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Abstract

Opinion summarization is the task of auto-
matically generating summaries that encapsu-
late information from multiple user reviews.
We present Semantic Autoencoder (SemAE)
to perform extractive opinion summarization
in an unsupervised manner. SemAE uses dic-
tionary learning to implicitly capture semantic
information from the review and learns a la-
tent representation of each sentence over se-
mantic units. A semantic unit is supposed
to capture an abstract semantic concept. Our
extractive summarization algorithm leverages
the representations to identify representative
opinions among hundreds of reviews. Se-
mAE is also able to perform controllable sum-
marization to generate aspect-specific sum-
maries. We report strong performance on
SPACE and AMAZON datasets, and perform
experiments to investigate the functioning of
our model. Our code is publicly available at
https://github.com/brcsomnath/SemAE.

1 Introduction

Opinion summarization is the task of automatically
generating digests for an entity (e.g. a product, a
hotel, a service, etc.), from user opinions in on-
line forums. Automatic opinion summaries enable
faster comparison, search, and better consumer
feedback understanding (Hu and Liu, 2004; Pang,
2008; Medhat et al., 2014). Although there has
been significant progress towards summarization
(Rush et al., 2015; Nallapati et al., 2016; Cheng
and Lapata, 2016; See et al., 2017; Narayan et al.,
2018; Liu et al., 2018), existing approaches rely
on human-annotated reference summaries, which
are scarce for opinion summarization. For opinion
summarization, human annotators need to read hun-
dreds of reviews per entity across different sources
for writing a summary, which may not be feasible.

This lack of labeled training data has prompted a
series of works to leverage unsupervised or weakly-
supervised techniques for opinion summarization

(Mei et al., 2007; Titov and McDonald, 2008; An-
gelidis and Lapata, 2018a; Angelidis et al., 2021).
Recent works in this direction have focused on per-
forming opinion summarization in an abstractive
setting (Coavoux et al., 2019; Isonuma et al., 2019;
Bražinskas et al., 2020; Amplayo et al., 2021b;
Iso et al., 2021; Wang and Wan, 2021). Abstrac-
tive models are able to produce fluent summaries
using novel phrases. However, they suffer from
problems common in text generation like halluci-
nation (Rohrbach et al., 2018), text degeneration
(Holtzman et al., 2020), and topic drift (Sun et al.,
2020). Also, these approaches have been evaluated
on small scales (10 reviews per entity or fewer),
which does not reveal their utility in the real world
where there are hundreds of reviews per entity.

To overcome these issues, another thread of
works focuses on extractive opinion summarization,
which creates summaries by selecting review sen-
tences to reflect the popular opinions corresponding
to an entity. A recently proposed extractive summa-
rization approach is Quantized Transformer (QT)
(Angelidis et al., 2021), which leverages vector
quantization (van den Oord et al., 2017) for assign-
ing texts to a latent representation that is supposed
to capture a semantic sense. However, a text phrase
can encapsulate multiple semantic senses, making
this representation learning approach restrictive.

Building on the framework introduced by QT,
we introduce an unsupervised extractive model,
Semantic Autoencoder (SemAE), which learns a
representation of text over latent semantic units
using dictionary learning (Dumitrescu and Irofti,
2018). Similar to QT, SemAE leverages Trans-
former (Vaswani et al., 2017) for sentence recon-
struction to simultaneously learn latent seman-
tic units and sentence representations. However,
while QT assigns texts to a latent representation
(codebook), SemAE models text as a combina-
tion of semantics and forms a distribution over
latent units (dictionary). This allows sentence rep-
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resentations to capture fine-grained and diverse
semantics. Unlike QT that relies on identifica-
tion of aspect-specific head representations, we
achieve controllable summarization by utilizing
information-theoretic measures (such as relevance,
redundancy, etc) on sentence representations. Our
sentence selection algorithm is more flexible and al-
lows a broader spectrum of controllable summariza-
tion. We experimentally show strong performance
on two opinion summarization datasets. Our main
contributions are:

• We present Semantic Autoencoder (SemAE),
which learns representation of sentences over
latent semantic units.
• We introduce novel inference algorithms for gen-

eral and controllable summarization utilizing
information-theoretic measures.
• We show that SemAE outperforms previous

methods using automatic and human evaluations.
• We perform analysis to understand how the

learnt representations align with human seman-
tics.

2 Related Work

Unsupervised opinion summarization can be con-
ducted either abstractively or extractively. Ab-
stractive approaches aim to summarize the opinion
text using novel phrases. Traditional statistical ap-
proaches create abstractive summaries using graph-
ical paths (Ganesan et al., 2010) or hand-written
templates (Di Fabbrizio et al., 2014). Recent neu-
ral approaches leverage the encoder-decoder ar-
chitecture to aggregate information from multiple
reviews and generate summaries accordingly (Chu
and Liu, 2019; Bražinskas et al., 2020; Iso et al.,
2021; Wang and Wan, 2021).

In contrast to abstractive approaches, extractive
approaches rank and select a subset of salient sen-
tences from reviews to form a concise summary
(Kim et al., 2011). Saliency computation has
been explored using traditional frequency-based
approaches (Nenkova and Vanderwende, 2005),
similarity with the centroid in the representation
space (Radev et al., 2004), and lexical similarity
with all sentences in a graph-based representation
(Erkan and Radev, 2004). Weakly supervised ap-
proaches (Angelidis and Lapata, 2018a; Zhao and
Chaturvedi, 2020) extract opinions based on their
aspect specificity, and nature of sentiment polarity.

Our work is most similar to the extractive opin-
ion summarization QT (Angelidis et al., 2021) as

discussed in Section 1. It is also similar to neu-
ral topic model-based approaches (Iyyer et al.,
2016; He et al., 2017; Angelidis and Lapata, 2018a)
that use a variant of dictionary learning (Elad and
Aharon, 2006; Olshausen and Field, 1997) to rep-
resent text as a combination of specific semantics
(e.g. aspect, relationships etc). In contrast to these
models, where text from same topics are trained
to have similar representations using max-margin
loss, SemAE uses an autoencoder setup to capture
diverse latent semantics.

3 Task Description

We follow the task setup in (Angelidis et al., 2021),
where given a set of entities (e.g. hotels), a review
set Re = {r1, r2, . . .} is provided for each entity
e, where each review ri is a sequence of sentences
{s1, s2, . . .}. The review setRe covers a range of
aspects A = {a1, a2, . . .} relating to the domain
(e.g. service, location for hotels). We denote Se
to be the set of sentences from all reviews for an
entity e. SemAE is evaluated to perform two types
of extractive opinion summarization introduced by
Angelidis et al. (2021): (a) general summariza-
tion, which involves selecting a subset of sentences
Oe ⊂ Se such that it best represents the reviews in
Re, and (b) aspect summarization, where the gen-
erated summary O(a)

e ⊂ Se focuses on a specific
aspect a ∈ A.

