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Abstract

There are two main paradigms for Named En-
tity Recognition (NER): sequence labelling and
span classification. Sequence labelling aims
to assign a label to each word in an input
text using, for example, BIO (Begin, Inside
and Outside) tagging, while span classification
involves enumerating all possible spans in a
text and classifying them into their labels. In
contrast to sequence labelling, unconstrained
span-based methods tend to assign entity la-
bels to overlapping spans, which is generally
undesirable, especially for NER tasks without
nested entities. Accordingly, we propose GN-
Ner, a framework that uses Graph Neural Net-
works to enrich the span representation to re-
duce the number of overlapping spans during
prediction. Our approach reduces the num-
ber of overlapping spans compared to strong
baseline while maintaining competitive met-
ric performance. Code is available at https:
//github.com/urchade/GNNer.

1 Introduction

Named Entity Recognition (NER) is an information
extraction task that aims to identify named entities
such as locations, organizations and person names
from textual data. Frequently, NER is designed as
a sequence labelling task where each word is clas-
sified into its respective label using an annotation
scheme such as BIO (Huang et al., 2015; Lample
et al., 2016). Such schemes are used to encode
segment information on the token level. Recently,
span-based NER has gained a lot of popularity by
handling segments, instead of individual words,
as the basic units for labelling (Luan et al., 2018;
Wadden et al., 2019). Specifically, span-based NER
enumerates every segment in a text and classifies
them by their entity label, whereby non-entity seg-
ments are classified into an allocated null label.
While this method has shown good empirical re-
sults, it often assigns entity labels to overlapping

Figure 1: The overall architecture of our framework:
GNNer

spans, which is not desirable, especially for flat
NER tasks.

Therefore, to ensure that entities do not overlap,
a constraint must be explicitly applied during de-
coding through, for example, Semi-Markov CRFs
(Sarawagi and Cohen, 2005; Sato et al., 2017). Re-
cent work by Fu et al. (2021) and Li et al. (2021)
address overlapping entities using heuristic decod-
ing: conflict between overlapping spans is resolved
by retaining the span with the highest prediction
probability, dropping the others. This approach
has proven effective, however, the no-overlap con-
straint is not imposed during learning, which is
sub-optimal. In this work, we consider that the
no-overlap constraint could be optimized directly
by injecting inductive biases into the model.

In this regard, we propose a new approach to
reduce overlapping in span-based NERs without
affecting the efficiency of heuristic-based decod-
ing. The idea is to make the representation of each
span directly influenced by other spans overlap-
ping with it. Specifically, we encode overlapping
information as a graph and feed it into the span rep-
resentation using an equivariant graph neural net-
work layer. In this way, we bias the model towards
predictions that implicitly respect the constraints
without explicitly modelling them. Our results
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demonstrate that injecting this graph during model
training significantly reduces the number of over-
laps compared to our baseline model while achiev-
ing better performance. We propose, in this paper,
two variants of our model, GNNer-Conv based on
the graph convolution network (Kipf and Welling,
2017) and GNNer-AT based on the graph atten-
tion network (Velickovic et al., 2018). We observe
that GNNer-AT is best at preventing span overlaps
at the cost of a low recall, while GNNer-Conv
provides a better trade-off between the number of
violated constraints and metric performance (preci-
sion, recall and F-score).

2 Model

Given an input sequence, our task involves enumer-
ating and classifying every span. The architecture
of our model, summarized in Figure 1, includes the
following components: token representation layer,
span representation layer, GNN layer and span clas-
sification layer. Our model is similar to the vanilla
span-based NER models (Lee et al., 2017; Luan
et al., 2019), to which we add the GNN layer.

2.1 Word Representation

The primary component of our architecture is
the word representation layer. The purpose of
this layer is to return a set of embedding vec-
tors {h0,h1, . . . ,hL} from a sequence of tokens
{w0, w1, . . . , wL}. For this part, we employ pre-
trained Transformer models such as BERT (Devlin
et al., 2019). However, since pre-trained Trans-
former models produce sub-word instead of word
representations, we retain for each word its first
sub-word representation. This choice works well
in practice for token classification tasks (Devlin
et al., 2019; Beltagy et al., 2019).

