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Abstract

Understanding causality has vital importance
for various Natural Language Processing
(NLP) applications. Beyond the labeled in-
stances, conceptual explanations of the causal-
ity can provide deep understanding of the
causal facts to facilitate the causal reasoning
process. However, such explanation informa-
tion still remains absent in existing causal rea-
soning resources. In this paper, we fill this gap
by presenting a human-annotated explainable
CAusal REasoning dataset (e-CARE), which
contains over 21K causal reasoning questions,
together with natural language formed expla-
nations of the causal questions. Experimental
results show that generating valid explanations
for causal facts still remains especially chal-
lenging for the state-of-the-art models, and
the explanation information can be helpful for
promoting the accuracy and stability of causal
reasoning models.

1 Introduction

Causal reasoning is one of the most central cog-
nitive abilities of human beings (Waldmann and
Hagmayer, 2013; Jonassen et al., 2008), which en-
ables one to understand the observed facts and pre-
dict the future. However, although recent causal
reasoning models have achieved impressive per-
formances on certain hand-crafted datasets, there
still remains a considerable gap compared to hu-
man performances, as they cannot achieve stable
performances across different datasets and are sus-
ceptible to adversarial attacks (McCoy et al., 2019;
Poliak et al., 2018; Gururangan et al., 2018).

One key factor leading to such drastic contrast
is that, present causal reasoning models only learn
to induce empirical causal patterns that are predic-
tive to the label, while human beings seek for deep
and conceptual understanding of the causality to
explain the observed causal facts. The conceptual
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Figure 1: Conceptual explanations of observed causality can
be helpful for understanding the unseen causal facts.

explanations can not only serve as a touchstone
to examine whether the underlying causal mech-
anism has been thoroughly understood, but it can
also in turn support the causal reasoning process.
As illustrated in Figure 1, observing the causal
fact C1: adding rock into hydrochloric acid causes
E1: rock dissolved, one may further ask why such
a causal relationship exists and reach the plausi-
ble conceptual explanation that Acid is corrosive,
which goes beyond the isolated facts and reaches
the conceptual nature to reveal the principle of the
causal mechanism.

However, despite the critical importance of con-
ceptual explanations in causal reasoning, there is
still a lack of such an explainable causal rea-
soning dataset. To fill this gap, we contribute
an explainable CAusal REasoning dataset (e-
CARE),together with a new causal explanation
generation task, and a novel Causal Explanation
Quality (CEQ) evaluation metric.

The e-CARE dataset is constructed by crowd-
sourcing and contains over 21K multiple-choice
causal reasoning questions, which makes e-CARE
the largest human-annotated commonsense causal
reasoning dataset to the best of our knowledge. In
addition to the causal reasoning question itself, e-
CARE also provides a free-text-formed concep-
tual explanation for each causal question to ex-
plain why the causation exists. On this basis,
we propose a new causal explanation generation
task that requires models not only to choose the
correct causal fact but also to generate the ex-
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planation for the choice. In addition, to directly
measure the quality of generated explanations, we
propose a novel causal explanation quality eval-
uation metric (namely, CEQ score). Compared
to conventional text generation evaluation metrics
such as BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004) which mainly evaluate the textual or
semantic similarity between generated explana-
tions with golden annotations, CEQ score focuses
on evaluating how much promotion an explana-
tion can bring to understanding the causal mecha-
nism. The dataset is publicly available at https:
//github.com/Waste-Wood/e-CARE/.

Experimental results demonstrate that the
causal questions of e-CARE are still challeng-
ing for the state-of-the-art (SOTA) pretrained lan-
guage models, indicating the effectiveness of the
e-CARE dataset in evaluating the causal learning
ability of models. In addition, the explanation sig-
nal received in the training process can enhance
the performance and the stability of the reasoning
model, while the SOTA baselines still have trou-
ble in explaining the causal facts at a conceptual
level. These analyses highlight the importance of
the conceptual explanations in causal reasoning,
and suggest an avenue for future researches.

2 Related Work

2.1 Commonsense Causal Reasoning
Datasets

Existing commonsense causal reasoning corpora
differ in their annotation guidelines and how they
are constructed: (1) whether the corpus is auto-
matically constructed or built by human annota-
tion; (2) whether the annotation unit of the corpus
is word-level, phrase-level, or sentence-level.

To obtain abundant causal knowledge, a natural
way is extracting causal knowledge using heuris-
tic rules from large-scale open-domain web text
corpora (Luo et al., 2016; Li et al., 2020; Sap
et al., 2019). However, the reporting bias may
challenge both the coverage and quality of the ex-
tracted causal knowledge.

