
Doubly-Trained Adversarial Data Augmentation
for Neural Machine Translation

Weiting Tan wtan12@jhu.edu
Center for Language and Speech Processing, Johns Hopkins University

Shuoyang Ding‡ dings@amazon.com
AWS AI Labs

Huda Khayrallah‡ hkhayrallah@microsoft.com
Microsoft

Philipp Koehn phi@jhu.edu
Center for Language and Speech Processing, Johns Hopkins University

Abstract

Neural Machine Translation (NMT) models are known to suffer from noisy inputs. To make
models robust, we generate adversarial augmentation samples that attack the model and preserve
the source-side meaning at the same time. To generate such samples, we propose a doubly-
trained architecture that pairs two NMT models of opposite translation directions with a joint
loss function, which combines the target-side attack and the source-side semantic similarity
constraint. The results from our experiments across three different language pairs and two
evaluation metrics show that these adversarial samples improve model robustness.

1 Introduction

When NMT models are trained on clean parallel data, they are not exposed to much noise,
resulting in poor robustness when translating noisy input texts. Various adversarial attack
methods have been explored for computer vision (Yuan et al., 2018) including Fast Gradient Sign
Methods (Goodfellow et al., 2015) and generative adversarial networks (GAN; Goodfellow et al.,
2014), among others. Most of these methods are white-box attacks where model parameters
are accessible during the attack so that the attack is much more effective. Good adversarial
samples could also enhance model robustness by introducing perturbation as data augmentation
(Goodfellow et al., 2014; Chen et al., 2020).

Due to the discrete nature of natural languages, most of the early-stage adversarial attacks
on NMT focused on black-box attacks (attacks without access to model parameters) and use

‡Work done while at Johns Hopkins University.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

157

techniques such as string modification based on edit distance (Karpukhin et al., 2019) or random
changes of words in input sentence (Ebrahimi et al., 2018)). Such black-box methods can
improve model robustness. However, simple modifications based on random deletion, insertion,
or swapping might not provide good adversarial examples. To better generate adversarial samples
for black-box models, Zhang et al. (2021) used a Masked Language Model to help find good
substitution at important positions of the input sequence. On the other hand, white-box based
methods like virtual training algorithm (Miyato et al., 2017) and adversarial regularization (Sato
et al., 2019) incorporate gradient-based adversarial techniques into natural languages processing.
Cheng et al. (2019, 2020) further constrained the direction of perturbation with source-side
semantic similarity and observed better performance.

Our work improves the gradient-based generation mechanism with a doubly-trained system,
inspired by dual learning (Xia et al., 2016). The doubly-trained system consists of a forward
(translate from source language to target language) and a backward (translate target language to
source language) model. After pretraining both forward and backward models, our augmentation
process has three steps:

1. Attack Step: Train forward and backward models at the same time to update the shared em-
bedding of source language (embedding of the forward model’s encoder and the backward
model’s decoder).

2. Perturbation Step: Generate adversarial sequences by modifying source input sentences
with random deletion and nearest neighbor search.

3. Augmentation Training Step: Train the forward model on the adversarial data.

We applied our method on test data with synthetic noise and compared it against different
baseline models. Experiments across three languages showed consistent improvement of model
robustness using our algorithm.1

2 Related Work

Natural and synthetic noise affects translation performance (Belinkov and Bisk, 2018) and
adversarial perturbation is commonly used to evaluate and improve model robustness in such
cases. Various adversarial methods are researched for robustness, some use adversarial samples
as regularization (Sato et al., 2019), some incorporate it with reinforcement learning (Zou
et al., 2020), and some use it for data augmentation. When used for augmentation, black-box
adversarial methods tend to augment data by introducing noise into training data. For most of the
time, simple operations such as random deletion/replacement/insertion are used for black-box
attack (Karpukhin et al., 2019), though such operations can be used as white-box attack with
gradients as well (Ebrahimi et al., 2018). It’s also possible to guide adversarial samples’ search
with pretrained models in black-box attack (Zhang et al., 2021).

Most white-box adversarial methods use different architecture to attack and update model
(Michel et al., 2019; Cheng et al., 2020, 2019), and from which, generate augmented data.
White-box adversarial methods gives more flexible modification for the token but at the same

1code released at: https://github.com/steventan0110/NMTModelAttack

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

158

https://github.com/steventan0110/NMTModelAttack

time become time consuming, making it infeasible for some cases when speed matters. Though
it is commonly believed that white-box adversarial methods have higher capacity, there is study
that shows simple replacement can be used as an effective and fast alternative to white-box
methods where it achieves comparable (or even better) results for some synthetic noise (Takase
and Kiyono, 2021). This finding correlates with our research to some degree because we also
find replacement useful to improve model robustness, though we perform replacement by most
similar token instead of sampling a random token.