2.2 Span Representation

After representing words with their contextualized
embeddings, we enumerate all the spans of the sen-
tence up to a maximum span width, which we set
to 6 in all our experiments, following prior works
(Sarawagi and Cohen, 2005; Xia et al., 2019). Next,
we compute the representation of a span as the con-
catenation of word embeddings of its left and right
extremities, along with a learned embedding of the
span width. Specifically, a span (i, j) of width k
is represented by the vector sij = hi ⊗ hj ⊗ zk
where hi and hj are respectively the representation
of the words at indexes i and j, and zk corresponds

to the embedding vector for spans of width k; the
⊗ symbol denotes the concatenation operation.

2.3 Graph construction

Given two spans s1 and s2, our graph as repre-
sented by the adjacency matrix A is defined as
follows:

A[s1, s2] =





1, if s1 = s2

0, if |s1 ∩ s2| = 0

−1, otherwise

(1)

In the adjacency matrix, the edge weight 1 cor-
responds to self-connection, 0 to non-overlapping
nodes, and -1 to overlapping spans. The choice
of -1 for the overlap case is supposed to bias the
model to learn dissimilar representations for over-
lapping spans. However, we believe that there may
be a better choice to achieve this objective, which
would require more in-depth investigation. The ad-
dition of the span graph information to the model
before the classification layer gives each span in-
formation about the spans connected to it and thus
allows them to make predictions in a collaborative
way, i.e. to make their predictions according to the
predictions of their neighbours in the graph.

2.4 Span refinement with GNN

After the initial BERT-based representations of
all spans are obtained, we refine them using a
GNN layer exploiting the previously constructed
graph. We propose two versions of the GNN layer:
GNNer-CONV, based on graph convolution; and
GNNer-AT based on attention mechanisms. By
exploiting the graph information, we expect the
model to implicitly learn that two overlapping
spans should not be predicted as a named entity
at the same time by learning dissimilar representa-
tions for them.

2.4.1 GNNer-CONV

The first variant of our model uses a GCN (Kipf
and Welling, 2017) layer, but since GCN is not well
suited in the presence of negative edges (Derr et al.,
2018), we run two independent 1-layer GCNs over
the span representations S: a first GCN, GCN+

using only positive edges E+ and another GCN
GCN− using only negative edges E− for which we
concatenate the two representations to get the final
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Architecture Precision Recall F1 Num. Ov.
Baseline 89.83±0.48 90.31±0.26 90.06±0.15 83±27

Conll 2003 GNNer-CONV 90.12±0.32 89.88±0.36 90.16±0.52 52±1
GNNer-AT 89.54±0.84 79.32±0.04 84.12±0.37 24±11

Baseline 66.69±0.49 69.89±0.45 68.25±0.33 87±4
SciERC GNNer-CONV 66.89±1.59 70.34±0.50 68.57±0.96 35±3

GNNer-AT 63.21±0.51 58.06±0.86 60.53±0.69 13±2
Baseline 85.30±0.45 89.59±0.74 87.39±0.13 43±12

NCBI GNNer-CONV 85.98±0.45 88.93±0.45 87.43±0.45 16±5
GNNer-AT 84.78±0.18 79.41±0.61 81.98±0.38 10±4

Table 1: The results of the experiments on the test datasets. We report the micro-averaged precision, recall and
F1-score as well as Num. OV., the total number of overlapping spans on all the test set (without normalization). The
numbers are the result of averaging across 3 different/independent runs using different random seeds.

span representation:

S+ = GCN+(S, E
+)

S− = GCN−(S, E−)

Sfinal = S+ ⊗ S−
(2)

Note that running a 1-layer GCN on the positive
edges is equivalent to a linear layer since the posi-
tive edges are self-connections.

2.4.2 GNNer-AT
The second variant of our method uses a graph
attention network (Velickovic et al., 2018) but in-
stead of using additive attention, we employ a dot
product attention which is much faster and more
space-efficient in practice, according to Vaswani
et al. (2017). More specifically, we project the span
representation into keys K, queries Q, and values
V using a two-layer feed-forward network, and
compute the attention score as the dot product of
the queries and all keys. We further include the
scaling factor 1√

dmodel
following (Vaswani et al.,

2017) to prevent saturation. We then multiply this
attention score by the weighted adjacency matrix.
We compute the final span representation as fol-
lows:

Sfinal = (
QKT

√
dmodel

⊙A)V (3)

In the above equation, ⊙ denotes element-wise mul-
tiplication or Hadamard product which is used to
mask the attention for null edges. One downside to
this approach is that the self-attention mechanism
has a quadratic complexity in the number of spans.

