
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 515 - 522

May 22-27, 2022 c©2022 Association for Computational Linguistics

Fire Burns, Sword Cuts: Commonsense Inductive Bias for
Exploration in Text-based Games

Dongwon Kelvin Ryu♠ Ehsan Shareghi♠ ♣ Meng Fang♡

Yunqiu Xu♢ Shirui Pan♠ Gholamreza Haffari♠
♠ Department of Data Science & AI, Monash University

♡ Eindhoven University of Technology ♢ University of Technology Sydney
♣ Language Technology Lab, University of Cambridge

firstname.lastname@monash.edu m.fang@tue.nl
yunqiu.xu@student.uts.edu.au

Abstract

Text-based games (TGs) are exciting testbeds
for developing deep reinforcement learning
techniques due to their partially observed en-
vironments and large action spaces. In these
games, the agent learns to explore the envi-
ronment via natural language interactions with
the game simulator. A fundamental challenge
in TGs is the efficient exploration of the large
action space when the agent has not yet ac-
quired enough knowledge about the environ-
ment. We propose COMMEXPL, an exploration
technique that injects external commonsense
knowledge, via a pretrained language model
(LM), into the agent during training when the
agent is the most uncertain about its next ac-
tion. Our method exhibits improvement on the
collected game scores during the training in
four out of nine games from Jericho. Addition-
ally, the produced trajectory of actions exhibit
lower perplexity, when tested with a pretrained
LM, indicating better closeness to human lan-
guage. 1

1 Introduction

Text-based games (TGs) are environments where
agents learn to comprehend situations in language
and produce decisions in language (Hausknecht
et al., 2020; Côté et al., 2018; Narasimhan et al.,
2015). Deep Reinforcement Learning lends itself
as a natural paradigm to solve TGs due to its ability
to learn from unsupervised game playing experi-
ence. However, existing RL agents are far away
from solving TGs due to their combinatorially large
action spaces that hinders efficient exploration (Yao
et al., 2020; Ammanabrolu and Hausknecht, 2020).

Ammanabrolu and Riedl (2019); Ammanabrolu
and Hausknecht (2020) proposed incorporating a
belief knowledge graph (BKG) built from the tex-
tual observations to help the agent reason more

1Code is available at https://github.com/
ktr0921/comm-expl-kg-a2c

effectively about observed objects during the game-
play. Most of the recent works neglected linguis-
tic aspects of TGs and focused on the construc-
tion and utilisation of BKG (Adhikari et al., 2020;
Dambekodi et al., 2020; Xu et al., 2020; Am-
manabrolu et al., 2020; Xu et al., 2021). Some
exceptions involve developing pre-trained language
models (LMs) to propose action candidates for a
given observation (Yao et al., 2020), and investigat-
ing the relationship between semantic coherence
and state representations (Yao et al., 2021).

In parallel, it has been argued that recent pre-
trained LMs capture commonsense factual knowl-
edge about the world (Petroni et al., 2019; Kassner
et al., 2021; Meng et al., 2021). More direct at-
tempt in this direction was the commonsense trans-
former (COMET) which is a LM fine-tuned explic-
itly on commonsense knowledge graph (CSKG),
to explicitly generate commonsense inferences
(Bosselut et al., 2019; Hwang et al., 2021). Prior
works with commonsense focused on complet-
ing BKG using pre-defined CSKG (Murugesan
et al., 2020) or dynamic COMET-generated com-
monsense inferences (Dambekodi et al., 2020).
Nonetheless, there is no work on explicitly using
commonsense as an inductive bias in the context
of exploration for TGs.

To bridge the gap, we propose commonsense ex-
ploration (COMMEXPL) which constructs a CSKG
dynamically, using COMET, based on the state of
textual observation per step. Then, the natural lan-
guage actions are scored with COMET and agent,
to re-rank the policy distributions. We refer to this
as applying commonsense conditioning. However,
doing this throughout the whole training is expen-
sive and may not be beneficial as gameplay is not
led by commonsense. To rectify this, we propose
an entropy scheduler, driven by the entropy of the
policy distribution, to regulate applying common-
sense conditioning.

