1)

where t(·) and a(·) are the translation and align-
ment probabilities learned from the seed data for
x and y of lengths m and l respectively. Note
that for the NLU model, we simply flip y and x
in Eq. 1. Thus the formulation allows to estimate
both statistical NLU and NLG models by adjust-
ing the weights of log-linear combination of fea-
tures7 to optimize the evaluation metric (i.e. BLEU-
4 (Papineni et al., 2002)) on the validation corpus
via the minimum error rate training (MERT) (Och,
2003), which maximizes the BLEU-4 scores based
on given inputs and their noisy labels.

In what follows we describe the training objec-
tives to distill knowledge from the rule set into the
base models (Step-1), then introduce clean data in
Step-2 to improve upon the data quality.

Step-1: Distillation from Noisy Rules. We opti-
mize the parameters of the base version of the NLU
and NLG models (base models) by alternately fix-
ing the parameters of one model and optimizing the
other model until convergence8: (1) MERT com-
putes the optimal value for each model parameter
and greedily selects data based on the generated
candidate labels that leads to the largest gain in
BLEU-4. (2) Then it noisily labels the MR samples
with text or text with MR via the updated parame-
ters at each iteration so as to obtain a better approx-
imation of label candidates. The process of data
denoising is functionally beneficial in reducing the
label biases present in the imperfect labels.

Step-2: Adding Clean Data. The denoising
models are trained with the expert-labeled seed
data and the set of noisy data that were generated.

7This includes the bidirectional rule, lexical probabilities,
the language model, the reordering model, the word penalty
and the phrase penalty.

8Following the training procedures in Artetxe et al. (2018).

However, the performance on the seed data is better
than the pseudo-labels in the early rounds. This is
anecdotally observed in both NLU and NLG mod-
els on various datasets and leads to potentially sub-
optimal performance (Shen and Sanghavi, 2019a,b).
This motivates our proposal to reduce the total loss
by using NLU and NLG models to select only a
subset of data to train on – we filter out samples
with large cross-entropy losses in early iterations
with replacement, and train the models on the sam-
ples left after filtering. This serves to learn more
effectively from both clean and corrupted data.

Specifically, we propose the use of dual regular-
ization (DR) where s1, . . . , sn are the samples, θ
are the model parameters:

θ̂(DR) = argmin
θ

[
min

X̃⊂X:|X̃|=⌊β∗n⌋

∑
i∈X̃

LNLGθ(xi)

]
+

argmin
θ

[
min

Ỹ⊂Y :|Ỹ |=⌊β∗n⌋

∑
i∈Ỹ

LNLUθ(yi)

]
.

To find θ̂(DR), we minimize over both the (a) sample
subsets X̃, Ỹ given the ratio β and (b) the model
parameters θ. In (a), the MR-text sample size is
⌊β ∗ n⌋, where β = 0.19 is the ratio of training
samples to train on. X̃, Ỹ are the subsets of X , Y
selected for the NLU and NLG models.

In this formulation, NLU and NLG models
jointly select samples that are deemed to be less
challenging for each other, before proceeding to
learn from more challenging samples10. As such,
the NLU and NLG models are kept to be similar
in inference capabilities; this allows to select more
suitable samples for each other due to the smaller
degree of semantic misalignment.

6 Experiment Setting

We conduct experiments on the Weather (Balakrish-
nan et al., 2019) and E2E (Novikova et al., 2017b)
datasets. Weather contains 25k instances of tree-
structure annotations. E2E is a crowd-sourced
dataset containing 50k instances in the restaurant
domain. The NLU and NLG models are imple-
mented in PyTorch (Paszke et al., 2019) with 2
Bi-LSTM layers and 100-dimensional token em-
beddings and Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 0.0002. The

9Following (Shen and Sanghavi, 2019b), we set β to be
1%, as it was shown to work well in generative models.

10It is related to competence-based curriculum learn-
ing (Platanios et al., 2019) where samples are selected based
on their difficulties and the model competence.
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MR → Text (NLG) Text → MR (NLU)

Text-only 100 150 200 250 300 SR VE 100 150 200 250 300 SR VE

seq2seq 35.55 41.79 41.63 43.50 46.62 39.20 40.61 47.61 51.33 51.94 52.53 53.83 52.38 56.84
JUG 37.62 42.32 42.01 45.42 48.27 40.88 42.64 48.60 53.40 52.78 52.44 54.23 54.38 56.56
stats (iter-10) 47.49 48.10 48.68 49.71 50.09 47.72 55.48 51.87 54.30 56.43 55.67 56.52 55.88 59.43
stats w/ GPT2 (iter-10) 52.81 53.77 54.11 54.24 55.27 50.21 57.31 53.91 56.62 59.15 56.97 58.40 59.00 60.36
stats (iter-20) 54.09 56.72 56.25 57.87 57.46 53.24 57.30 54.78 59.83 60.16 58.39 61.96 61.50 62.81
+ step-1 54.33 56.28 57.39 57.62 58.51 57.49 57.28 59.11 60.03 61.43 61.00 62.93 63.89 64.79