Different from automatic construction, human
annotation can endow datasets with higher pre-
cision. A line of work focuses on providing
word-level causality knowledge (Girju et al., 2007;
Mostafazadeh et al., 2016; Do et al., 2011; Hen-
drickx et al., 2019). However, a word is not a
complete semantic unit, which may limit the in-
tegrity of causal expressions and lead to ambi-

Dataset Anno. Unit Size Expl.
Automatically-Built Dataset
CausalNet (Luo et al., 2016) W 11M N
CausalBank (Li et al., 2020) P 314M N
Human-Annotated Dataset
SemEval-2007 T4 (Girju et al., 2007) W 220 N
CaTeRS (Mostafazadeh et al., 2016) W 488 N
EventCausalityData (Do et al., 2011) W 580 N
SemEval-2010 T8 (Hendrickx et al., 2019) W 1,003 N
ESC (Caselli and Vossen, 2017) P 117 N
T-CBank (Bethard and Martin, 2008) P 271 N
CausalTimeBank (Mirza et al., 2014) P 318 N
BECauSE 2.0 (Dunietz et al., 2017) P 1,803 N
TCR (Ning et al., 2019) S 172 N
COPA (Roemmele et al., 2011) S 1,000 N
e-CARE S 21K Y

Table 1: A list of previous commonsense causal reasoning
datasets. In the column “Annotation Unit”, “W”, “P” and “S”
are abbreviation of word, phrase and sentence, respectively.
“Expl.” is the abbreviation of “Explanation”.

guity. To address this issue, other datasets are
constructed to provide phrase-level (Caselli and
Vossen, 2017; Bethard and Martin, 2008; Mirza
et al., 2014; Dunietz et al., 2017) and sentence-
level (Ning et al., 2019; Roemmele et al., 2011)
causal knowledge. Among these datasets, COPA
(Roemmele et al., 2011) has become a widely
adopted benchmark. Nevertheless, the size of
COPA is rather limited, which may result in over-
fitting and arouse concerns about the confidence
of the results.

In this paper, we introduce an explainable
CAusal REasoning dataset (e-CARE). As shown
in Table 1, to the best of our knowledge, e-CARE
is the largest human-annotated causal reasoning
dataset. With more than 21,000 instances, the e-
CARE dataset can serve as a more reliable bench-
mark. Furthermore, compared to previous work,
e-CARE can provide additional explanation infor-
mation, which plays a critical role in learning the
underlying mechanism of causal knowledge.

2.2 Explainable Textual Inference

Recently, an increasing amount of datasets have
been proposed to address the explainability of
textual inference tasks, such as textual entail-
ment inference (Camburu et al., 2018), question-
answering (QA) (DeYoung et al., 2019; Perez
et al., 2019) and multi-hop QA (Ye et al., 2020).
The form and content of the explanations vary
with the nature of specific tasks.

The QA task requires a model to answer the
question based on evidences within given texts.
Therefore, the explanation for this task should de-
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Number Train Dev Test Total
Causal Questions 14,928 2,132 4,264 21,324
Uniq. Explanations 10,491 2,102 3,814 13,048

Table 2: Corpus level statistics of the e-CARE dataset. Uniq.
Explanations refer to the explanations that only correspond to
a single causal fact.

scribe where and how an answer can be found
(Wiegreffe and Marasović, 2021). The explana-
tions can have various forms, including answer-
bearing sentences (Perez et al., 2019), structured
information connecting the question and answer
(Hancock et al., 2018; Ye et al., 2020), or even
human-annotated free-formed sentences (Cam-
buru et al., 2018; Rajani et al., 2019). In contrast,
the multi-hop QA task requires the model to in-
fer the correct answer through multiple reasoning
steps. Hence, the explanation of this task needs
to provide the specific reasoning paths (Wiegreffe
and Marasović, 2021; Jhamtani and Clark, 2020).

Our work is quite different from previous work.
We notice that all of these previous work only of-
fer explanations that explain a specific question.
Whereas we aim at providing a conceptual under-
standing of the causality, which has the potential to
explain a set of related causal observations, rather
than only explain a specific causal fact.

3 e-CARE: an Explainable Causal
Reasoning Dataset

e-CARE contains a total of 21,324 instances, cor-
responding to 13,048 unique explanations. This
also makes e-CARE the largest human-annotated
commonsense causal reasoning benchmark. The
corpus-level statistics of the e-CARE dataset are
shown in Table 2.