We demonstrate that our method encourages

515

https://github.com/ktr0921/comm-expl-kg-a2c
https://github.com/ktr0921/comm-expl-kg-a2c

!! + "xEffect" *" = "PerxonX	opens	the	trap	door"
!! + "xEffect" *# = "PerxonX	removes	the	trap	door"
!! + "xWant" *$ = "PerxonX	clean	up	the	room"
*$ + "xWant" *% = "PerxonX	have	a	clean	room"
*$ + "xEffect" *& = "PerxonX	gets	tired	from	cleaning"

.'
()) /())
.'
(+) /(+)
⋮ ⋮

.'
(,) /(,)

/-.
())) /-.

()+) ⋯ /-.
(),)

/-.
(+)) /-.

(++) ⋯ /-.
(+,)

⋮ ⋮ ⋱ ⋮

/-.
(/)) /-.

(/+) ⋯ /-.
(/,)

/-
()) 3())

/-
(+) 3(+)
⋮ ⋮

/-
(/) 3(/)

.'
()) /.

())
.'
(+) /.

(+)
⋮ ⋮

.'
(,) /.

(,) Softmax

.'

max

max

max

Agent 4' .'0)

5' Environment

COMET

COMET 6'

COMET

*$ = "PersonX	wants
to	clean	up	the	room"

+
D1 = "xWant"

*$ = "PersonX	wants
to	clean	up	the	room"

!! = "xNeed"

(" = "PersonX	needs
to	walk	towards	the	

house"
7#!$"## = −0.1586

COMET

7#!$$%# = −4.7133

!! = "West	of	House. PersonX	is
standing	in	an	open	field	west	of	a	
white	house,with	a	boarded	front	
door. There	is	a	small	mailbox	here. "

!& = "xWant"
C" = "open	mailbox"

Figure 1: (Left) The overall architecture of COMMEXPL. The blue region is the CSKG Construction and the red
region is commonsense conditioning. During CSKG Construction, COMET generates CKSG K given an action-
observation pair while it produces node-to-action score given a node-action pair in commonsense conditioning.
(Right) Example of how COMET works in COMMEXPL: Given a head node and edge, a tail node and its
corresponding node-to-node score is generated while for node-to-action score, an action is passed as a desired tail
node in COMET. Notations are defined in §2.

the agent to achieve higher game score during
the training in four out of nine games in Jeri-
cho (Hausknecht et al., 2020). Furthermore, we
show our method leads to producing more human-
like natural language action. This is measured us-
ing the perplexity of the generated actions accord-
ing to GPT-2 (Radford et al., 2019). We believe
that natural language coherency/fluency is a crucial
aspect of interactive intelligent agents (e.g. robots
and dialogue systems) and hope our promising find-
ings facilitate further developments of methods in
this direction.

2 Approach

Notations. Text-based games are modelled as a
partially observable Markov decision processes
(POMDPs) of a tuple of ⟨S,A,P,O,Ω,R, γ⟩,
where S , A, Ω denote sets of states, actions, and ob-
servations, respectively. Also, R and γ denote the
reward function and the discount factor, while P
and O denote the transition probabilities and set of
conditional observations probabilities, respectively.

The agent requires to map an observation to a
state (Ω → S) and produce a policy π. By se-
lecting an action at from the policy π, the agent
changes current state st, receives a reward sig-
nal r, receives an observation through transition
P(st+1|st, at), and also receives a conditional ob-
servation O(Ωt|st). The agent learns the policy
πθ(a|o) that maximizes the expectation of the cu-

mulative reward function E
[∑∞

t=0 γ
tr(st, at)

]
.