4 The Semantic Autoencoder

The intuition behind Semantic Autoencoder is that
instead of representing text as a single latent se-
mantic unit, we represent text as a distribution
over latent semantic units using dictionary learn-
ing. Learning semantic representations over a com-
mon dictionary makes them structurally aligned, en-
abling comparison of sentences using information-
theoretic measures.

Semantic Autoencoder consists of three stages
(i) sentence encoding - an input sentence s is con-
verted into a multi-head representation (H heads)
using Transformer encoder {sh}Hh=1; (ii) recon-
struction - a latent representation of head vec-
tors sh is formed over elements of the dictionary
D ∈ RK×d, to produce reconstructed representa-
tions z = {zh}Hh=1; and (iii) sentence decoding -
a Transformer-based decoder takes as input the re-
constructed representations z to produce the output
sentence ŝ. SemAE is trained on the sentence re-
construction task. The overall workflow of SemAE

1210



Sentence 
Encoder

Sentence 
Decoder

D ∈ ℝK×d

α1

α2

α3

s1

s2

s3

z1

z2

z3
Input (s) Reconstruction ( ̂s)

×

Figure 1: An example workflow of SemAE. The en-
coder producesH = 3 representations (sh) for a review
sentence s, which are used to generate latent represen-
tations over dictionary elements. The decoder recon-
structs the input sentences using vectors (zh) formed
using latent representations (αh).

is shown in Figure 1.

4.1 Sentence Encoder
We follow the setup of QT (Angelidis et al., 2021)
for sentence encoding. Each sentence s starts
with a special token [SNT], which is fed to a
Transformer-based encoder. We only consider
the final-layer representation of the [SNT] token
ssnt ∈ Rd. The sentence representation ssnt is
split into H contiguous vectors {s′h}Hh=1, where
s′h ∈ Rd/H . A multi-head representation is formed
by passing s′h through a layer-normalization layer:

sh = LN(s′hWT + b) (1)

where W ∈ Rd×d/H , b ∈ Rd are trainable parame-
ters and sh ∈ Rd is the hth head representation.

For each sh, we obtain a latent representation
αh over the dictionary D, by reconstructing the
encoded sentence representation sh as shown below

zh = αhD, αh = softmax(shD
T ) (2)

where the reconstructed vector zh ∈ Rd, and the
latent representation αh ∈ RK . We hypothesize
that the dictionary D captures the representation of
latent semantic units, and αh captures the degree
to which the text encapsulates a certain semantic.
The vectors formed z = {zh}Hh=1 are forwarded to
the decoder for sentence reconstruction. The dic-
tionary D and sh are updated simultaneously using
backpropagation. For summarization (Section 5),
different from QT, we consider αh (not zh) as the
sentence representation.

4.2 Sentence Decoder
We employ a Transformer-based decoder that takes
as input the reconstructed representations z =
{zh}Hh=1. MultiHead(z, z, t) attention module in
the decoder takes z as key and value, and the target

tokens t as the query. The reconstructed sentence is
generated from the decoder as ŝ = Decoder(z, t).
As our goal is sentence reconstruction, we set the
target tokens to be same as the input sentence s.
Prior work (Angelidis et al., 2021) has also used a
similar Transformer-based decoder for sentence re-
construction but they attend directly over quantized
head vector formed using codebook elements.

A sentence can capture only a small number
of semantic senses. We ensure this by enforcing
sparsity constraints on the representations αh, so
that zh is a combination of only a few semantic
units. The encoder, reconstructor and decoder are
trained together to minimize the loss function:

L = LCE(s, ŝ)+λ1
∑
h

|αh|+λ2
∑
h

H(αh) (3)

where LCE is the reconstruction cross-entropy loss
of the decoder, and to ensure sparsity of αh we pe-
nalize the L1-norm (|αh|) and its entropy H(αh).

5 Summarization using Latent
Representations

We leverage the latent representations αh generated
by SemAE to perform opinion summarization.1

5.1 General Summarization

For obtaining the general summary of an entity,
we first compute a mean representation of all the
review sentences in Se, which represents the aggre-
gate distribution over semantic units. Thereafter,
the general summary is obtained as the collection
of sentences that resemble the mean distribution.

Mathematically, every sentence s is associated
with a representation over dictionary elements
αs = [α1, . . . , αH ], where αs ∈ RH×K . We form
the mean representation of review sentences for an
entity Se over dictionary elements as:

ᾱ =
1

|Se|
∑
s∈Se

αs (4)

where αs is the representation for sentence s ∈ Se.
For general summarization, we compute the rel-

evance scoreR(·) for each sentence s based on its
similarity with the mean representation ᾱ:

R(αs) = ∆(ᾱ, αs) = −
∑
h

KL(ᾱh, α
s
h) (5)

1We experimented with different variations of the sentence
selection scheme using αh in Appendix A.4.
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where αsh is latent representation of sentence s for
the hth head. ∆(x, y) denotes the similarity be-
tween two representations x and y. It is imple-
mented as negation of the sum of KL-divergence be-
tween head representations. We also experimented
with other divergence metrics and observed similar
summarization performance (Appendix A.3).

We rank sentences according to descending or-
der ofR(·) and select the top N (a constant hyper-
parameter, N < |Se|) sentences as the summary
Oe (shown in Figure 2). The extracted summary is
a concatenation of the text from N selected input
sentences (Input (s) in Figure 1). However, model-
ing relevance only using ∆(·, ·) results in selection
of similar sentences. We overcome this by design-
ing variations of our system that have additional
information-theoretic constraints.
(a) Redundancy: We introduce diversity in the
generated summary by penalizing sentences that
have a high similarity value with already selected
sentences. This is achieved by adding the redun-
dancy term in relevance score:

R(αs, Ôe) = ∆(ᾱ, αs)− γ max
s′∈Ôe

∆(αs
′
, αs) (6)

where Ôe is the set of sentences selected so
far for the summary. The selection routine pro-
ceeds in a greedy fashion by choosing s0 =
arg maxs∈Se

∆(ᾱ, αs) when Ôe = φ.
(b) Aspect-awareness: Another drawback with
sentence selection using ∆(·, ·) is that the sum-
mary frequently switches context among different
aspects (example shown in Table 7). To mitigate
this issue, we identify the aspect of a review sen-
tence using occurrences of aspect-denoting key-
words provided in the dataset (Section 5.2). We
then cluster the sentences into aspect-specific buck-
ets {S(a1)

e , S
(a2)
e , . . .} and rank sentences within

each bucket. We ignore sentences that are not
part of any bucket. We select sentences using two
different strategies:

• We iterate over sentence buckets {S(ai)
e } and

select the first m sentences ranked according to
R(αs), from each bucket.