3 Background

Minimum Risk Training (MRT) Shen et al. (2016) introduces evaluation metric into loss
function and assume that the optimal set of model parameters will minimize the expected loss
on the training data. The loss function is defined as ∆(y,y(s)) to measure the discrepancy
between model output y and gold standard translation y(s). It can be any negative sentence-
level evaluation metric such as BLEU, METEOR, COMET, BERTScore, (Papineni et al., 2002;
Banerjee and Lavie, 2005; Rei et al., 2020; Zhang et al., 2020) etc. The risk (training objective)
for the system is:

LMRT =

S∑
s=1

y|x(s);θ

[
∆(y,y(s))

]
=

S∑
s=1

∑
y∈C(x)

P (y|x(s); θ)∆(y,y(s))

θ̂MRT = argmin
θ
{LMRT(θ)}

(1)

where C(x(s)) is the set of all possible candidate translation by the system. Shen et al. (2016)
shows that partial of risk LMRT (θ) with respect to a model parameter θi does not need to
differentiate ∆(y,y(s)):

∂LMRT(θ)

∂θi
=

S∑
s=1

y|x(s);θ

[
∆(y,y(s))×

N(s)∑
n=1

∂P (y
(s)
n |x(s),y

(s)
<n; θ)/∂θi

P (y
(s)
n |x(s),y

(s)
<n; θ)

]
(2)

Hence MRT allows an arbitrary scoring function ∆ to be used, whether it is differentiable or
not. In our experiments, we use MRT with two metrics, BLEU (Papineni et al., 2002)—the
standard in machine translation and COMET (Rei et al., 2020)—a newly proposed neural-based
evaluation metric that correlates better with human judgement.

Adversarial Attack Adversarial attacks generate samples that closely match input while
dramatically distorting the model output. The samples can be generated by either a white-box
or a black-box model. Black-box methods do not have access to the model while white-box
methods have such access. A set of adversarial samples are generated by:

{x′|R(x′,x) ≤ ϵ, argmax
x′

J(x′,y; θ)} (3)

where J(·) is the probability of a sample being adversarial andR(x′,x) computes the degree
of imperceptibility of perturbation x′ compared to original input x. The smaller the ϵ, the less
noticeable the perturbation is. In our system, J(·) not only focuses on attacking the forward
model, but also uses the backward model to constrain the direction of gradient update and
maintain source-side semantic similarity.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

159

4 Approach: Doubly Trained NMT for Adversarial Sample Generation

We aim to generate adversarial samples that both preserve input’s semantic meaning and decrease
the performance of an NMT model. We propose a doubly-trained system that involves two
models of opposite translation direction (denote the forward model as θst and the backward
model as θts). Our algorithm will train and update θst, θts simultaneously. Note that both models
are pretrained before they are used for adversarial augmentation so that they can already produce
good translations. Our algorithm has three steps as shown in Figure 1.

Encoder Decoder

MODEL (forward)

Shared
Embedding(src) Embedding(tgt)

Encoder

MODEL (backward)

Embedding(tgt)

source sentences

target sentences

STEP1: Constrained Attack

Embedding (src)

Updated
Embedding (src)

from step 1

Source Tokens

Nearest Neighbor
Search

Adversarial
Source Tokens

STEP2: Generate
Adversarial Tokens

MODEL (forward)

STEP3: Regular Training on Adversarial
Tokens (as augmented data)

Random
Deletion

Cross Entropy

Decoder

Shared
Embedding (src)

target sentences

source sentences

source-side
similarity (L2)

target-side attack
(L1)

Loss = -lambda x L1 +
(1-lambda) x L2

Back propagate from Loss to
source language's embedding

Figure 1: Visual explanation of our adversarial augmentation algorithm. Step 1: Forward and
backward models are trained simultaneously and attacked by the combined objective function.
(The shared embedding is modified). Step 2: input source tokens are randomly deleted or
replaced by nearest neighbor search to generate adversarial samples. Step 3: forward model is
trained on adversarial samples.