2.1 CSKG Construction
Let a CSKG be a graph K = (V, E), where V is
a set of nodes or vertices and E is a set of edges.
The root node of CSKG requires to carry adequate
information about the gameplay, so we amend the
input to be the same format as how COMET is
trained on, v0 = “I ”+at−1+“. ”+ot and replace
all the “I” to “PersonX”. To build CSKG we use
COMET at every step of gameplay as a frozen
commonsense generator to produce the tail node
vj given the head node vi and edge ej at time
step t, formally denoted as Prψ(vj,t|vj,<t,vi, e′).
Figure 1(Right) provides a visualisation of this.
COMET takes v0 as a head node and eN as an
edge and produces v1 with the corresponding node-
to-node score ϕv0eNv1 . Multiple tail nodes and
node-to-node scores can be generated through the
same input and based on the edge, the tail nodes
vary dramatically. This process can be applied
recursively to the tail nodes, expanding CSKG, i.e.
generate tail nodes given v1 head node with eN .
See Appendix A for more details.

2.2 Commonsense Conditioning
To blend commonsense into the agent’s decision,
the log-likelihood score is employed to contem-
plate each component independently. We, then,
compute the total score as a weighted sum to pro-
mote the natural language action.

516

Agent-to-Action Score. The score function for the
gameplay is obtained from the agent,

ϕ
(k)
a =

1

|ak|

|ak|∑
n=1

log πθ(ak,n|ak,<n,ot−1),

where ϕ(k)
a is the agent-to-action score for k action,

computed as the sum of log-likelihood of the natu-
ral language action. Intuitively, the agent-to-action
score signifies how much the action directs to the
reward signals. This is learned during the online
training of the agent.
Node-to-Action Score. Inspired by Bosselut et al.
(2021); Yasunaga et al. (2021), the commonsense
level of actions for each generated node is mea-
sured using COMET,

ϕviejak
=

1

|ak|

|ak|∑
n=1

log Pr
ψ
(ak,n|ak,<n,vi, ej),

ϕ
(lk)
va = max

e
(ϕvle1ak

, ϕvle2ak
, · · ·),

where ϕviejak
is the score per va edge, e ∈ Eva,

while the node-to-action score is denoted by ϕ
(lk)
va

which is the maximum ϕviejak
over va edges. The

node-to-action score intersects commonsense with
action, implying how plausible the action is given
the commonsense prediction.
Node-to-Node Score. Additionally, we adopted
the score between nodes in CSKG from Bosselut
et al. (2021),

ϕvie′jvl
=

1

|vl|

|vl|∑
n=1

log Pr
ψ
(vl,n|vl,<n,vi, e′j),

ϕ
(l)
v =max

v,e′
(ϕv1e′1vl

, ϕv1e′2vl
, · · · , ϕv2e′1vl

, · · ·),

where ϕvie′jvl
is the score per head node and vv

edges, e′ ∈ Evv, while the node-to-node score
is ϕ

(l)
v , max of ϕvie′jvl

over head nodes and vv

edges.2 The node-to-node score is designed to pro-
mote commonsense triples that are more sensible
commonsense-wise.3

Total Score. The total score assigned for each
action is computed as:

ϕ = max
v

(γaϕa + γvaϕva + γvϕv), (1)

where ϕ is the total score per action since max is
over nodes. The γ coefficients are hyperparameters
and balance the weights between different compo-

2A set of va edge and v edges can be different, but both
are subset of CSKG edge set Evv, Eva ⊆ E .

3The example of adequate and poor commonsense phrases
are: Given PersonX lost umbrella, PersonX is
angry and PersonX is hungry, respectively.

0 5000 10000 15000 20000 25000
Steps

0.000

0.005

0.010

0.015

0.020

En
tro

py

Template Entropy of Zork1 Gameplay in Baseline
Zero/Negative Reward
Positive Reward
Threshold

Figure 2: The plot of the entropy of TEMPLATE policy
distribution over steps. The green indicates the entropy
for a positive reward signal, and the blue does the same
for zero or negative rewards. The entropy scheduler
threshold of median is plotted as a red curve.

nents of the scoring function. Finally, the new con-
ditioned policy is obtained as softmax(ϕ). We
refer to this whole process as commonsense con-
ditioning. A visualisation of the overall model is
provided in the Figure 1(Left).