• We prevent selection of similar sentences from a
bucket by introducing the redundancy term. We
iterate over individual buckets and select first
m sentences ranked according to their relevance
R(αs, Ô

(a)
e ) (Equation 6).

α1

α2

α|Se|

…

α

Mean Distribution …

1

|Se|

2

 ℛ(αs)

Sentence 
Encoder

 : sentences 

      of an entity
Se

Figure 2: General summary generation routine. The
relevance score of each sentence w.r.t mean representa-
tion is computed, and top N sentences (Oe) with high-
estR(·) are selected as the summary.

5.2 Aspect Summarization
SemAE can perform aspect summarization without
needing additional training. For this, we require
a small set of keywords to identify sentences that
talk about an aspect. For example, food aspect is
captured using keywords: “breakfast”, “buffet” etc.

For a given aspect a, let the keyword set be
Qa = {w1, w2, . . .}. We use Qa to identify a set
of sentences S(a)

e for each entity e, belonging to
aspect a from a held-out dev set Sdev. Similar to
general summarization, we proceed by computing
the mean representation of sentences S(a)

e belong-
ing to the aspect a:

ᾱ(a) =
1

|S(a)
e |

∑
s∈S(a)

e

αs (7)

We then select sentences most similar to the
mean representation as the summary.
(a) Informativeness: Sentences selected for aspect
summarization should talk about the aspect but not
the general information. We model informative-
ness (Peyrard, 2019) by ensuring that a selected
sentence representation αs resembles the aspect
mean ᾱ(a), but is divergent from the overall rep-
resentation mean ᾱ, for a given entity e. For an
aspect a, we iterate over sentences in S(a)

e and com-
pute the relevance score for a sentence s as follows:

Ra(αs) = ∆(ᾱ(a), αs)− β∆(ᾱ, αs) (8)

We rank sentences s ∈ Se according to their
aspect-specific relevance score Ra(·), and select
first N sentences as the summary for aspect O(a)

e .2

6 Experimental Setup

In this section, we discuss the experimental setup,
results and analysis.

2We experimented with incorporating the informativeness
term in general summarization also but did not find it useful
(see Appendix A.3 for more details).
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Reviews Train / Test Ent. Rev./Ent.

SPACE 1.14M 11.4K / 50 100
AMAZON 4.75M 183K / 60 8

Table 1: Dataset statistics for SPACE and AMAZON
datasets. (Train/Test Ent.: Number of entities in the
training and test set; Rev./Ent.: Number of reviews per
entity in the test set.)

6.1 Datasets

We evaluated our model on two public customer
review datasets SPACE hotel reviews (Angelidis
et al., 2021) and AMAZON product reviews (He
and McAuley, 2016; Bražinskas et al., 2020). The
dataset statistics are reported in Table 1. Test sets of
both datasets contain three human-written general
summaries per entity. The SPACE corpus was cre-
ated in a two-step process of sentence selection and
then summarization of selected sentences by an-
notators (further details in Appendix A.2). SPACE

dataset also provides human-written summaries for
six different aspects of hotels: building, cleanliness,
food, location, rooms, and service.

6.2 Implementation details

We build on the implementation framework intro-
duced by Angelidis et al. (2021) for our exper-
iments. We used a 3-layer Transformer with 4
attention heads as the encoder and decoder. The
input and hidden dimensions are 320. The encoder
and decoder for SemAE was trained for 4 warmup
epochs, before the dictionary learning based recon-
struction component was introduced. We split the
encoded vector into H = 8 head representations.
We have K = 1024 dictionary elements, each with
dimension d = 320. The dictionary elements are
initialized using k-means clustering of review sen-
tence representations. All hyperparameters were
tuned on the development set (see Appendix A.1
for more details).

6.3 Metrics

We report ROUGE F-scores that compares the over-
lap between generated text with gold summaries.
For SPACE dataset, we measure how much general
summaries cover different aspects by computing
the mean ROUGE-L score with the gold aspect
summaries (denoted by RLASP).

We also compute perplexity (PPL) score to eval-
uate the readability of summaries. Perplexity is
computed using cross-entropy loss from a BERT-
base model. We measure aspect coverage of a sys-

tem, by computing the average number of distinct
aspects NASP in the generated summaries. Lastly,
to evaluate repetition in summaries, we compute
the percentage of distinct n-grams (n = 2).

6.4 Baselines
Following prior work (Angelidis et al., 2021), we
compare SemAE with three types of systems:
(a) Best Review systems: We report the perfor-
mance of Centroid method, where reviews are en-
coded using BERT or SentiNeutron (Radford et al.,
2017), and the review most similar to the mean
representation is selected.
(b) Abstractive systems: We report the performance
of Opinosis (Ganesan et al., 2010) (a graph-based
approach), MeanSum (Chu and Liu, 2019), Copy-
Cat (Bražinskas et al., 2020) and AceSum (Am-
playo et al., 2021a) summarization models.
(c) Extractive systems: We report the performance
of LexRank (Erkan and Radev, 2004), where sen-
tences were encoded using BERT, SentiNeutron
or tf-idf vector. We also report the performance
achieved by selecting review sentences randomly.

6.5 Results
General Summarization: We present the results
of general summarization on SPACE dataset in Ta-
ble 2. SemAE and its variants show strong improve-
ments over previous state-of-the-art QT, and other
baselines, across all ROUGE metrics. They also
outperform abstractive systems (like CopyCat and
Meansum) by a large margin, which shows that
SemAE can effectively select relevant sentences
from a large pool of reviews. All variants of Se-
mAE outperform other models in RLASP metric,
showcasing that general summaries from SemAE
cover aspects better than baselines. We compiled
some baseline results from Angelidis et al. (2021).