As shown in Table 3, each instance of the e-
CARE dataset is constituted by two components:
(1) a multiple-choice causal reasoning question,
composed of a premise and two hypotheses, and
one of the hypotheses can form a valid causal fact
with the premise; (2) a conceptual explanation
about the essential condition that enables the ex-
istence of the causal fact. For example, as Table 3
shows, the explanation points out the nature of
copper that Copper is a good thermal conductor,
so that holding copper on fire will make fingers
feel burnt immediately. The appendix provides
more discussion about the explanations within e-
CARE. On this basis, we introduce two tasks:
Causal Reasoning Task We formulate the causal

Premise: Tom holds a copper block by hand and
heats it on fire.

Ask-for: Effect
Hypothesis 1: His fingers feel burnt immediately. (!)
Hypothesis 2: The copper block keeps the same. (×)
Explanation: Copper is a good thermal conductor.

Table 3: An instance from the e-CARE dataset.

reasoning task as a multiple-choice task: given a
premise event, one needs to choose a more plau-
sible hypothesis from two candidates, so that the
premise and the correct hypothesis can form into a
valid causal fact.
Explanation Generation Task It requires the
model to generate a free-text-formed explanation
for a given causal fact (composed of a premise and
the corresponding correct hypothesis).

3.1 Data Annotation
To construct the e-CARE dataset, we start by col-
lecting statements that describe conceptual un-
derstandings of world knowledge. Then given a
statement, we ask different annotators to gener-
ate causal facts that can be explained by the state-
ment, and build causal questions based on these
causal facts. This is because we hope to provide
conceptual explanations with more generality, that
can explain a set of correlated causal facts, instead
of only applicable to a certain isolated causal fact.
Moreover, the statements can serve as clues to help
the annotators to come up with causal facts.
Collecting Potential Explanations Two key is-
sues remain in collecting statements as potential
explanations: (1) what kind of statements can
be potential conceptual explanations of the causal
facts; (2) where to find the appropriate statements.

For the first question, Jonassen et al. (2008)
concluded that, in general, the explanation of
causality mainly describes three categories of in-
formation: (1) the nature or attributes of the ob-
jectives involved in the causal facts; (2) forces or
actions that cause changes and drive transient mo-
tions; (3) the goals, intentions, motives or pur-
poses of the causal agents. In addition, to be
the conceptual explanation of a causal fact, the
statement should be able to involve with a cate-
gory of objects or people, but not only focus on
a specific object or person (Sembugamoorthy and
Chandrasekaran, 1986).

Following these principles, we notice that
there are already several available knowledge
bases containing statements about such generic
world knowledge, including ConceptNet (Speer
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and Havasi, 2013), WordNet (Fellbaum, 2010),
Atomic (Sap et al., 2019) and GenericsKB (Bhak-
thavatsalam et al., 2020). However, ConceptNet
and WordNet are structured knowledge graphs,
containing only triplet-structured statements with
a limited number of predicates. The scope of
Atomic is limited in the activities of human be-
ings. Compared to these knowledge bases, Gener-
icsKB is an open-domain, large-scale knowledge
base, containing rich generic world knowledge de-
scribed in free-form text. Therefore, we collect the
statements from GenericsKB to ensure the cover-
age and diversity of the potential explanations.

Specifically, we filter out the statements in
GenericsKB with low reliability, and the state-
ments that may disobey the above-mentioned three
principles. More details are provided in the Ap-
pendix. Thereafter, a total of 19,746 statements
are left to form into a potential explanation set,
which is further provided to the annotators to gen-
erate the causal questions.
Annotating Causal Reasoning Questions Given
the potential explanation set, annotators were re-
cruited to generate corresponding causal ques-
tions. Specifically, a causal question is generated
by two steps:

First, an annotator was presented with a state-
ment as a potential explanation, and was instructed
to write a causal fact (composed of a cause and an
effect), so that the causal fact can be interpreted by
the given statement. In this step, a key issue is con-
trolling the quality of generated causal facts. Thus
we demonstrated illustrative examples to guide the
annotators to avoid the following mistakes:

(1) The created cause and effect are not in a
valid causal relationship;

(2) The created causal fact cannot be explained
by the provided statement;

(3) There are factual errors or imaginary con-
tents in the created causal facts.

In the causal fact generation process, each state-
ment is randomly distributed to 1-3 annotators, so
that we can find some statements that could ex-
plain multiple causal facts. Note that, in this pro-
cess, we do not assume all statements are neces-
sary to be a valid explanation. In other words, we
do not require that the annotators must generate a
causal fact for each given statement. Instead, we
leave it to the judgment of annotators. In this way,
the unreliable statements can be further excluded
to promote the quality of our dataset.