Intuitively, when the agent is not confident in
current time-step, the policy distribution is arbi-
trary, resulting in homogeneous ϕa. This would
be specifically the case during the initial stage of
the training, but can also occur at any stage of the
game where the agent cannot predict reward signal
in a small number of steps. Under these circum-
stances, ϕ would be more dictated by ϕva and ϕv.
Conversely, when the agent is confident, the ϕa for
different actions will diverge and ϕ will be directed
by both commonsense and the agent.

2.3 Entropy Scheduler

Since our technique uses a large LM for natural
language generation, the main drawback with our
approach is computational costs. In addition to this,
where the agent is confident about acquiring the
game score for a given action, commonsense could
act as an undesired noise. To reflect on these, we
propose the entropy scheduler to apply common-
sense conditioning based on the confidence, the
relative entropy of policy distribution. We collect
the last 1000 number of the entropy of the template
policy and apply commonsense conditioning if the
current entropy is higher than the median. Figure 2
visualizes how the entropy scheduler works during
training. This suggests that our entropy scheduler
with a median threshold can apply commonsense
conditioning to those actions with zero or negative

517

KG-A2C KG-A2C +
COMMEXPL

% Difference

Game Score PPL Score PPL Score PPL
balances 9.9 4.96 9.8 3.9 -1.01 -21.37
enchanter 19.6 4.47 19.6 3.73 0.0 -16.56
library 12.4 5.27 11.5 4.8 -7.26 -8.92
ludicorp 16.6 3.81 16.4 3.33 -1.2 -12.6
reverb 4.8 4.46 4.5 3.67 -6.25 -17.71
spirit 1.8 4.3 2.1 4.18 16.67 -2.79
zork1 24.7 3.77 30.7 3.49 24.29 -7.43
zork3 0.069 5.18 0.083 4.13 20.29 -20.27
ztuu 5.0 5.35 6.9 4.39 38.0 -17.94
MEAN +9.28 -13.95

Table 1: Score and perplexity comparison over 9 game
environments, with positive results highlighted by bold-
face. The score is computed as the average over the
entire training to signify its performance during the train-
ing while perplexity (PPL) is measured for a given root
node. The last column denotes the percentage difference
between KG-A2C with and without COMMEXPL.

reward signals. 4

3 Experiments

We use KG-A2C as our goal-driven baseline agent
and compare it with KG-A2C with commonsense
in a game suite of Jericho. A set of nine games are
selected from Jericho carefully based on genre, in-
cluding three daily puzzle games (library, lu-
dicorp, reverb) and the rest six fantasy adven-
ture games (balances, enchanter, spirit,
zork1, zork3, ztuu). Both game setting
and optimal configuration for KG-A2C in Am-
manabrolu and Hausknecht (2020) were used in
our experiments. We reduced training steps to
25, 000 since our objective is to compare the qual-
ity of exploration during the training. Only hyper-
parameters in COMMEXPL have been optimized
for fair comparison while all the parameters in
COMET were fixed during the training, resulting in
the equal trainable parameters regardless of COM-
MEXPL. Details of the hyper-parameters and the
experimental setup can be found in Appendix B.