We further evaluate the quality of the sum-
maries, for all variations of SemAE along with
our strongest baseline QT, using other automatic
metrics in Table 3. The first row in Table 3 re-
ports the performance of QT, which achieves the
highest distinct n-gram score, but has poor per-
plexity score. This shows that QT generates sum-
maries with diverse text but they are not coherent.
SemAE achieves the best perplexity score (sec-
ond row in Table 3) but produces less diverse text
(lowest distinct n-gram score). The third row in
Table 3 reports the performance of SemAE with
redundancy term. Comparing rows 2 and 3 of Ta-
ble 3, we observe that the summaries from SemAE
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SPACE [General] R1 R2 RL RLASP
B

es
tR

ev
ie

w CentroidSENTI 27.36 5.81 15.15 8.77
CentroidBERT 31.33 5.78 16.54 9.35
OracleSENTI 32.14 7.52 17.43 9.29
OracleBERT 33.21 8.33 18.02 9.67

A
bs

tr
ac

t Opinosis (Ganesan et al.) 28.76 4.57 15.96 11.68
MeanSum (Chu and Liu) 34.95 7.49 19.92 14.52
Copycat (Bražinskas et al.) 36.66 8.87 20.90 14.15
AceSum (Amplayo et al.) 40.37 11.51 23.23 -

E
xt

ra
ct

Random 26.24 3.58 14.72 11.53
LexRankTF-IDF 29.85 5.87 17.56 11.84
LexRankSENTI 30.56 4.75 17.19 12.11
LexRankBERT 31.41 5.05 18.12 13.29
AceSumEXT (Amplayo et al.) 35.50 7.82 20.09 -
QT (Angelidis et al.) 38.66 10.22 21.90 14.26

SemAE 42.48 13.48 26.40 15.23
w/ redun. 42.06 12.69 25.77 15.40
w/ aspect 42.86 12.92 25.52 15.22
w/ aspect + redun. 43.46 13.06 25.43 15.14

Table 2: Evaluation results on SPACE dataset. Best
results for each metric are shown in bold. RLASP is
the average ROUGE-L score when compared with gold
aspect-specific summaries. Systems that access refer-
ence summaries are reported in gray.

SPACE [General] PPL E[NASP] Distinct-n

QT 4.96 4.40 0.98
SemAE 3.37 4.44 0.89

w/ redun. 4.01 4.12 0.93
w/ aspect 3.55 5.24 0.94
w/ aspect + redun. 3.70 4.84 0.95

Table 3: Evaluation results of QT, SemAE and its dif-
ferent variations on SPACE general summarization. For
all setups with redundancy term constant γ = 0.1.

(w/ redundancy) have more distinct n-grams (less
repetition), while falling behind in perplexity and
aspect coverage. Performance results for aspect-
aware variants of SemAE are reported in last two
rows of Table 3. We observe that iteratively cover-
ing aspects reduces repetition (increase in distinct-
n score). As expected the mean aspect-coverage
(E[NASP]) improves in aspect-aware SemAE vari-
ants. However, a slight drop in aspect-coverage is
observed when the redundancy term is introduced
(last row in Table 3). We also observe an increase
in perplexity for aspect-aware variants, which can
be caused due to multiple changes in aspect context.
Overall, SemAE (w/ aspect + redundancy) is able
to produce diverse text with a high aspect coverage
and a decent perplexity score, appearing to be the
best performing model.

Evaluation results on AMAZON dataset are re-
ported in Table 4. SemAE and its variants3 achieve

3We do not have aspect-aware selection variants in AMA-
ZON, as it does not provide aspect-denoting keywords.

AMAZON R1 R2 RL

B
es

tR
ev

. Random 27.66 4.72 16.95
CentroidBERT 29.94 5.19 17.70
OracleBERT 31.69 6.47 19.25

A
bs

tr
ac

t

Opinosis (Ganesan et al.) 28.42 4.57 15.50
MeanSum (Chu and Liu) 29.20 4.70 18.15
CopyCat (Bražinskas et al.) 31.97 5.81 20.16
PlanSum (Amplayo et al.) 32.87 6.12 19.05
TranSum (Wang and Wan) 34.23 7.24 20.49
COOP (Iso et al.) 36.57 7.23 21.24

E
xt

ra
ct LexRankTF-IDF 28.56 3.98 15.29

LexRankBERT 31.47 5.07 16.81
QT† (Angelidis et al.) 31.27 5.03 16.42

SemAE 32.03 5.38 16.47
w/ redun. 31.92 5.68 16.61

Table 4: Evaluation results on AMAZON dataset. Best
performance achieved using an extractive systems are
in bold. Overall best results for each metric is
underlined. System performance that access reference
summaries are reported in gray.

similar performance, with SemAE achieving the
best performance among all extractive summariza-
tion system. SemAE falls short of only abstractive
summarization systems that have the advantage of
generating novel phrases not present in the input
reviews. Also, while SemAE beats most baselines
for AMAZON dataset, the performance gain isn’t as
much as SPACE dataset. We believe this is because
the number of reviews per entity in AMAZON (8) is
much lower compared to SPACE (100). As SemAE
is dependent on the mean representation ᾱ, having
more reviews helps in capturing the popular opin-
ion distribution accurately.4 For practical purposes,
opinion summarization systems are useful when
there are hundreds or more reviews per entity. A
larger improvement on SPACE shows the efficacy
of SemAE in the real world.
Aspect Summarization: For aspect summariza-
tion, we compare against four unsupervised sys-
tems MeanSum, CopyCat, LexRank and QT on the
SPACE dataset. For general summarizers: Mean-
Sum, CopyCat and LexRank, sentence embeddings
retrieved from BERT (Vaswani et al., 2017) were
clustered using k-means and each cluster S(a)

e was
assigned an aspect a based on frequency of aspect-
denoting keywords in the cluster’s sentences. The
models then produced summaries for each aspect
a given the input set S(a)

e . All models including

4We observed a drop in performance when the number of
reviews/entity in SPACE dataset was reduced (experimental
details in Section 6.6).
†

Reported results are obtained using the publicly released
implementation of QT (Angelidis et al., 2021).
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SPACE [Aspect] Building Cleanliness Food Location Rooms Service R1 R2 RL

MeanSum (Chu and Liu) 13.25 19.24 13.01 18.41 17.81 20.40 23.24 3.72 17.02
CopyCat (Bražinskas et al.) 17.10 15.90 14.53 20.31 17.30 20.05 24.95 4.82 17.53
LexRankBERT (Erkan and Radev) 14.73 25.10 17.56 23.28 18.24 26.01 27.72 7.54 20.82
QT (Angelidis et al.) 16.45 25.12 17.79 23.63 21.61 26.07 28.95 8.34 21.77

SemAE 20.04 23.72 23.57 25.33 25.29 26.90 31.24 10.43 24.14
w/o informativeness 18.38 24.08 19.03 23.32 23.89 25.05 27.85 8.61 22.29

Table 5: Evaluation results of Aspect Summarization on SPACE dataset. ROUGE-L scores are reported for six
different aspects. R1, R2 and RL are the average ROUGE-1, ROUGE-2 and ROUGE-L F scores respectively. Best
system results are in bold.

SPACE [General] Inform. Coherence Redund.