2.5 Span classification
Lastly, the final representation of the spans is
passed to a linear layer with softmax activation

to predict the span labels. Remember that for non-
entity spans, we allocate a null label.

Y = softmax(SfinalW (f)) (4)

Here, W (f) is a weight matrix that project the
span representations into the label space and the
softmax activation function is applied to the label
dimension.

3 Experiments

3.1 Experimental Setup
Datasets We evaluate our approach on three
benchmark datasets: Conll-2003 (Tjong Kim Sang
and De Meulder, 2003), SciERC NER (Luan et al.,
2018) and NCBI (Doğan et al., 2014). Conll-2003
is a general domain NER dataset that extracts per-
son, organization and location entity mentions from
text. SciERC is a dataset for scientific information
extraction that consists of article abstracts extracted
from Artificial Intelligence related articles. NCBI
is a NER dataset that is designed to identify disease
mentions in biomedical texts. For all the datasets,
we employed the standard train, test and validation
splits.

Domain Train Dev Test
Conll 2003 News 14,987 3,466 3,684

NCBI Bio 5432 923 940
SciERC CS 350 50 50

Table 2: The statistics of the datasets

Evaluation We evaluate our models on the test
splits of the corresponding datasets. Our evaluation
is based on the exact match between true and gold
entities by discarding non-entity spans. We report
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the micro-averaged precision, recall and F1. In
addition, we also measure the ability of each model
to avoid entity overlaps during classification by
reporting the number of entity overlaps (Num. Ov.)
across all the test set, where a lower number is
better.

Implementation details For all our experiments,
we used either pre-trained BERT (Devlin et al.,
2019) or SciBERT (Beltagy et al., 2019) as the
word encoder depending on the dataset used i.e.
BERT for conll-2003, and SciBERT for SciERC
and NCBI. We employed a span width embedding
of 128 dimensions, and down-projected the span
representation (768 * 2 + 128) into 128 units before
the GNN layer, using a linear layer. We used only
one layer for all GNN variants, which resulted in
the best performance on the dev set. In fact, we
noticed in our preliminary experiments that adding
more layers resulted in decreased performance and
slower convergence during training. For all exper-
iments, we set our learning rate to 1e-5 and used
Adam (Kingma and Ba, 2017) as our optimizer. We
ran all our models for up to 50 epochs and kept the
checkpoint with the best validation performance for
testing. All our models are implemented in the Py-
Torch (Paszke et al., 2019) and we used the heavily
tested GCN layer provided by PyTorch Geometric
library (Fey and Lenssen, 2019).

Baseline We used the same architecture without
the GNN layer as our baseline. For fair compar-
isons, we increased the size of the baseline layers
to obtain a comparable number of parameters to
our proposed models.

3.2 Results

Table 1 summarizes the results of our exper-
iments by reporting the performance measures
(micro-averaged Precision, Recall and F1-score)
and the Num. Ov. on the test set. The numbers are
the result of averaging across 3 independent runs
using different random seeds.

Main results From the table 1 we can draw sev-
eral conclusions. First, GNNer-AT outperforms
every approach at reducing Num. Ov. On average.
It produces 4 times fewer overlaps than the baseline
model and 2 times fewer than the GNNer-CONV
model. However, it has low recall (-11 absolute
points compared to the baseline on conll-2003) but
can maintain a comparable precision score. The
problem of low recall could be caused by overly re-

stricting the span representation through the use of
negative edges in our span graph, which could pre-
vent the model from predicting many entities. Sec-
ond, GNNer-CONV gets competitive results while
maintaining a low Num. Ov. compared to the base-
line model, making it the best balance between
Num. Ov. and metric performance.

Learning curves Figure 2 shows the evolution of
precision, recall, and Num. Ov. during model train-
ing. The plot is shown for training on the SciERC
dataset, we obtained similar curves on Conll-2003
and NCBI datasets. We observe that the baseline
model trains faster than the GNN-based method,
which can be explained by the non-overlap con-
straint induced by the GNN that favours low re-
call. On the other hand, the Num. Ov. of the
graph-based approach remains low during train-
ing, especially for the GNNer-AT approach, while
the baseline model increases at the first stage of
training before gradually decreasing.