3.1 Main Results

Similar to Ammanabrolu and Hausknecht (2020),
we employed the optimal hyper-parameters fine-
tuned on zork1 for nine games in Jericho. Table
1 shows the mean score across the entire training
and the perplexity of the action given a root node.
The score is to compare whether the agent with

4As shown in Appendix C, the training time still remains
relatively long due to the natural language generation with a
large COMET.

zork1: Kitchen. You are in the kitchen of the white
house. A table seems to have been used recently for the
preparation of food. A passage leads to the west and a dark
staircase can be seen leading upward. A dark chimney
leads down and to the east is a small window which is
open.
π put down glass open brown put glass on table
π̂ put glass on table put down glass go up
zork3: It is pitch black. You are likely to be eaten by
a grue.
π put down lamp take lamp turn on lamp
π̂ turn on lamp put down lamp go down

Table 2: An illustrative example of how action selec-
tion changes with COMMEXPL. Only top 3 actions are
shown for readability. TEMPLATE policy is used for
π, i.e. the TEMPLATE probability of put down OBJ
is used for put down glass, while π̂ is the policy
conditioned on commonsense.

commonsense achieves higher game score during
the training. Doing so implies how fast the agent
learns with fewer steps, and therefore, more effi-
cient exploration. Perplexity from LM is used as
a metric for the smoothness of natural language
action. We used GPT-2 from Huggingface (Wolf
et al., 2020).

Score Table 1 shows that with COMMEXPL,
the agent tends to acquire the game score more
frequent in four gaming environments (spirit,
zork1, zork3, ztuu). All four have at least
15% increases in game score during training.
However, three environments (balances, en-
chanter, ludicorp) appear to gain no benefits
from using COMMEXPL. On the other hand, the
remaining two games (library, reverb) take
commonsense negatively, suggesting that the com-
monsense from COMET acts as a noise with re-
spect to pursuing rewards. Per genre, interestingly,
those daily puzzle games are either not influenced
or negatively influenced from commonsense induc-
tive bias while four out of six fantasy adventure
games benefited from it. We speculate this might
be due to the fine-tuning which was also done on a
single game, zork1.

Coherency Table 1 shows that commonsense
prior reduces perplexity of the natural language
actions in all nine games. This is because, unlike
the game score that is not directly related to com-
monsense, the semantic properties of the actions
are directly related to commonsense. For envi-
ronments like balances and reverb, despite
the agent taking no benefits from commonsense,

518

0 5000 10000 15000 20000 25000
Step

0

10

20

30

40
Sc

or
e

Ablation for Feature in ZORK1

0 5000 10000 15000 20000 25000
Step

0

10

20

30

40

Sc
or

e

Ablation for Score Gamma in ZORK1

Legends
KG-A2C
KG-A2C + CommExpl
KG-A2C + CommExpl - CSKG
KG-A2C + CommExpl - EntSchd
KG-A2C + CommExpl (v < a)
KG-A2C + CommExpl (v > a)

Figure 3: Ablation study on zork1. (Left) EntSchd refer to entropy scheduler, so - CSKG and - EntSchd mean we
removed CSKG and entropy scheduler from COMMEXPL. (Right) ‘>’ sign signifies how much commonsense (v)
or agent (a) is weighted more over the other.

perplexity drops significantly (e.g., ∼15%). This
large reduction in perplexity also appears for fan-
tasy games, in which zork3 had ∼20% down and
spirit took as little as ∼3% reduction. This
suggests that the game takes advantages on the se-
mantic coherency regardless of whether it helps to
achieve high score of the game or the genre of the
game.

Qualitative Samples Table 2 provides qualita-
tive samples to show how natural language ac-
tions are re-ordered after commonsense condi-
tioning. For instance, in the first example of
zork1, COMMEXPL suppresses open brown
and pushes put glass on table to the high-
est probability. In zork3, COMMEXPL promotes
turn on lamp over others since the observa-
tion informs user that the surrounding is dark.

3.2 Ablation Results

We performed two ablation studies on zork1
to obtain the optimal hyper-parameters. The
first ablation study is for the absence of features,
in which we removed CSKG construction and
entropy scheduler completely. Thereafter, the
changes in score gamma factors have been in-
vestigated. The γ coefficients are changed from
(γv = 1, γva = 0.7, γa = 0.8) to (0.4, 0.2, 1) for
(v < a) model and (1, 1, 0.3) for (v > a) model.