Step 1 – Perform constrained attack to update embedding The first step is to attack the
system and update the source embedding. We train the models with Negative Log-Likelihood
(NLL) or MRT and combine the loss from two models as our final loss function to update the
shared embedding. We denote the loss for θst as L1 and loss for θts as L2. Because we want to
attack the forward model and preserve translation quality for the backward model, we make our
final loss

L = −λL1 + (1− λ)L2 (4)

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

160

where λ ∈ [0, 1] and is used as the weight to decide whether we focus on punishing the
forward model (large λ) or preserving the backward model (small λ). When we use NLL
as training objective, we have L1 = NLL(x(s),y(s), θst) where x(s) is the input sentences,
y(s) is the gold standard translation and NLL(·) is the Negative Log-Likelihood function that
computes a loss based on training data x(s),y(s) and model parameter θst. Similarly we have
L2 = NLL(y(s),x(s), θts)

We also experimented with MRT in our doubly-trained system to investigate if using
sentence-level scoring functions like BLEU or COMET would help improve adversarial samples’
quality. For model θst, we feed in source sentences x(s) and we infer a set of possible translation
S(x(s)) as the subset of full sample space. The loss (risk) of our prediction is therefore calculated
as:

L1 =
S∑

s=1

y|x(s);θst

[
∆(y,y(s))

]
=

S∑
s=1

∑
y∈S(x(s))

Q(y|x(s); θst, α)∆(y,y(s))

(5)

where

Q(y|x(s); θst, α) =
P (y|x(s); θst)

α∑
y′∈S(x(s))P (y′|x(s); θst)α

(6)

The value α here controls the sharpness of the formula and we follow Shen et al. (2016) to use
α = 5e−3 throughout our experiments. To sample the subset of full inference space S(x(s)),
we use Sampling Algorithm (Shen et al., 2016) to generate k translation candidates for each
input sentence (During inference time, the model outputs a probabilistic distribution over the
vocabulary for each token and we sample a token based on this distribution). It is denoted
as Sample(x(s), θ, k) in our Algorithm 1. Similarly, for model θts, we feed in the reference
sentences of our parallel data and generate a set of possible translation S(y(s)) in source language.
We compute the loss (risk) of source-side similarity as:

L2 =

S∑
s=1

x|y(s);θts

[
∆(x,x(s))

]
=

S∑
s=1

∑
x∈S(y(s))

Q(x|y(s); θts, α)∆(x,x(s))

(7)

After computing loss using MRT or NLL, we have

L(θst, θts) = −λL1 + (1− λ)L2, λ ∈ [0, 1] (8)

(negative sign for L1 since we want to attack θst) and we train the system to find

θ̂st, θ̂ts = argmin
θst,θts

{L(θst, θts)} (9)

To be updated from both risks, two models need to share some parameters since L1 only affects
θst and L2 only updates θts. Because a word embedding is a representation of input tokens, we
make it such that the source-side embeddings of θst and the target-side embeddings of θts are
shared. We do so because they are both representations of source language in our translation

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

161

and we can use it to generate adversarial tokens for source sentences in step 2. We also freeze
all other layers in two models. Thus, when we update the model parameter θst, θts, we only
update the shared embedding of source language. The process described above is summarized in
Algorithm 1.

Algorithm 1 Update model embedding
Input: Pretrained Models θst and θts, Max Number of Epochs E, Sample Size K, Sentence-
Level Scoring Metric M
Output: Updated Models θst and θts (only the shared embedding is updated)
while θst, θts not Converged and e ≤ E do

for (x(i),y(i)), 1 < i ≤ S do
if using MRT as objective then

/* sample and compute the risk */
S(x(i)) = Sample(x(i), θst,K)
L1 ←MRT(S(x(i)),M,y(i))
/* Repeat for another direction */
S(y(i)) = Sample(y(i), θts,K)
L2 ←MRT(S(y(i)),M,x(i))

else if using NLL as objective then
L1 ← NLL(x(i),y(i), θst)
L2 ← NLL(x(i),y(i), θts)

end if
L(θst, θts) = −λL1 + (1− λ)L2

θst, θts ← ∇EmbL(θst, θts)
end for

end while

Step 2 – Perturb input sentences to generate adversarial tokens After updating the shared
embedding, we can use the updated embedding to generate adversarial tokens. We introduce two
kinds of noise into input sentences to generate adversarial samples: random deletion and simple
replacement. To generate adversarial tokens (due to the discrete nature of natural languages), we
use cosine similarity. Let model embedding be E before the embedding update, and E′ after the
update from Algorithm 1. Let the vocab be V and let input sentence be S = {s1, s2, · · · sn} For
each token si ∈ S, si /∈ {EOS, BOS, PAD}, three actions are possible:

1. no perturbation, with probability Pnp

2. perturb the token:

(a) perturbed into most similar token by updated embedding with probability Prp

(b) perturbed to be empty token (deleted at this position) with probability Prd = 1− Prp

Throughout our experiments, we set the hyper-parameters as Pnp = 0.7, Prp = 0.8, Prd = 0.2.
That means each token has 30 percent chance to be perturbed, and if that’s the case, it has
80 percent chance to be replaced by a similar token and 20 percent chance to be deleted. For
no-perturbation or deletion case, it’s straightforward to implement. For replacement, we compute
s′i (the adversarial token of si) by cosine similarity: s′i = argmax

v∈V,v ̸=si

(E′[si]
|E′[si]| ·

E[v]
|E[v]|). For the

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

162

credibility of this hyper-parameter setup, we perform a grid search over 9 possible combinations:

(0.6, 0.7, 0.8)
Pnp

× (0.6, 0.7, 0.8)
Prp

We found that the difference in performance is mostly due to model type instead of proba-
bility setup. Details of grid search can be found in Appendix (Table 7).