4 Limitations

There are several limitations to our approach. First,
the addition of GNN does not completely remove
the overlapping spans in contrast to heuristic ap-
proches. Moreover, the inclusion of GNN layer
bring more comptation to the model which result
into a slower model than the baseline span-based
NER. In fact since, the overlaping span graph is
dense (contains many egde), the model does not
really benefit of efficient sparse operations of GNN
layers.

5 Related works

Approaches for NER NER is an important tasks
in Natural Language Processing and is used in
many downstream information extraction applica-
tions. Usually, NER tasks are designed as sequence
labelling (Chiu and Nichols, 2016; Huang et al.,
2015; Ma and Hovy, 2016; Lample et al., 2016;
Akbik et al., 2018; Zaratiana et al., 2022). The goal
is to predict BIO tags in which a word is labelled as
B-tag if it is the beginning of an entity, I-tag if it is
within but not the first in the entity and O for non-
entity words. Recently, different approaches have
been proposed to perform NER tasks that go be-
yond traditional sequence labelling. One approach
that has been widely adopted is the span-based ap-
proach (Luan et al., 2018, 2019; Wadden et al.,
2019; Xue et al., 2020) where the representation of
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Figure 2: Evolution of precision, recall and number of overlaps (Num. Ov.) on the SciERC validation set.

each segment is computed using a neural network,
then fed to a classifier. To prevent overlapping
span, priors works either used heuristic decoding
(Fu et al., 2021; Li et al., 2021; Xia et al., 2019) or
structured decoding using semi-CRFs (Sato et al.,
2017; Ye and Ling, 2018). However, to the best of
our knowledge, no work have used GNN for the
purpose of reducing span overlap for NER. Some
work (Li et al., 2020) has also approached NER as
a question answering task in which named entities
are extracted by retrieving answer spans. In addi-
tion, with the growing popularity of prompt-based
learning, recent work such as (Cui et al., 2021)
considers NER as template filling by fine-tuning a
BART (Lewis et al., 2019) encoder-decoder model.
In contrast we focus on learning appropriate span
representations.

GNN for NLP GNNs have gained a lot of popu-
larity recently due to their powerful ability to repre-
sent arbitrary shapes of data (Hamilton et al., 2018;
Wu et al., 2019; Hamilton, 2020). Specifically,
GNNs provide a way to inject prior knowledge into
NLP systems through, for example, dependency
graphs (Liu et al., 2018; Zhang et al., 2019), con-
stituency graphs (Marcheggiani and Titov, 2020)
or knowledge graphs (Sun et al., 2018; Lin et al.,
2021). As a result, GNNs have been widely ap-
plied to different NLP tasks such as Neural Ma-
chine Translation (Bastings et al., 2017; Beck et al.,
2018), Semantic Parsing (Xu et al., 2018; Shao
et al., 2020), Information Extraction (Fu et al.,
2019; Sun et al., 2019) and text classification (Yao
et al., 2018; Liu et al., 2020). More relevant to
our work, DyGiE (Luan et al., 2019; Wadden et al.,
2019) used GNNs to refine the span representation
for joint NER and RE extraction, but in contrast,
they learn their graph dynamically during training
while we used a static span graph. For a detailed
review of GNNs for NLP, please refer to Wu et al.

(2021).

6 Conclusion

In this work, we investigated new span-based NER
method using Graph Neural Networks. Our best
approach, built on a Graph Convolution Network,
significantly reduces the number of overlapping
spans compared to a strong baseline (up to 2 times
less) while maintaining competitive metric perfor-
mance. In future work, we will explore ways to
integrate GNN-enhanced representations into ar-
chitectures for joint named entity recognition and
relation extraction tasks.

Ethical considerations

There are ethical considerations to take into ac-
count when using NER technology. For example,
the technology may disproportionately work worse
for some populations with uncommon name struc-
ture. This could have a negative impact on these
groups, as their names may not be accurately recog-
nized and classified by the software. It is important
that we are aware of potential biases in our data
and algorithms, so that we can avoid unfairly dis-
criminating against certain groups of people.
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