+ seed data 56.71 58.68 59.42 60.63 61.98 60.75 60.48 60.25 63.75 64.55 63.21 63.97 66.95 66.59
+ seed data & step-2 (Ours) 60.35 61.44 59.10 62.32 63.71 62.55 61.33 62.63 64.33 64.34 65.33 67.17 68.89 68.27

MR → Text (NLG) Text → MR (NLU)

MR-only 100 150 200 250 300 SR VE 100 150 200 250 300 SR VE

seq2seq 31.05 32.92 33.53 36.27 35.09 31.43 30.04 48.61 52.33 52.94 53.53 54.83 53.38 57.84
JUG 35.05 36.84 36.66 39.61 38.5 35.96 33.17 51.02 55.26 55.74 55.07 55.92 55.68 59.14
stats (iter-10) 38.70 40.08 40.42 43.18 41.76 42.36 40.35 53.74 56.95 58.43 57.28 58.78 57.77 60.61
stats w/ GPT2 (iter-10) 41.84 43.20 43.83 46.27 45.67 45.64 43.60 56.24 59.06 61.15 58.29 61.16 60.69 62.59
stats (iter-20) 45.69 46.40 46.84 49.82 49.52 49.17 46.87 57.46 61.26 62.21 60.36 63.98 62.58 64.88
+ step-1 49.66 50.40 50.74 53.09 53.26 52.40 49.93 60.14 62.69 63.38 62.71 65.53 65.15 66.19

+ seed data 53.60 55.19 54.32 56.24 57.03 55.92 53.15 62.16 65.74 65.65 64.93 66.86 67.99 68.41
+ seed data & step-2 (Ours) 54.77 54.92 57.78 58.41 61.32 56.68 57.39 64.47 65.38 67.10 67.51 69.12 70.04 69.42

‘

Table 1: Ablation studies for text generation/NLG (BLEU-4) and slot filling/NLU (F1) on the E2E corpus with increasing
amounts of manually-annotated data (100-300 samples). We show the performance increase to the base model initialized from the
rule set (stats) as GPT2 augmentation, statistical NLG/NLU models with distillation from stats (step-1), and dually-regularized
sample selection (step-2) are added. Domain revisions are performed with 300 data instances. We train the following on the seed
data for comparison: (1) a semi-supervised baseline, JUG (Tseng et al., 2020) and (2) a LSTM-based baseline (seq2seq).

Slot Filling Text Generation
F1(%) Wrong BLEU4 Naturalness Wrong Diversity

E
2E

reference - - - 4.51 0 53.89
SLUG+100% - - 55.30 4.37 7 46.72
JUG+100% 73.7 29 57.72 4.49 38 46.21
seq2seq+100% 73.19 31 56.1 4.32 35 43.09

GPT2 54.83 55 40.84 4.23 65 44.55
Heuristic 62.81 39 53.08 3.82 19 31.37
COACH 48.35 49 - - - -
seq2seq+Snorkel 60.71 43 - - - -
seq2seq+Ours 66.42 36 54.62 4.39 22 40.65

W
ea

th
er

reference - - - 4.30 0 40.97
JUG+100% 67.09 11 51.43 3.30 14 33.61
seq2seq+100% 66.43 8 46.29 4.10 9 35.74

GPT2 36.51 46 34.01 3.95 35 40.28
Heuristic 50.33 29 38.83 3.40 16 31.45
COACH 46.21 32 - - - -
seq2seq+Snorkel 47.61 27 - - - -
seq2seq+Ours 54.71 22 44.63 3.80 23 36.76

Table 2: Performance and human evaluation comparing
Ours with the benchmarks in the text-only scenario with 300
training samples evaluated on the test samples. We count the
number of wrong slot-value pairs; and naturalness is based
on average of 15 human ratings on a scale of 5. Diversity
is the mean segmental type-token ratio (size=25) (Covington
and McFall, 2010). 100% indicates models trained on 100%
manual annotation (also highlighted in gray). A+B indicates
training the A model on the data generated by approach B.

scores are averaged over 10 random initialization
runs. Two subject-matter experts are employed to
construct labeling functions given labeled instances
for 1-hour of labeling time. The labeling functions
obtained were used for all subsequent scenarios.

Experimental Scenarios. We conduct experi-
ments on two few-shot scenarios (see Table 1):
Text-only consists of only unlabeled text; MR-only
is given unlabeled MR alone. Both scenarios are
given a small amount of clean, manual-annotated

data consisting of MR-text pairs.