Step 3 – Train on adversarial samples After generating adversarial tokens from step 2, we
directly train the forward model on them with the NLL loss function.

5 Experiment

5.1 Pretrained Model Setup

We pretrain the standard Transformer (Vaswani et al., 2017) base model implemented in fairseq
(Ott et al., 2019). The hyper-parameters follow the transformer-en-de setup from fairseq
and our script is shown in Appendix, Figure 2. We experimented on three different language pairs:
Chinese-English (zh-en), German-English (de-en), and French-English (fr-en). For each language
pair, two models are pretrained on the same training data using the same hyper-parameters and
they share the embedding of source language. For example, for Chinese-English, we first train
the forward model (zh-en) from scratch. Then we freeze the source language (zh)’s embedding
from forward model and use it to pretrain our backward model (en-zh). The training data used
for three languages pairs are:

1. zh-en: WMT17 (Bojar et al., 2017) parallel corpus (except UN) for training, WMT2017
and 2018 newstest data for validation, and WMT2020 newstest for evaluation.

2. de-en: WMT17 parallel corpus for training, WMT2017 and 2018 newstest data for
validation, and WMT2014 newstest for evaluation.

3. fr-en: WMT14 (Bojar et al., 2014) parallel corpus (except UN) for training, WMT2015
newdicussdev and newsdiscusstest for validation, and WMT2014 newstest
for evaluation.

For Chinese-English parallel corpus, we used a sentencepiece model of size 20k to perform BPE.
For German-English and French-English data, we followed preprocessing scripts 2 on fairseq
and used subword-nmt of size 40k to perform BPE. We need two validation sets because in our
experiment, we fine-tune the model with our adversarial augmentation algorithm on one of the
validation set and use the other for model selection. After pretraining stage, the transformer
models’ performances on test sets are shown in Table 1. The evaluation of BLEU score is
computed by SacreBLEU3 (Post, 2018).

2github.com/pytorch/fairseq/tree/master/examples/translation
3Signature included in Appendix, Appendix C

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

163

lang BLEU lang BLEU lang BLEU

zh-en 22.8 de-en 30.2 fr-en 34.5
en-zh 36.0 en-de 24.9 en-fr 35.3

Table 1: Pretrained baseline models’ BLEU score

5.2 Doubly Trained System for Adversarial Attack

Our adversarial augmentation algorithm has three steps: the first step is performing a constrained
adversarial attack while the remaining steps generate and train models on augmentation data. In
this section, we experiment with only the first step and test if Algorithm 1 can generate meaning-
preserving update on the embedding. Our objective function L(θst, θts) = −λL1+(1−λ)L2 is
a combination of two rewards from forward and backward models. The expectation is that after
the perturbation on the embedding, the forward model’s performance would drastically decrease
(because it’s attacked) and the backward model should still translate reasonably well (because the
objective function preserves the source-side semantic meaning). We perform the experiment on
Chinese-English and results are shown in Table 4 in appendix. We find that models corroborate
to our expectation: After 15 epochs, the forward (zh-en) model’s performance drops significantly
while the backward (en-zh) model’s performance barely decreases. After 20 epochs, the forward
model is producing garbage translation while the backward model is still performing well.

5.3 Doubly Trained System for Data Augmentation

From Section 5.2, we have verified that the first step of our adversarial augmentation training
is effective at generating meaning-preserving perturbation on the word embedding. We then
perform all three steps of our algorithm to investigate whether it is robust as an augmentation
technique, which is the focus of this work. In order to evaluate the robustness of doubly-trained
model, we prepare synthetic noisy test data of different languages mentioned in Section 5.1. We
follow the practice from Niu et al. (2020) and perturb the test data to varying degree, ranging
from 10% to 30%. We focus on two kinds of noise: random deletion and simple replacement.
The procedure we introduce synthetic noise into clean test data is the same as the procedure
described in Step 2. The only difference is in the case of simple replacement: We only have the
embedding E from the pretrained model and there is no attacking step to update it into E′. The
perturbed token s′ is therefore found by s′i = argmax

v∈V,v ̸=si

(E[si]
|E[si]| ·

E[v]
|E[v]|).