Feature Figure 3 (Left) shows that the absence
of CSKG construction or entropy scheduler causes
catastrophic forgetting. KG-A2C is prone to this
regardless of commonsense because it does not
use any memory component. However, injecting
commonsense stochastically enhances the likeli-
hood since the agent follows commonsense when
it should not, i.e. a particular action is required to
obtain game score. This overlaps with our motiva-
tion of entropy scheduler, that the game score is not
directly related to commonsense, so appropriate

skipping is necessary.
Dynamic CSKG contributes to a variety of com-

monsense, amplifying its commonsense reasoning,
and a lack of this will provoke the agent acting
more narrow with limited commonsense. Our plot
shows that removing CSKG also contributes to
the cause of catastrophic forgetting. This suggests
that lack of diversity in commonsense may act as a
noise to the exploration, and may push the agent to
produce more skewed trajectories that cause failure.
Therefore, the absence of any component leads to
performance decay. Therefore, both are vital com-
ponents in COMMEXPL.

Score Gamma Factor The contribution of the
commonsense and the agent score is investigated
on Figure 3 (Right). By increasing agent’s gamma
factor, the model acts more alike to the baseline
than the optimal hyper-parameters since it trusts its
own policy more. Conversely, adding more weights
on commonsense leads to catastrophic forgetting.
This is caused by the fact that the agent puts too
much trust on commonsense, diverging from its
own policy excessively. From these, we can con-
clude that the appropriate balancing is required to
make exploration efficient and feasible.

4 Conclusion

We investigated the effect of commonsense in text-
based RL agent during the training. Our results
show that despite the hyper-parameters tuning on a
single game, the proposed approach improves on
other gaming environments in Jericho, total four
out of nine. Furthermore, injecting commonsense
also positively influences the semantics of natural
language actions, resulting in lower perplexity. Our
future work will extend its application to different
text-based environments and investigate how this
linguistic properties from LM helps the agent.

519

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté,

Mikuláŝ Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and William L. Hamilton. 2020. Learning dynamic
belief graphs to generalize on text-based games. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Prithviraj Ammanabrolu and Matthew J. Hausknecht.
2020. Graph constrained reinforcement learning for
natural language action spaces. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Prithviraj Ammanabrolu and Mark Riedl. 2019. Play-
ing text-adventure games with graph-based deep rein-
forcement learning. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 3557–3565. Association for Compu-
tational Linguistics.

Prithviraj Ammanabrolu, Ethan Tien, Zhaochen Luo,
and Mark O. Riedl. 2020. How to avoid being eaten
by a grue: Exploration strategies for text-adventure
agents. CoRR, abs/2002.08795.

Antoine Bosselut, Ronan Le Bras, and Yejin Choi. 2021.
Dynamic neuro-symbolic knowledge graph construc-
tion for zero-shot commonsense question answering.
In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 4923–4931. AAAI
Press.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4762–4779. Association for Computational Linguis-
tics.

Marc-Alexandre Côté, Ákos Kádár, Xingdi (Eric) Yuan,
Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler.
2018. Textworld: A learning environment for text-
based games. In Computer Games Workshop at
ICML/IJCAI 2018, pages 1–29.

Sahith N. Dambekodi, Spencer Frazier, Prithviraj Am-
manabrolu, and Mark O. Riedl. 2020. Playing

text-based games with common sense. CoRR,
abs/2012.02757.

Matthew J. Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7903–7910. AAAI
Press.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 6384–6392. AAAI
Press.

Nora Kassner, Philipp Dufter, and Hinrich Schütze.
2021. Multilingual lama: Investigating knowledge
in multilingual pretrained language models. In ACL,
pages 3250–3258.

Zaiqiao Meng, Fangyu Liu, Ehsan Shareghi, Yixuan Su,
Charlotte Collins, and Nigel Collier. 2021. Rewire-
then-probe: A contrastive recipe for probing biomedi-
cal knowledge of pre-trained language models. arXiv
preprint arXiv:2110.08173.