Model Dev Test
Random 50.1 50.1
GPT2 (Radford et al., 2018) 57.17 56.30
RoBERTa (Liu et al., 2019) 58.38 56.42
BERT (Devlin et al., 2019) 56.19 54.45

Table 4: Model’s accuracy (%) of choosing the correct hy-
pothesis without the premise.

After the generation of causal facts, an ask-
for indicator a ∈ [“cause”, “effect”] was ran-
domly generated, where a = “cause” (“effect”)
means that the cause (effect) event is the hypoth-
esis, and the effect (cause) event is the premise of
the causal question, respectively. Then given the
ask-for indicator, in order to control the grammar
and writing style consistency, the same annotator
was prompted to write a distract cause (effect) as
the implausible hypothesis according to the ask-
for indicator. In this process, the annotators were
instructed to create the implausible hypothesis as
close as possible to the true hypothesis, meanwhile
prevent creating uninformative distractors (such as
simply adding a “not” into the true hypothesis).

3.2 Refinement and Analysis of the e-CARE
Dataset

A significant challenge in dataset construction
is avoiding introducing superficial cues into the
dataset (Gururangan et al., 2018; Poliak et al.,
2018), which refers to the unintentional features
that leak the label information. To address this
issue, following Bhagavatula et al. (2019) and
Sakaguchi et al. (2020), we employ an adversar-
ial filtering algorithm to replace the implausible
hypotheses that can easily be distinguished with
the correct hypotheses using the superficial clues.
More details about the adversarial filtering are pro-
vided in the Appendix. As Table 4 shows, after
the adversarial filtering, without the existence of
the premise, the SOTA pretrained language mod-
els can hardly distinguish two candidate hypothe-
ses, which indicates that to predict the correct la-
bel, a model must understand the causal relation-
ship between the premise and hypothesis, rather
than only depend on the superficial cues within the
two hypotheses.

After the refinement, we evaluate the quality of
the annotated causal questions and collected ex-
planations through crowdsourcing. We assess the
quality of causal questions by testing if there is
agreement among human raters on the answer of
causal questions. Specifically, we randomly sam-
pled 200 causal questions from e-CARE, and en-
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listed 10 annotators to answer the causal ques-
tions. In this process, each causal question was
evaluated by three annotators. When answering
the causal questions, the raters were allowed to
choose an additional option “None of the above”
if neither hypothesis was deemed plausible. The
human annotators achieve a 92% accuracy with
a high agreement (Cohen’s κ = 0.935) (Cohen,
1960).

To validate the quality of explanations, we
enlisted volunteers to determine whether or not
the explanations can explain corresponding causal
facts. In total 200 causal facts with correspond-
ing explanations were sampled and distributed to
10 volunteers, and each explanation was evaluated
by three volunteers. After the evaluation, on av-
erage 89.5% of the explanations were deemed as
valid (Cohen’s κ = 0.832), showcasing the quality
of the explanations in e-CARE.

4 Causal Explanation Quality (CEQ)
Score

A number of automatic scores have been proposed
to evaluate the quality of generated explanations,
such as BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004). However, these metrics evaluate the
quality of the generated explanations only through
comparing the textual or semantic similarity be-
tween the generated explanations and the golden
annotation. Alternatively, an ideal causal explana-
tion quality evaluation metric should directly mea-
sure if the causal fact is appropriately explained by
the explanation.

Hence, we propose a novel causal explanation
quality evaluation metric (namely, CEQ score) as
a step towards directly measuring the quality of
generated explanations. We devise the CEQ score
based on the consideration that a better explana-
tion should provide more information for under-
standing the causality, so that the prediction model
can more accurately estimate the reasonableness
of the causal fact. Previous literature character-
ized such reasonableness as the causal strength of
the given causal fact (Roemmele et al., 2011; Luo
et al., 2016), where the causal strength is a score
in [0, 1]. Hence, in theory, for a valid causal fact,
its causal strength should be equal to 1. Given a
valid causal fact, an explanation should help to in-
crease its estimated causal strength to the ground-
truth value 1.

Therefore, we can evaluate the quality of a

generated explanation by measuring the increase
of causal strength brought by the explanation.
Specifically, let C, E, and X denote the cause, the
effect and the generated explanation, respectively.
Formally, the CEQ score is defined as:

CEQ = ∆cs = cs(C,E|X)− cs(C,E), (1)

where cs(C,E) is the original causal strength be-
tween C and E; cs(C,E|X) is the causal strength
after involvement of the additional explanation
information. The explanation enhanced causal
strength cs(C,E|X) is defined as:

cs(C,E|X) = max[cs(C +X,E), cs(C,E +X)], (2)

where “+” denotes the string concatenate opera-
tion. Therefore, the CEQ score is positively re-
lated to the increase of causal strength between C
and E after the involvement of the explanation X .