5.3.1 Result Analysis

We show our results in Table 2 and Table 3. For each language pair, there are 6 types of models
in each plot:

1. baseline model: pretrained forward (src-tgt) model

2. fine-tuned model: baseline model fine-tuned on validation set using NLL loss

3. simple replacement model: baseline model fine-tuned on adversarial tokens. This model is
fine-tuned using procedure described in Figure 1 without the first step. Adversarial samples

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

164

are generated the same way we introduce noise into clean test data (s′i = argmax
v∈V,v ̸=si

(E[si]
|E[si]| ·

E[v]
|E[v]|)). Since it sees the type of noise we introduce into clean data, it’s a strong baseline
and resistant to perturbation in clean data.

4. dual-nll model: baseline model fine-tuned on adversarial tokens generated by doubly-
trained system with NLL as training objective.

5. dual-bleu model: baseline model fine-tuned on adversarial tokens generated by doubly-
trained system with MRT as training objective. It uses BLEU as the metric to compute
MRT risk.

6. dual-comet model: same as dual-bleu model above except that it uses COMET as the
metric for MRT risk.

We show the percentage of change evaluated by BLEU and COMET on Table 2 and Table 3,
computed by

∆Metric(x) = 1− Metric(x)
Metric(clean)

(10)

where the metric can be BLEU or COMET, and x represents the test data used, as explained
in Table 2. As the ratio of noise increases, Metric(x) decreases, which increases ∆Metric(x).
Therefore, robust models resist to the increase of noise ratio and have lower ∆Metric(x). From
both tables, we find that doubly-trained models (dual-nll, dual-bleu, and dual-comet) are more
robust than the other models regardless of test data, evaluation metrics, or language pairs used.

For any NMT model tested on the same task evaluated by two metrics (any corresponding
row in Table 2 and Table 3), BLEU and COMET give similar results though COMET have a
larger difference among models because its percentage change is more drastic. We performed
tests using COMET in addition to BLEU because we use MRT with BLEU and COMET in
attack step and we want to see if performances of dual-comet and dual-bleu model differ under
either evaluation metric. From our results, there is no noticeable difference. This might happen
because we used a small learning rate for embedding update in attack step or simply because
BLEU and COMET give similar evaluation.

Comparing the results in Table 2 and Table 3, we see margins of models’ performance are
bigger when evaluated on noisy test data generated with replacement. This is expected because
random deletion introduces more noise than replacement and it’s hard for models to defend
against it. Therefore, doubly trained systems have more improvement against other models when
noise type is simple replacement.

Lastly, when we compare across doubly-trained systems (dual-nll, dual-bleu, and dual-
comet), we see that they are comparable to each other within a margin of 3 percent. This implies
that incorporating a sentence-level scoring metric with MRT does not greatly improve word-level
adversarial augmentation. This is possible because we perturb on token level instead of sentence
level while MRT objective focus on sentence-level information.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

165

Model (ZH-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 25% 36% 46% 55% 63% 8% 14% 19% 22% 25%
Finetune 23% 33% 42% 52% 60% 8% 11% 14% 17% 21%
Simple Replacement 23% 33% 41% 51% 59% 6% 8% 10% 12% 15%
Dual NLL 21% 31% 40% 49% 56% 4% 6% 8% 10% 12%
Dual BLEU 23% 33% 42% 51% 58% 4% 6% 9% 11% 13%
Dual COMET 22% 32% 41% 50% 58% 4% 6% 8% 10% 13%

Model (DE-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 43% 51% 60% 68% 74% 31% 34% 37% 40% 44%
Finetune 42% 50% 58% 67% 73% 31% 34% 37% 40% 44%
Simple Replacement 42% 50% 59% 66% 72% 30% 32% 35% 37% 40%
Dual NLL 42% 49% 56% 63% 69% 29% 31% 33% 35% 37%
Dual BLEU 41% 49% 57% 64% 71% 28% 30% 33% 35% 37%
Dual COMET 42% 48% 57% 64% 70% 29% 31% 33% 35% 38%

Model (FR-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 47% 54% 61% 67% 74% 38% 40% 44% 47% 50%
Finetune 47% 54% 60% 67% 73% 37% 40% 44% 48% 49%
Simple Replacement 45% 53% 60% 66% 73% 35% 37% 40% 43% 46%
Dual NLL 45% 52% 59% 65% 71% 35% 37% 40% 43% 45%
Dual BLEU 45% 52% 59% 66% 72% 35% 36% 39% 41% 44%
Dual COMET 45% 52% 58% 65% 71% 34% 37% 39% 42% 44%