Farhad Moghimifar, Lizhen Qu, Yue Zhuo, Mahsa Bak-
tashmotlagh, and Gholamreza Haffari. 2020. CosMo:
Conditional Seq2Seq-based mixture model for zero-
shot commonsense question answering. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5347–5359, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Keerthiram Murugesan, Mattia Atzeni, Pushkar Shukla,
Mrinmaya Sachan, Pavan Kapanipathi, and Kartik
Talamadupula. 2020. Enhancing text-based reinforce-
ment learning agents with commonsense knowledge.
CoRR, abs/2005.00811.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1–11,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

520

https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html
https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://doi.org/10.18653/v1/n19-1358
https://doi.org/10.18653/v1/n19-1358
https://doi.org/10.18653/v1/n19-1358
http://arxiv.org/abs/2002.08795
http://arxiv.org/abs/2002.08795
http://arxiv.org/abs/2002.08795
https://ojs.aaai.org/index.php/AAAI/article/view/16625
https://ojs.aaai.org/index.php/AAAI/article/view/16625
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
http://arxiv.org/abs/2012.02757
http://arxiv.org/abs/2012.02757
https://aaai.org/ojs/index.php/AAAI/article/view/6297
https://aaai.org/ojs/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/16792
https://ojs.aaai.org/index.php/AAAI/article/view/16792
https://arxiv.org/pdf/2102.00894
https://arxiv.org/pdf/2102.00894
https://doi.org/10.18653/v1/2020.coling-main.467
https://doi.org/10.18653/v1/2020.coling-main.467
https://doi.org/10.18653/v1/2020.coling-main.467
http://arxiv.org/abs/2005.00811
http://arxiv.org/abs/2005.00811
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250

Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463–2473. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, and
Chengqi Zhang. 2021. Generalization in text-based
games via hierarchical reinforcement learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 1343–1353, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du,
Joey Tianyi Zhou, and Chengqi Zhang. 2020. Deep
reinforcement learning with stacked hierarchical at-
tention for text-based games. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Shunyu Yao, Karthik Narasimhan, and Matthew
Hausknecht. 2021. Reading and acting while blind-
folded: The need for semantics in text game agents.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3097–3102, Online. Association for Computa-
tional Linguistics.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736–8754, Online. Association
for Computational Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

A CSKG Construction

There are three different strategies for building the
root node from the textual observation and the natu-
ral language action. The most generic one is, given
at−1 = “move rug" and ot = “With a great effort,
the rug is moved to one side of the room, revealing
the dusty cover of a closed trap door.”, the root node
is v0 = “PersonX ”+at−1+“. ”+ot =“PersonX
move rug. With a great effort, the rug is moved to
one side of the room, revealing the dusty cover of
a closed trap door.”. The example of CSKG with
v0 is in Figure A.1.

However, if the previous action at−1 was not
admissible, we set the room description of the
textual observation as the root node. Finally, if
the action is admissible, but the observation is
too short (less than 20 tokens), the root node in-
cludes the previous room description of the textual
observation at the beginning of the page, v0 =
oroom,t−1 + “ PersonX ” + at−1 + “. ” + ot.

These are motivated from 1) if the previous ac-
tion is not admissible, the environment is not af-
fected by it, so we simply use the previous room
description that captures a lot of information about
what the agent can do, 2) if the observation is too
short that it does not carry enough information
about the situation, we concatenate the previous
room description to subjoin the information about
surroundings, and 3) otherwise, the generic strat-
egy to build the root node, the previous action and
the consequence of it as textual observation.