To demonstrate the framework’s ability to per-
form domain revisions without relabeling, we ex-
plore two situations under the few-shot settings:
(1) in slot removal (SR), we remove the “cus-
tomer rating” slot by selecting from the original
seed/dev/test sets. (2) in slot value enhancement
(VE), we introduce additional restaurant names
through relabeling the data. We release the data
alongside our code. Note that we selected up to 300
training samples so as to simulate a low resource
scenario. We display some examples of SR and
VE in Figure 3.

We compare the performance of our framework
with additional benchmark systems on both E2E
and Weather datasets in Table 2. Note that our
framework is only given the seed data and the
additional unlabeled text or MR samples, while
some models are trained with up to 100% of the
data. The NLU benchmark systems include a base-
line sequence-to-sequence model (seq2seq), and
COACH (Liu et al., 2020) and a baseline data
programming framework (Snorkel) (Ratner et al.,
2017), both state-of-the-art systems on few-shot
settings. For NLG, we included a heuristic la-
beler, a GPT2 labeler (Harkous et al., 2020), and
the high-performing SLUG (Juraska et al., 2018)
on the E2E data. The Heuristic labeler was built
on top of the labeling functions, but was extended
to be a complete generative system. To compare
with models capable of performing both NLG
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Figure 4: Left: This plot indicates the process of knowledge distillation (or gain in performance in BLEU-4) from the statistical
base models to the NLG model as a function of the number of iterations. Vertical line indicates the addition of clean data. Right:
we display the modeling advantage which showcase the improvement in performance as a function of the number of labeling
functions. Both plots are based on 300 clean data.

MR & Text

Slot Removal (SR):
[MR] name[the rice boat], food[italian], priceRange[cheap], area[riverside], familyFriendly[no],
customerRating[average] , near[express by holiday inn] [Text] the rice boat is located near express by holi-

day inn in riverside that serves italian food at a low price range .

Slot Value Enhancement (VE):
[MR] name[the rice boat], food[italian], priceRange[cheap], area[riverside], familyFriendly[no], customerRat-
ing[average], near[cobalt lane 32092] [Text] the rice boat is located at the cobalt lane 32092 , which is next to
the riverside that serves italian food at a low price range .

Table 3: Samples of heuristically-based annotation for the revised domain for SR and VE.

and NLU, we include JUG (Tseng et al., 2020),
which is a semi-supervised multi-task framework
that allows to perform inference on both NLU
and NLG. Table 2 contrasts the performance be-
tween seq2seq trained on 100% human annotation
(seq2seq+100%) and of the data generated by our
framework (seq2seq+Ours).

7 Results and Analysis

The results shown in tables 1 and 2 demonstrate the
flexibility of our framework to perform annotation
in both text-only and MR-only scenarios. Moreover,
we see in Table 2 that, with as little as 300 data
points, the framework is able to produce quality
data11 that allow the baseline seq2seq model to
come close to the performance of the same model
trained on full manual annotations; the combina-
tion reaches within 1.48 BLEU on NLG and 6.42%
F1 score for NLU. Moreover, the framework pro-
duces high quality data that effectively mitigate the
noise induced by automatic weak annotation, and
manages to generate natural and diverse text for
NLG purposes.

11The train-dev-test samples are 30-100-100 for the slot
manipulation.

In Table 1, we first observe that adding GPT-2
augmentation does diversify the text and improves
performance on both datasets maximally by 4.53
BLEU. The augmented system is used to initialize
the base model’s next iteration, and thus observe
that base models can be iteratively enhanced. This
is reflected across different sizes of seed data; the
effect of iterative denoising is most prominent with
seed data size= 300. Next, we see that the use
of denoising helps to further improve the models,
as it allows to learn from both the base model’s
initialization and from the effect of noisy label-
ing. The base model, in this case, serves as the
teacher model that guides the denoising models
to iteratively improve. As the knowledge is com-
pletely distilled, we see that the denoised data per-
forms slightly better than the base model (see left
of Figure 4), having learned to search through the
space of decoding for more optimal paths. We
find that, after 20 iterations, the improvements be-
come marginal for both datasets. Thus, we end our
experiments at iter=20. We also include the expert-
labeled (seed) data during denoising as an addition
to the large set of pseudo-labeled (noisy) data. This
brings about maximally a 3.47 BLEU (for NLG)
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Figure 5: Left: This plot indicates the effect of dually-regularized sample selection. Right: The plot displays the trade-off
between rule coverage and compositionality, where compositionality is defined as the average percentage of rules that correctly
correlate MR and text over all slots.

and 3.72% F1 score improvement (for NLU) in
Text-only, and 3.77 BLEU (for NLG) and 2.84%
F1 score increase (for NLU) on the MR-only sce-
nario. With the proposed dually-regularized sample
selection, we further boost the performance by up
to 4.29 BLEU and 2.58% F1 and an average of
2.37 BLEU improvements for NLG. This shows
the efficacy of the proposed approach in modulat-
ing the effect of noisy and clean data.