Table 2: Models’ performance on noisy synthetic data generated from random deletion (RD)
and simple replacement (RP). Number after RD/RP is the percentage of noise introduced in clean
data (e.g RD15 is the test set generated by randomly deleting 15% of clean test data). Generated
translation are measured by ∆BLEU. We define BLEU(x) as the BLEU score evaluated on test
dataset x (e.g. RD10), ∆BLEU(x) = 1− BLEU(x)

BLEU(clean) ,where BLEU(clean) is BLEU score of the
model evaluated on the clean dataset. The higher the ∆BLEU, the worse the model on noisy
data. The details of the six models and analysis are included in Section 5.3.1.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

166

Model (ZH-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 99% 158% 210% 278% 342% 48% 68% 95% 116% 137%
Finetune 66% 105% 143% 189% 236% 30% 41% 56% 67% 80%
Simple Replacement 63% 105% 139% 184% 230% 19% 27% 36% 48% 62%
Dual NLL 64% 103% 135% 176% 225% 20% 29% 37% 47% 56%
Dual BLEU 64% 102% 138% 181% 224% 18% 26% 35% 46% 56%
Dual COMET 63% 102% 136% 180% 227% 18% 27% 38% 47% 57%

Model (DE-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 124% 159% 196% 230% 265% 76% 88% 99% 113% 127%
Finetune 116% 150% 186% 220% 255% 72% 83% 95% 108% 122%
Simple Replacement 113% 145% 179% 212% 245% 68% 78% 88% 98% 109%
Dual NLL 114% 146% 177% 208% 241% 71% 80% 88% 97% 108%
Dual BLEU 113% 144% 176% 208% 240% 69% 78% 86% 95% 106%
Dual COMET 114% 144% 177% 209% 242% 70% 79% 87% 96% 107%

Model (FR-EN) RD10 RD15 RD20 RD25 RD30 RP10 RP15 RP20 RP25 RP30

Baseline 132% 156% 178% 204% 228% 104% 113% 122% 132% 142%
Finetune 122% 147% 171% 197% 221% 91% 100% 109% 119% 128%
Simple Replacement 121% 144% 167% 193% 217% 89% 96% 104% 113% 120%
Dual NLL 120% 143% 165% 190% 213% 89% 97% 105% 112% 121%
Dual BLEU 121% 144% 167% 192% 216% 89% 96% 104% 110% 117%
Dual COMET 120% 143% 165% 191% 214% 88% 95% 102% 110% 118%

Table 3: Models’ performance on noisy synthetic data generated from random deletion (RD)
and simple replacement (RP). Set-up is the same as Table 2 except that evaluation metric is
COMET instead of BLEU, so we show ∆COMET here. Note that ∆COMET can go over 100%
because COMET score can be negative.

6 Conclusion

We proposed a white-box adversarial augmentation algorithm to improve model robustness. We
use a doubly-trained system to perform constrained attack and then train the model on adversarial
samples generated with random deletion and gradient-based replacement. Experiments across
different languages and evaluation metrics have shown consistent improvement for model
robustness.

References

Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages
65–72, Ann Arbor, Michigan. Association for Computational Linguistics.

Belinkov, Y. and Bisk, Y. (2018). Synthetic and natural noise both break neural machine
translation.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

167

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P.,
Post, M., Saint-Amand, H., Soricut, R., Specia, L., and Tamchyna, A. (2014). Findings of the
2014 workshop on statistical machine translation. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, pages 12–58, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., Huck, M., Koehn,
P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L., and Turchi,
M. (2017). Findings of the 2017 conference on machine translation (WMT17). In Proceedings
of the Second Conference on Machine Translation, pages 169–214, Copenhagen, Denmark.
Association for Computational Linguistics.

Chen, C., Qin, C., Qiu, H., Ouyang, C., Wang, S., Chen, L., Tarroni, G., Bai, W., and Rueckert,
D. (2020). Realistic adversarial data augmentation for mr image segmentation.

Cheng, Y., Jiang, L., and Macherey, W. (2019). Robust neural machine translation with doubly
adversarial inputs.

Cheng, Y., Jiang, L., Macherey, W., and Eisenstein, J. (2020). Advaug: Robust adversarial
augmentation for neural machine translation.

Ebrahimi, J., Lowd, D., and Dou, D. (2018). On adversarial examples for character-level neural
machine translation.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial networks.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial
examples.

Karpukhin, V., Levy, O., Eisenstein, J., and Ghazvininejad, M. (2019). Training on synthetic
noise improves robustness to natural noise in machine translation.

Michel, P., Li, X., Neubig, G., and Pino, J. M. (2019). On evaluation of adversarial perturbations
for sequence-to-sequence models.