B Experiment Setup

Action Sampling We set nTEMPLATE to be dy-
namic, only selecting those based on the probability
threshold and validity. The threshold is calculated
as 0.75 of its uniform distribution. For instance,
zork1 contains 237 number of TEMPLATE, so the
threshold is 0.75 × 1

237 = 0.00316. We only se-
lect the maximum of 7 TEMPLATE that exceeds
the threshold. This avoids a large shift in policy
distribution while attaining better computational ef-
ficiency. Additionally, we include valid templates
to enforce the agent to act more towards on chang-
ing the world tree. We sampled objects like KG-
A2C since KG-A2C already restricts objects and
the actions are usually determined by the template.
Therefore, |ϕa| = nTEMPLATE, reducing the compu-
tations but still covering useful action sets.

Commonsense Transformer Our COMET is

521

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.findings-emnlp.116
https://doi.org/10.18653/v1/2021.findings-emnlp.116
https://proceedings.neurips.cc/paper/2020/hash/bf65417dcecc7f2b0006e1f5793b7143-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/bf65417dcecc7f2b0006e1f5793b7143-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/bf65417dcecc7f2b0006e1f5793b7143-Abstract.html
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45

as a result, PerxonX wants

[xWant]

as
a r

esu
lt,

Perx
on

X w
ill

[xE
ffe

ct]

as a result, PerxonX wants [xWant]

as a result, PerxonX will

[xEffect]
!! =

"PersonX	move	rug.	
With	a	great	effort,	
the	rug	is	moved… "

!! = "PersonX	opens	the	trap	door"

!" = "PersonX	removes	the	trap	door" as a result, PerxonX will
 [xEffect]

!# = "PersonX	wants	to	clean	up	the	room"

…

!$ = "PersonX	have	a	clean	room"

!% = "PersonX	gets	tired	from	cleaning" …

Figure A.1: The CSKG construction from the corresponding root node with at−1 = “move rug" and ot = “With
a great effort, the rug is moved to one side of the room, revealing the dusty cover of a closed trap door.”. Each
commonsense phrase node is presented as circle and a directed edge between them is CSKG edge.

BART fine-tuned on ATOMIC-2020 dataset, which
is crowdsourced with natural language sentence
nodes and 23 commonsense edges (Hwang et al.,
2021). We assumed that the general COMET is
still good enough to cover TGs. Since the gam-
ing environment runs by the player character, we
only focus on the social-interaction commonsense.
“xNeed" and “xIntent" are chosen for CSKG con-
struction, Evv, since they deal with what is needed
or intended for the event to occur, while “xWant"
and “xEffect" for scoring the natural language ac-
tions, Eva, since they deal with what the player
would do following the event. We further set
nhop = 1 and ngen = 2 from the observation that
they are good enough for zero-shot commonsense
question answering (Bosselut et al., 2021; Moghim-
ifar et al., 2020). During the online training of the
agent, we freeze the parameters for COMET.

C Computational Expense

The number of node-to-node scores is directly re-
lated to the size of CSKG,

|ϕv| =
nhop∑
i=0

(ngen × |Evv|)i,

where nhop is the number of hops, ngen is the num-
ber of triple generation and Evv is the edge space
for CSKG.

On the other hand, the number of node-to-action
scores is equal to the number of the total score ϕ,

|ϕva| = |ϕ| = |ϕv| × |Eva| × |ϕa|,
where Eva is the edge space for node-to-action
score.

We assume |ϕa| ≈ 7 since we select maximum
of 7 templates with highest probability and valid
templates. Therefore, in our setting, we can calcu-
late the number of the natural language generations
per step per environment as,

|ϕv|+ |ϕva| = |ϕv|+ |ϕv| × |Eva| × |ϕa|
= |ϕv| · (1 + |Eva| × |ϕa|)

≈
1∑
i=0

(2× 2)i · (1 + 2× 7)

= 75

Finally, we can estimate the average number of
natural language generation per step by multiplying
the number of environments per step nenv = 32 and
fraction from entropy scheduler p ≈ 0.5,

(|ϕv|+ |ϕva|)× nenv × p ≈ 75× 32× 0.5

= 1200

Throughout the training, we require to perform
1200 natural language generations using a large
size COMET per step, so this increases the training
time from ×3 upto ×10.

522