QT -31.3 -47.3 -39.3
SemAE (w/ asp. + redun.) -21.3* -28.0* -27.3*
Human +52.7 +75.3 +66.7

SPACE [Aspect] Asp. Inform. Asp. Specificity

QT -35.0 -24.7
SemAE -13.0* -11.0
Human +48.0 +35.7

Table 6: Human evaluation results of general and as-
pect summarization for SPACE dataset. Best human
evaluation results obtained for a system are in bold and
human performance is in gray. (*): statistically signifi-
cant difference with QT model (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

SemAE, use the same aspect-denoting keywords.
Evaluation results on SPACE are reported in Ta-

ble 5. SemAE outperforms the state-of-the-art QT
in all aspects except cleanliness, where the per-
formance is comparable. We observe that adding
the informativeness term (∆(ᾱ, αs) in Equation 8)
helps improve the specificity of the aspect thereby
boosting performance. SemAE also shows signif-
icant gains in terms of average ROUGE-1/2 and
ROUGE-L across different aspects.
Human Evaluation: We performed human evalu-
ations for the general and aspect summaries. We
evaluated general summaries from QT, best per-
forming variant SemAE (w/ aspect + redundancy)
and gold summary. Summaries were judged by
3 human annotators on three criteria: informa-
tiveness, coherence and non-redundancy. The
judges were presented summaries in a pairwise
manner and asked to select which one was bet-
ter/worse/similar. The scores (-100 to +100) were
computed using Best-Worst Scaling (Louviere et al.,
2015). The first half of Table 6 reports the evalu-
ation results, where we observe that SemAE (w/
aspect + redundancy) outperforms our strongest
baseline, QT, for all criteria (statistical significance
information provided in the caption of Table 6).
However, summaries generated from both systems

Figure 3: Visualization of UMAP projections of dic-
tionary elements. Projections form clusters, which are
shown in different colors.

are far from gold summaries on all criteria.
We also evaluated aspect summaries generated

by SemAE and QT in a similar manner. Aspect
summaries were judged based on two criteria: as-
pect informativeness (usefulness of opinions for a
specific aspect, consistent with reference) and as-
pect specificity (how specific the summary is for
an aspect without considering other factors). The
bottom half of Table 6 reports the results for aspect
summaries. We observe that both QT and SemAE
produce aspect-specific summaries. However, Se-
mAE shows a statistically significant improvement
over QT in aspect informativeness.

6.6 Analysis

Latent Dictionary Interpretation. In this section,
we investigate the semantic meanings learnt by in-
dividual dictionary elements, Dk. We visualized
the UMAP projection (McInnes et al., 2018) of
dictionary element representations (shown in Fig-
ure 3). For different runs of SemAE, we found that
the dictionary representations converged into clus-
ters as shown in Figure 3 (elements are color-coded
according to their cluster identities as assigned by
k-means algorithm with k=12).

We hypothesize that the clusters should cap-
ture certain semantic meaning. We explore this
hypothesis by identifying sentences sharing simi-
lar representations with the mean representations
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SemAE SemAE (w/ redun.) SemAE (w/ aspect) SemAE (w/ aspect + redun.)

The staff is great. The Hotel
Erwin is a great place to stay.
The staff were friendly and

helpful. The location is per-
fect. We ate breakfast at the
hotel and it was great. The
hotel itself is in a great loca-
tion. The service was wonder-
ful. It was great. The rooms
are great. The rooftop bar
HIGH was the icing on the
cake. The food and service at
the restaurant was awesome.
The service was excellent.

The hotel itself is in a great
location. The rooms were
clean and we were on the 5th.
The best part of the hotel is
the 7th floor rooftop deck.
The staff is great. The hotel
has so many advantages over
the other options in the area
that it is a no contest. If you
want to stay in Venice, this is
a great place to be. The food
and service at the restaurant
was awesome.

The staff is great. The staff
were friendly and helpful.
The Hotel Erwin is a great
place to stay. The location
is perfect. We ate break-
fast at the hotel and it was
great. The food and ser-
vice at the restaurant was
awesome. The rooms are
great. The room is epic! The
rooftop bar HIGH was the ic-
ing on the cake. The rooftop
bar at the hotel, "High", is
amazing.

The staff is great. We had a
great stay at the Erwin, and
the staff really made it more
enjoyable. The Hotel Erwin
is a great place to stay. It
was great. We ate breakfast
at the hotel and it was great.
The food and service at the
restaurant was awesome. The
rooms are great. We had a
kitchen and balcony and par-
tial ocean view. The rooftop
bar HIGH was the icing on
the cake.

Table 7: Example summaries from different variants of SemAE. Redundant sentences are highlighted. The aspect
denoting words are in bold. For SemAE & SemAE (w/ redun.), we observe frequent context switch among aspects.
SemAE (w/ aspect) & SemAE (w/ aspect + redun.) summaries cover different aspects in a coherent manner.

(h, k) Sentences w/ high activation Explanation

(3, 5) • I wish all hotels or any business
for that matter, had employees a
dedicated to service as he was.
• Very polite and very professional
approach.

Service

(0, 10) • Stayed here in August for the
our first trip to Vancouver.
• I stayed at this motel with my
partner in August 2010.

Phrase
“stayed”

(6, 0) • Empty water bottles were never
thrown out and no one put the iron
and ironing board away.
• Facing St Paul St can be a very
noisy experience.

Bad
experience

(2, 8) • A full cooked to order breakfast
(including omlettes, . . . , fruit, etc.)
• Pizza hut, Mc donalds, KFC all
round the corners...

Food

(5, 8) • The rooms seem small, tight fit
for a family of 4.
• You may have a difficult fit.

Small
rooms

Table 8: List of sentences with high activation value
with cluster means of dictionary elements. For each
head representation, cluster means capture different se-
mantics. h: head index; k: cluster index.

{µ1, . . . , µK} for each cluster. For each head h
in the encoder (Section 4.1), we compute cosine
similarity of sentences with cluster means. Table 8
shows some examples of sentences having high-
est similarity with a cluster mean µk for a head
representation h. We observe in most cases sen-
tences closest to a cluster share a similar semantic
meaning. For hotel reviews, we observe that sen-
tences often talk about a specific aspect like service,
food and rooms, as shown for (h, k) configurations
(3, 5), (2, 8) and (5, 8) in Table 8. The clusters
sometimes capture certain coarse semantics like
presence of a word or phrase (e.g. config. (0, 10)

SPACE [General] 5% 10% 50% 100%

Copycat 26.1 26.2 31.8 36.7
QT 36.9 37.1 37.7 38.7

SemAE 37.8 40.9 41.2 42.5

Table 9: ROUGE-1 scores with different training data.

in Table 8). It can also capture high-level seman-
tics like the experience of a customer (e.g. config.
(6, 0)). It was interesting to observe that a single
cluster can capture different semantics for distinct
heads (cluster 8 in configurations (2, 8) and (5, 8)).
Qualitative Examples. Table 7 shows summaries
generated by SemAE and its variants for the SPACE

dataset. While the summary generated by SemAE
talks about location, staff & service multiple times
(shown as highlighted text), summary from SemAE
(w/ redundancy) doesn’t have that repetition.