Miyato, T., Dai, A. M., and Goodfellow, I. (2017). Adversarial training methods for semi-
supervised text classification.

Niu, X., Mathur, P., Dinu, G., and Al-Onaizan, Y. (2020). Evaluating robustness to input
perturbations for neural machine translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8538–8544, Online. Association for
Computational Linguistics.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. (2019).
fairseq: A fast, extensible toolkit for sequence modeling.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brussels.
Association for Computational Linguistics.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

168

Rei, R., Stewart, C., Farinha, A. C., and Lavie, A. (2020). COMET: A neural framework for
MT evaluation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2685–2702, Online. Association for Computational
Linguistics.

Sato, M., Suzuki, J., and Kiyono, S. (2019). Effective adversarial regularization for neural
machine translation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 204–210, Florence, Italy. Association for Computational
Linguistics.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016). Minimum risk training
for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1683–1692, Berlin, Germany.
Association for Computational Linguistics.

Takase, S. and Kiyono, S. (2021). Rethinking perturbations in encoder-decoders for fast training.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need.

Xia, Y., He, D., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and Ma, W.-Y. (2016). Dual learning for
machine translation.

Yuan, X., He, P., Zhu, Q., and Li, X. (2018). Adversarial examples: Attacks and defenses for
deep learning.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2020). Bertscore: Evaluating
text generation with bert.

Zhang, X., Zhang, J., Chen, Z., and He, K. (2021). Crafting adversarial examples for neu-
ral machine translation. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1967–1977, Online. Association for Computa-
tional Linguistics.

Zou, W., Huang, S., Xie, J., Dai, X., and Chen, J. (2020). A reinforced generation of adversarial
examples for neural machine translation.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

169

Appendix

A Pretrained model

Hyper-parameter for Pretraining the transformers (same for three language pairs) is shown in
Figure 2. Note that for the fine-tune model, we use the same hyper-parameter as in pretraining,
and we simply change the data directory into validation set to tune the pretrained model.

fairseq-train $DATADIR \
--source-lang src \
--target-lang tgt \
--save-dir $SAVEDIR \
--share-decoder-input-output-embed \
--arch transformer_wmt_en_de \
--optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 --warmup-updates 4000 \
--lr 0.0005 --min-lr 1e-09 \
--dropout 0.3 --weight-decay 0.0001 \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--max-tokens 2048 --update-freq 16 \
--seed 2 \

Figure 2: This setup is used for all pretrained models, regardless of the language pair

B Adversarial Attack on Chinese-English Model

Adversarail Attacks are performed with hyper-parameters shown in Figure 3 and the attack result
is shown in Table 4

#Epochs BLEU (zh-en) BLEU (en-zh)

10 20.1 34.0
15 10.9 32.4
20 0.3 33.5
30 0.0 32.1

Table 4: Forward and backward models’ performance (of Chinese and English) after adversarial
attack using MRT as training objective, described in Algorithm 1.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

170

fairseq-train $DATADIR \
--source-lang src \
--target-lang tgt \
--save-dir $SAVEDIR \
--share-decoder-input-output-embed \
--train-subset valid \
--arch transformer_wmt_en_de \
--optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 --warmup-updates 4000 \
--lr 0.0005 --min-lr 1e-09 \
--dropout 0.3 --weight-decay 0.0001 \
--criterion dual_bleu --mrt-k 16 \
--batch-size 2 --update-freq 64 \
--seed 2 \
--restore-file $PREETRAIN_MODEL \
--reset-optimizer \
--reset-dataloader \

Figure 3: Note that criterion is called ”dual bleu” and this is our customized criterion based on
fairseq. It implements the doubly trained adversarial attack algorithm discussed in this paper
with sample size 16 (mrt-k = 16).

C SacreBleu Signature:

The signature generated by SacreBleu is ”nrefs:1—case:mixed—tok:13a—smooth:exp—version:1.5.1”.
When evaluated with Chinese test data, we manually tokenize the predictions from our en-zh
model with tok=sacrebleu.tokenizers.TokenizerZh() before computing corpus bleu with
SacreBleu. The implementation can be found in our code.4

D Data Augmentation

Hyper-parameter for fine-tuning the base model with proposed doubly-trained algorithm on
validation set is shown in Figure 4

Note that the criterion is either ”dual mrt” (using BLEU as metric for MRT), ”dual comet”
(using COMET as metric for MRT) or ”dual nll” (using NLL as training objective). These are
customized criterion that we wrote to implement our algorithm.

BLEU score for doubly-trained model’s performance on noisy test data is shown in Table 2
and COMET score is shown in Table 3. Note that sometimes the ∆COMET can be larger than
100% because COMET score can go from positive to negative.