Since the Text-only scenario consists of high-
quality manually-labeled text, it generally performs
better in NLG; similarly, in the MR-only scenario,
NLU performance is generally better as MR sam-
ples are ground-truth labels. However, this effect
is less prominent in the MR-only scenario as the
difference between ground-truth MR samples and
the weakly-labeled ones are often negligible.

Error Analysis. Word-level overlapping scores
(BLEU-4) usually correlate rather poorly with hu-
man judgements on fluency and information ac-
curacy (Reiter and Belz, 2009; Novikova et al.,
2017a). Thus, we perform human evaluation on
the E2E corpus on 100 sampled generation out-
puts, as seen in Table 2. We show that, with 100
instances, the denoising models yield significantly
fewer wrong slot errors, while having more natural
and diverse outputs. Moreover, we observe that
benchmark systems (e.g. COACH) fail to general-
ize from the small seed data, and suffers heavily in
terms of using the wrong facts (or slots).

8 Further Analysis

Analysis of Modeling Advantage. We further
explore the relationship between performance and
the number of labeling functions in the right plot
of Figure 4. At one extreme, very few number of
labeling functions will result in a very noisy set of

rules, which leads to poorly labeled data. We find
that, as the number of labeling functions grow, the
capability of the framework to denoise the initial
inferred rules improves. This continues until even-
tually the framework’s denoising capability reaches
its peak and starts to deteriorate – as some labeling
functions eliminate a useful subset of alignments,
as represented by the rule set.

Analysis of Dual Regularization. To analyze
the process of sample selection during the training
of denoising models, we experiment with selecting
samples based on the cross-entropy loss from (1)
NLU model, (2) NLG model or (3) the combined
use of NLU and NLG models for sample selection,
which is the proposed approach. We also compare
them with performance without sample selection
to show the contrast. In Figure 5 we show this com-
parison. We observe that selection based on either
NLU or NLG model is not sufficient to match the
performance of selection using both models. This
shows that it is crucial to ensure that the NLG and
NLU models learn at approximately the same rate,
thereby allowing the semantic alignments induced
from the base models to be preserved.

On Rule Coverage and Compositionality Trade-
Offs. As discussed in section 4.4, we evaluate
the framework limitations in composing seman-
tic alignments (compositionality) as the number of
rules becomes high. In Figure 5, we show that the
number of rules influence the proportion of rules
that correctly align MR and text, as indicated by
the percentage of compositionality. In particular,
with no labeling functions, the entire rule set is
used and this leads to poor performance as most
slots are being incorrectly aligned. As more label-
ing functions are introduced to reduce this rule set
to its useful subset, the models begin to construct
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better data with the right alignments. The labeling
functions thus serve to remove the incorrect, low-
impact rules, so that the high impact rules can play
a greater role in constructing the necessary seman-
tic alignments for both NLU and NLG – until too
little rules remain to construct the base model.

9 Limitations

Overall, while we observe effectiveness in the pro-
posed approach to recreate data, it remains to say
that the constructed texts suffer from two main
drawbacks: First, the diversity of the text is rather
limited by the original seed set, which in turn con-
strains the data augmentation process that intend to
enrich the text diversity. Second, the process of cre-
ating programmable labeling functions can indeed
be a cumbersome process – it relies heavily on the
adequate skill sets of the annotators who need to
understand the target domain and basic scripting in
order to proceed. It is then vital to ease the process
of programming script writing, and reuse functions
as much as possible to avoid overheads.

10 Conclusion and Future Work

In this paper, we show the efficacy of the frame-
work where both NLU and NLG data can be jointly
and automatically labeled to construct high qual-
ity data. We also demonstrate that the framework
is receptive to the changes in MR slots, allowing
for automatic domain revisions of MR and text
data. Importantly, we observe that the success of
the framework depends on finding the right bal-
ance between the number of labeling functions and
the inherent level of compositionality of the data
to be labeled. Thus, for future work we intend to
focus on identifying the level of compositionality
and predicting the threshold number of labeling
functions necessary for decent performance, poten-
tially manipulating the inherent graphical relation-
ships (Hong et al., 2019). Moreover, the initial seed
set in our experiments are assumed to be present, it
is therefore necessary to first sample unlabeled data
based on difficulty to annotate and the performance
considerations (Chang et al., 2021b,c), before fine-
tuning with pretrained language models which have
strong priors for better quality data (Chang et al.,
2022b,a).
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