Also, the summary generated by SemAE
switches context frequently. For example, the
aspect of the first three sentences changes from
service→location→service. We observe that com-
pared to SemAE, both aspect-aware SemAE vari-
ants generate summaries without abrupt context
switches. The summary generated by SemAE (w/
aspect) covers aspects like service, hotel, food and
rooms sequentially, but sentences referring to an
aspect are quite similar. SemAE (w/ aspect + redun-
dancy) overcomes this shortcoming, and introduces
diversity among the aspect-specific sentences.
Training Data Efficiency. We analyze the perfor-
mance of SemAE, QT and CopyCat for general
summarization (ROUGE-1) on SPACE for varying
training data fractions in Table 9. We observe that
both QT and SemAE perform well with low train-
ing data. However, SemAE outperforms QT in all
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Rev./Ent. R1 R2 RL

5 40.49 12.92 26.23
10 40.76 13.14 26.26
25 41.17 13.18 26.05
50 41.55 13.16 26.01

100 42.48 13.48 26.40

Table 10: ROUGE-F scores of SemAE with varying
number of reviews per entity.

low resource settings. SemAE (with 10% data)
yields significant ROUGE-1 improvements over
QT (with access to 100% data).

Impact of number of reviews. We investigate
whether SemAE’s performance gain on SPACE

is due to the larger number of reviews available
(reviews per entity – AMAZON: 8, SPACE: 100).
Specifically, we perform ablation experiments by
reducing the number of reviews/entity in SPACE

dataset. We remove user reviews with low rele-
vance scores (relevance score of a review is the
averageR(·) of its sentences). Table 10 reports the
performance of SemAE with different number of
reviews/entity in the test set. We observe a gradual
decline in ROUGE-1 score when the reviews/entity
is reduced, which shows that having more reviews
per entity helps in better extractive summarization.

Additional Controllable Summarization. We
showcase that SemAE can perform different forms
of controllable summarization. Specifically, we
perform sentiment-based summarization using a
small number (10) of seed sentences belonging
to positive, negative and neutral sentiment class.
Seed sentences were annotated using the rule-based
system VADER (Hutto and Gilbert, 2014). An ex-
ample of sentiment-based summarization is shown
in Table 11. We observe SemAE is able to gener-
ate summaries aligning with the seed sentiments.
We also perform multi-aspect summarization using
SemAE, by controlling the aspect of the selected
sentences. Table 12 showcases an example of multi-
aspect summarization. An interesting observation
is that SemAE is able to select sentences, which
have mutliple aspects (shown in blue) and not in-
dependent sentences from different aspects. These
experiments show that SemAE is able capture and
leverage granular semantics for summarization.

In Appendix A.5, we perform additional analy-
sis to investigate the head-wise analysis, efficacy
of sparsity constraints, dictionary evolution, and
qualitatively compare SemAE with baselines (QT
and CopyCat).

SENTIMENT SUMMARY

Positive Love the warm chocolate chips cookies
and the service has always been outstand-
ing. Excellent morning breakfasts and the
airport shuttle runs every 15 minutes but we
have made the 10 minute walk numerous
times to the airport terminal.

Negative To add insult to injury, for people who use
the parking lot to "park and fly", the charge
is $7.95/day, almost half of what the hotel
guests are charged!! Cons - Hotel is spread
out so pay attention to how to get to your
room as you may get lost, Feather pillows
(synthetic available on request), Pay parking
($16 self/day $20 valet/day), warm cookies
on check in.

Neutral Stayed at this hotel beause the park n fly. We
have stayed at this hotel several times in
the family suite ( 2 bedrooms/1 king and
2 queen beds). Despite the enormity of this
hotel, it very much feels almost family run.

Table 11: An example of sentiment-based summariza-
tion for a hotel entity in SPACE dataset.

ASPECTS SUMMARY

(food, staff) The staff was friendly and helpful and
we enjoyed the warm, chocolate chip
cookie we were given at check-in. The
breakfast in the restaurant was amazing,
and the staff was very attentive.

(room,
cleanliness)

The bed was very nice, room was clean,
we even had a balcony. The beds were
comfortable and the room was very clean.

Table 12: Examples of multi-aspect summarization for
a hotel entity in SPACE dataset.

7 Conclusion

We proposed a novel opinion summarization ap-
proach using Semantic Autoencoder, which en-
codes text as a representation over latent semantic
units. We perform extractive summarization by se-
lecting sentences using information-theoretic mea-
sures over representations obtained from SemAE.
Our experiments reveal that dictionary element rep-
resentations from SemAE form clusters, which cap-
ture distinct semantics. Our model provides fine-
grained control to users to model surface-level text
attributes (like redundancy, informativeness etc.)
in the representation space. SemAE outperforms
existing extractive opinion summarization methods
on SPACE and AMAZON datasets. Finally, SemAE
representations can be leveraged to explore differ-
ent forms of control on the summary generation
(e.g. multi-aspect sumamrization) using our infer-
ence framework. Future works can focus on better
representation learning systems to handle use-cases
with noisy or sparse textual data.
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DATASET λ1 λ2

AMAZON 103 5× 10−4

SPACE 104 5× 10−4

Table 13: Loss function hyperparameters values.

A Appendix

A.1 Implementation Details

The Transformer is trained without the dictionary
learning reconstruction for 4 warmup epochs. We
tokenized text in an unsupervised manner using
SentencePiece5 tokenizer with 32K vocabulary size.
The model was trained using Adam Optimizer with
a learning rate of 10−3, and a weight decay of 0.9.
Our model was trained for 10 epochs on a single
GeForce GTX 2080 Ti GPU in 35 hours. The loss
function parameters are reported in Table 13. The
hyperparameters were tuned on the development
set of the dataset based on ROUGE-1 F score. For
aspect summarization, we set β = 0.7 after tuning
(grid search between 0.1 and 1, with intervals of
0.1) on the development set. We choose the redun-
dancy term constant γ = 0.1 in a similar manner.
Post training, the summaries were generated with
N = 20. We limit the summary length to 75 tokens.
Each keyword wi ∈ Qa is associated with a con-
fidence score for aspect a. In case a sentence has
multiple keywords belonging to different aspects
we use the confidence score to assign the aspect.