4https://github.com/steventan0110/NMTModelAttack

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

171

https://github.com/steventan0110/NMTModelAttack

fairseq-train $DATADIR \
-s $src -t $tgt \
--train-subset valid \
--valid-subset valid1 \
--left-pad-source False \
--share-decoder-input-output-embed \
--encoder-embed-dim 512 \
--arch transformer_wmt_en_de \
--dual-training \
--auxillary-model-path $AUX_MODEL \
--auxillary-model-save-dir $AUX_MODEL_SAVE \
--optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 0.000001 --warmup-updates 1000 \
--lr 0.00001 --min-lr 1e-09 \
--dropout 0.3 --weight-decay 0.0001 \
--criterion dual_comet/dual_mrt/dual_nll --mrt-k 8 \
--comet-route $COMET_PATH \
--batch-size 4 \
--skip-invalid-size-inputs-valid-test \
--update-freq 1 \
--on-the-fly-train --adv-percent 30 \
--seed 2 \
--restore-file $PRETRAIN_MODEL \
--reset-optimizer \
--reset-dataloader \
--save-dir $CHECKPOINT_FOLDER \

Figure 4: Script for using doubly trained system for data augmentation

E Choosing Hyper-parameter: Grid Search

E.1 Grid Search for λ

lambda is the hyper-parameter used to balance the weight for the two risks in our doubly trained
system. Recall the formula of our objective function: L(θst, θts) = λR1 − (1 − λ)R2. We
perform grid search over (0.2, 0.5, 0.8)

λ

using dual-bleu and dual-comet model. It can be shown

in Table 5 and Table 6 that λ value does not have a large impact on evaluation results and we
pick λ = 0.8 throughout the experiments.

E.2 Grid Search for Pnp, Prp

We perform grid search for Pnp, the probability of not perturbing a token, and Prp, the probability
of replacing the token if decided to modify it. Our search space is (0.6, 0.7, 0.8)

Pnp

× (0.6, 0.7, 0.8)
Prp

and the results are shown in Table 7. Since there is no noticeable difference across various

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

172

λ BLEU(zh-en) BLEU(de-en) BLEU(fr-en)

0.2 28.6 46.9 40.0
0.5 28.5 47.1 39.9
0.8 28.4 47.0 39.8

Table 5: dual-bleu model’s performance on varying λ values

λ BLEU(zh-en) BLEU(de-en) BLEU(fr-en)

0.2 28.6 47.1 39.8
0.5 28.7 46.9 39.9
0.8 28.5 46.8 39.8

Table 6: dual-comet model’s performance on varying λ values

Pnp, Prp values, we pick Pnp = 0.7, Prp = 0.8 throughout our experiments.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

173

model (zh-en) Prp = 60 Prp = 70 Prp = 80

simple replacement Pnp = 60 26.8 26.8 26.8
Pnp = 70 26.8 26.9 26.8
Pnp = 80 27.0 27.1 27.0

dual-bleu Pnp = 60 28.1 28.2 28.2
Pnp = 70 28.4 28.4 28.4
Pnp = 80 28.4 28.5 28.6

dual-comet Pnp = 60 28.4 28.5 28.4
Pnp = 70 28.4 28.4 28.4
Pnp = 80 28.6 28.7 28.7

model (de-en) Prp = 60 Prp = 70 Prp = 80

simple replacement Pnp = 60 43.8 43.9 43.9
Pnp = 70 44.0 44.0 44.0
Pnp = 80 44.3 44.3 44.3

dual-bleu Pnp = 60 46.4 46.6 46.5
Pnp = 70 46.7 46.7 47.0
Pnp = 80 47.2 47.1 47.3

dual-comet Pnp = 60 46.5 46.6 46.7
Pnp = 70 46.7 46.7 46.8
Pnp = 80 47.2 47.3 47.3

model (fr-en) Prp = 60 Prp = 70 Prp = 80

simple replacement Pnp = 60 37.6 37.6 37.6
Pnp = 70 37.8 37.7 37.6
Pnp = 80 37.8 37.8 37.7

dual-bleu Pnp = 60 39.5 39.8 39.6
Pnp = 70 39.6 39.9 39.9
Pnp = 80 40.0 40.1 40.1

dual-comet Pnp = 60 39.9 39.7 39.8
Pnp = 70 39.9 39.7 39.7
Pnp = 80 40.0 40.1 40.0

Table 7: Evaluation performance based on varying probability of modification and replacement.
Prp : Probability of replacing the token, Pnp : Probability of not perturbing a token. Pnp = 60
means we only perturb 40 percent of the input tokens

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

174

	R12_Tan