A.2 Dataset Construction

In this section, we provide some background in-
formation about the dataset creation process for
SPACE and AMAZON. SPACE corpus has a large
number of reviews per entity. Therefore, Angelidis
et al. (2021) collected summaries from reviews fol-
lowing a two-step procedure (a) sentence voting,
and (b) summary collection. Sentence voting step
involves selecting informative review sentences us-
ing a majority vote from the annotators. Annota-
tors were prompted to select between 20-40% of
the total sentences. Summary collection involves
generating a overview summary of the selected
sentences upto a 100-word budget. For aspect sum-
maries, selected sentences were annotated using an
off-the-shelf aspect classifier (Angelidis and Lap-
ata, 2018b). Human annotators were asked to sum-
marize selected sentences belonging to an aspect.
AMAZON dataset has a relatively lower number of

5https://github.com/google/sentencepiece

SPACE R1 R2 RL PPL E(NASP ) Dist. n

SemAE 42.48 13.48 26.40 3.37 4.44 0.89

w/ cosine ∆ 42.53 13.67 26.12 3.41 4.44 0.89
w/ inform. 42.48 13.47 26.13 3.32 4.44 0.89

Table 14: Evaluation results of ablation experiments.
For informativeness term, β′ = 0.1.

reviews per entity. The evaluation set of AMAZON

was created by sampling 60 entities and 8 reviews
per entity. These were provided to the human anno-
tators for summarization (Bražinskas et al., 2020).

A.3 Ablations

• Divergence metric: SemAE uses KL diver-
gence to measure the relevance of a sentence
αs when compared to the mean ᾱ, we used KL-
divergence earlier. In this setup, we experiment
with cosine similarity as our divergence function
∆(·, ·). The modified divergence ∆(·, ·) score is
defined as:

∆(αs, ᾱ) =
∑
h

ᾱThα
s
h

||ᾱh||2||αsh||2
(9)

The second row in Table 14 reports the perfor-
mance in this setup, which is similar to the base-
line SemAE performance. This shows that co-
sine similarity can serve as a good proxy to mea-
sure relevanceR(·).

• Informativeness: In this ablation experiment,
we incorporate the informativeness term in gen-
eral summarization. The modified relevance
score is:

R(αs) = ∆(ᾱ, αs)− β′∆(α(b), αs) (10)

where α(b) = E[αs], the mean representation of
all sentences across all entities. α(b) captures
background knowledge distribution (Peyrard,
2019), and a good summary should be divergent
from the background information. Third row in
Table 14 reports the performance in this setup,
where we do not observe any gain over the base-
line. We believe this maybe due to the fact that
α(b) doesn’t capture the background knowledge
properly, as it is the mean representation of hotel
review sentences across all entities.

For both ablation setups, we observe almost no
change in perplexity, aspect coverage and dis-
tinct n-grams metrics.
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DATASET METHOD R1 R2 RL

SPACE
SemAE 42.48 13.48 26.40

w/ Herding 39.69 10.30 22.81
w/ Optimal Transport 38.38 9.34 22.38
w/ Clustering 30.00 4.35 17.66

AMAZON
SemAE 32.03 5.38 16.47

w/ Herding 30.36 4.95 15.67
w/ Optimal Transport 31.45 5.23 17.12
w/ Clustering 31.42 5.27 16.58

Table 15: Summarization performance of SemAE with
different sentence selection schemes on SPACE and
AMAZON datasets.

A.4 Variations of Sentence Selection

(a) Herding (Chen et al., 2010): In this setup, we
modify selection mechanism of SemAE by updat-
ing the mean representation every time a sentence
is selected. We consider the mean of the sentences
that have not been selected so far. The intuition
behind this approach is that the next selected sen-
tence should best capture information, which is
not present in the summary so far. The sentence
selection process is described below:

αst = max
αs
R(αs) = max

αs
∆(ᾱt, α

s) (11)

ᾱt = E
s∼(Se\Ôe)

[αs] (12)

where αst is the representation selected at time step
t, ᾱt is mean representation of the set of sentences
that are not part of the summary yet and Ôe is the
set of selected sentences so far. Table 15 reports the
result of this setup. We observe a significant drop in
performance compared to SemAE. We believe that
removing the selected sentences skews the mean
towards outlier review sentences resulting in a drop
in performance.
(b) Optimal Transport: In this setup, we consider
the Wasserstein distance between two probability
distributions. Wasserstein distance (Peyré et al.,
2019) arising from the concept of optimal trans-
port takes into account the underlying geometry
of the representation space. LetM1

+(Rd) be the
space of probability distributions defined on Rd
with d ∈ Z+. Wasserstein distance between two ar-
bitrary probability distributions µ ∈M1

+(X ) and
ν ∈ M1

+(Y) is denoted by W(µ, ν). Following
(Colombo et al., 2021), we compute a Wasserstein

barycenter of all sentences for each head h as:

µch = arg min
µ∈M1

+(Rd)

|Se|∑
i=1

W(µ, αsh) (13)

The overall representation for the barycenter is
µc = [µc1, . . . , µ

c
H ]. Next, we derive the relevance

score of each sentence s with the barycenter as:

R(αs) = −
H∑
h=1

W(µch, α
s
h) (14)

As shown in Equation 14, we select sentences with
low Wasserstein distance from the barycenter. We
report the results for this optimal transport setup
in Table 15. We find that the performance of this
setup is significantly lower than SemAE on SPACE

dataset, but comparable to other baselines on AMA-
ZON dataset.
(c) Clustering-based Sentence Selection: In this
setup, instead of selecting sentences similar to the
mean representation, we identify clusters formed
by the representations. For clustering we flatten
the sentence representation αs ∈ RHK , and use
k-means6 clustering (K is a hyperparameter). We
select sentences that are representative samples in
each cluster. The relevance score for each sentence
is computed as follows:

R(αs) = −||αs − αC ||22 + γ|C| (15)

where αC is the representation of the cluster center
where s belongs, and |C| is the size of the cluster.
The first term in Equation 15 penalizes the rele-
vance of a sentence for being too far away from
the cluster center, and the second term selection
of samples from a large cluster. The hyperparam-
eters γ = 0.005,K = 5 in our experiments, were
selected using the development set performance.
In Table 15, we observe that this clustering-based
sentence selection work poorly for SPACE dataset
but the performance on AMAZON is decent. The
performance on SPACE dataset is poor as it has a
large number of reviews, and identification of rep-
resentative clusters is difficult using this approach.

A.5 Extended Analysis
(a) Efficacy of Sparsity Losses: In this section,
we evaluate the performance of SemAE in different

6We experimented with algorithms (like Affinity Propaga-
tion, DBSCAN) that identify clusters automatically, but found
them to struggle with outliers. K-means performed better than
them albeit requiring finetuning of the hyperparameter.
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h = 0, R1 − 35.2 h = 1, R1 − 23.8 h = 2, R1 − 29.3 h = 3, R1 − 37.1 h = 4, R1 − 30.2

h = 5, R1 − 37.0 h = 6, R1 − 28.0 h = 7, R1 − 38.9

Figure 4: Head-wise visualization of UMAP (McInnes et al., 2018) dictionary element projections.

Epoch 4 Epoch 5 Epoch 6 Epoch 7

Epoch 8 Epoch 9 Epoch 10

Figure 5: UMAP (McInnes et al., 2018) projections of dictionary element over different epochs (warmup epoch #4
to epoch 10). We observe that dictionary elements gradually evolve to form clusters over the epochs.

DATASET METHOD R1 R2 RL

SPACE

SemAE 42.48 13.48 26.40
w/o L1 41.01 11.91 24.23
w/o H 38.70 10.45 22.87

AMAZON

SemAE 32.03 5.38 16.47
w/o L1 29.16 4.77 16.19
w/o H 29.60 4.85 16.63

Table 16: Performance of SemAE in different configu-
rations of sparsity constraints.

configurations of sparsity losses. Specifically, we
gauge SemAE’ performance when L1-loss and en-
tropy loss are removed. Table 16 reports the results
with different loss setups. We observe a drop in

performance when either of the sparsity losses are
removed. This shows that ensuring sentence rep-
resentations are a sparse combination of semantic
units helps in summarization.
(b) Head-wise Analysis: We analyze whether
there is a correlation between the head-wise rep-
resentations and clusters formed by dictionary ele-
ments. For each dictionary element, we compute
the average attention (αh) it receives from each
head h, and assign the element to a head where it
received the maximum mean attention (head-wise
dictionary elements are shown in Figure 4). We
also compute the performance of general summa-
rization when only a single head representation is
considered ∆(αs, ᾱ) = KL(ᾱh, α

s
h). In Figure 4,

we observe that heads that have instances in mul-
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Human SemAE QT Copycat

All staff members were
friendly, accommodating, and
helpful. The hotel and room
were very clean. The room
had modern charm and was
nicely remodeled. The beds
are extremely comfortable.
The rooms are quite with
wonderful beach views. The
food at Hash, the restaurant
in lobby, was fabulous. The
location is great, very close to
the beach. It’s a longish walk
to Santa Monica. The price is
very affordable.

The staff is great. The Ho-
tel Erwin is a great place to
stay. The staff were friendly
and helpful. The location is
perfect. We ate breakfast at
the hotel and it was great. The
hotel itself is in a great loca-
tion. The service was wonder-
ful. It was great. The rooms
are great. The rooftop bar
HIGH was the icing on the
cake. The food and service at
the restaurant was awesome.
The service was excellent.

Great hotel. We liked our
room with an ocean view.
The staff were friendly and
helpful. There was no bal-
cony. The location is per-
fect. Our room was very
quiet. I would definitely
stay here again. You’re one
block from the beach. So it
must be good! Filthy hall-
ways. Unvacuumed room.
Pricy, but well worth it.

This hotel is in a great
location, just off the
beach. The staff was very
friendly and helpful. We
had a room with a view of
the beach and ocean. The
only problem was that our
room was on the 4th floor
with a view of the ocean.
If you are looking for a
nice place to sleep then
this is the place for you.

Table 17: Human-written and system generated summaries from SemAE, QT and Copycat. We showcase the
summary for the same instance reported by previous works.

Food: The food and service at the restaurant was awesome. The food at Hash, the restaurant just off of the lobby, was fabulous
for breakfast. The food was excellent (oatmeal, great wheat toast, freshberries and a tasty corned beef hash).

Location: The Hotel Erwin is a great place to stay. The hotel is not only in the perfect location for the ideal LA beach experience,
but it is extremely hip and comfortable at the same time.

Cleanliness: The room was spacious and had really cool furnishings, and the beds were comfortable. The room itself was very
spacious and had a comfortable bed. We were upgraded to a partial ocean view suite and the room was clean and comfortable.

Service: The hotel staff were friendly and provided us with great service. The staff were friendly and helpful. The staff was
extremely helpful and friendly. The hotel staff was friendly and the room was well kept.

Building: The rooftop bar at the hotel, "High", is amazing. The rooftop bar HIGH was the icing on the cake. The Hotel Erwin is
a great place to stay. The best part of the hotel is the 7th floor rooftop deck.

Rooms: The room was spacious and had really cool furnishings, and the beds were comfortable. The room itself had a retro 70’s
feel with a comfortable living room and kitchen area, a separate bedroom with a nice king size bed, and a sink area outside the
shower/toilet area.

Table 18: Aspect-wise summaries generated by SemAE.

tiple dictionary element clusters (h = 0, 3, 5, 7)
perform better than heads where instances are con-
centrated over few clusters (h = 1, 2).

(c) Output summaries: Table 17 shows the sum-
maries generated by SemAE, QT and Copycat
along with human-written summary. We observe
that SemAE selects well formed sentences, avoid-
ing truncated sentences or the ones in a first-person
setting. Table 18 reports the summaries generated
by SemAE for different aspects of a hotel entity.
We observe that SemAE is able to produce sum-
maries that talk about the specific aspect only.

(d) Evolution of Dictionary Representations:
We plot the UMAP projections of dictionary el-
ements from epochs 4 (after encoder warmup is
complete) to 10 in Figure 5. During the training
process, we observe that the UMAP project of dic-
tionary elements form a set of clusters. We observe
the first signs of cluster formation in epoch 7, which

SPACE [General] R1 R2 RL

QT 36.1 7.6 20.2
QT (+SS) 35.7 8.1 22.4

SemAE 37.8 9.7 22.8

Table 19: Summarization performance with SemAE’s
sentence selection (SS) scheme using representations
from QT and SemAE. We also report the performance
of the baseline QT. The experiments were conducted
on 5% SPACE dataset.

becomes more distinct over the later epochs.
(e) Ablations with QT: In this section, we analyze
the efficacy of our sentence selection (SS) module.
We evaluate the summarization performance using
our sentence selection scheme by retrieving sen-
tence representations from QT and SemAE. The
experiments were performed using 5% data from
the SPACE dataset. For QT’s representations, we

1224



obtain αh (Equation 2) as follows:

αh = softmax(−||sh −D||22) (16)

In Table 19, we observe that incorporating our sen-
tence selection (SS) improves QT’s performance
in terms of ROUGE-2 and ROUGE-L scores, with
a small drop in ROUGE-1. However, the perfor-
mance still falls behind SemAE, showcasing that
the our representation learning model complements
the sentence selection scheme. From these two re-
sults, we can conclude that the better performance
of SemAE can be attributed to a combination of the
two components. Note that using QT’s sentence
selection with SemAE’s representations is not fea-
sible as SemAE doesn’t quantize sentences to a
single latent code.
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