In this paper, we employ a widely-adopted
model-agnostic method proposed by Luo et al.
(2016) to calculate the causal strength. The
model-agnostic nature enable us to avoid reliance
on certain models and keep the fairness of evalua-
tion. Specifically, the phrase-level causal strength
is derived through synthesizing the word-level
causality.

cs(CA,EB ) =
1

NCA + NEB

∑
wi∈CA,wj∈EB

cs(wi ,wj ), (3)

where (CA,EB ) is an arbitrary causal fact; NCA

and NEB are the number of words within CA and
EB , respectively; cs(wi, wj) is the causal strength
between word wi and wj , which is estimated from
a large corpus as:

cs(wi, wj) =
Count(wi, wj)

Count(wi)Count(wj)α
, (4)

where α is a penalty coefficient and Luo et al.
(2016) empirically set α = 0.66.

5 Experiments and Results

We examine the performance of state-of-the-art
pretrained language models on the causal reason-
ing task and the explanation generation task. Fur-
thermore, we investigate the specific role of ex-
planations in causal reasoning by: (1) a predict-
and-generate experiment, which requires models
to conduct the causal reasoning task and generate
corresponding explanations simultaneously; (2) a
stability analysis using adversarial attacks.
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Model AVG-BLEU ROUGE-l PPL CEQ Human Evaluation (%)
GRU-Seq2Seq 18.66 21.32 33.71 0.024 0
GPT2 (Radford et al., 2019) 32.04 31.47 7.14 0.105 20.0
Human Generation 35.51 33.46 - 0.144 89.5

Table 6: Model performance on the explanation generation task.

Model Accuracy (%)
GPT2 (Radford et al., 2019) 69.51
RoBERTa (Liu et al., 2019) 70.73
BART (Lewis et al., 2020) 71.65
XLNET (Yang et al., 2019) 74.58
BERT (Devlin et al., 2019) 75.38
ALBERT (Lan et al., 2019) 74.60
Human Performance 92.00

Table 5: Performance of pretrained language models on the
test set of the causal reasoning task.

5.1 Causal Reasoning

Settings We cast the causal reasoning task as a
prediction problem: The input of the model is a
candidate causal fact composed of a premise and
one of the corresponding candidate hypotheses.
The output is a score measuring the reasonable-
ness of the candidate causal fact. We evaluate
the causal reasoning ability of several SOTA pre-
trained language models, including discriminative
pretrained language models BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019), and ALBERT (Lan et al., 2019); as
well as autoregressive generative pretrained lan-
guage models GPT2 (Radford et al., 2019) and
BART (Lewis et al., 2020), which can also be
adapted to the predictive causal reasoning task.
In this section and the following parts, all exper-
iments are conducted using the base-sized version
of the pretrained language models. Additional de-
tails about experimental settings are provided in
the Appendix.
Results As shown in Table 5, ALBERT achieves
the highest accuracy of 73.86% on the causal
reasoning task of e-CARE. However, ALBERT
can achieve an accuracy of 86.0% on the widely
adopted causal reasoning benchmark COPA by
our implementation. This is mainly because, on
one hand, previous causal reasoning datasets are
too small to evaluate the genuine reasoning ability
of the model. On the other hand, previous datasets
may provide some superficial cues for the reason-
ing models to achieve superb performances. In
contrast, e-CARE is the largest causal reasoning
dataset that can provide enough test instances to
evaluate the actual ability of the model. More-

Corr. Coef with Human Eval. P-value
AVG-BLEU 0.032 0.749
ROUGE-l 0.021 0.836
CEQ 0.247 0.013*

Table 7: Pearson Correlation coefficients between human
evaluation and automatic scores. “*” denotes P-value< 0.05.

over, in the annotating process of e-CARE, we in-
troduced an adversarial filtering process to avoid
the influence of superficial cues on the perfor-
mances of reasoning models. Hence, we believe
that e-CARE dataset can serve as a new bench-
mark for effectively evaluating models’ causal rea-
soning ability. We also notice that human beings
can achieve an accuracy of 92.00% on the e-CARE
dataset. The large gap between the human per-
formance and the pretrained language models sug-
gests that the causal reasoning questions provided
in our dataset still remain challenging, and calls
for more powerful causal reasoning models.

5.2 Explanation Generation

We investigate whether the model can generate
correct explanations for given valid causal facts
by training a GRU-based Seq2Seq model (Chung
et al., 2014), and finetuning a generative pretrained
language model GPT2 (Radford et al., 2019) on
the e-CARE dataset. Both models take the con-
catenation of the cause and effect as input. Please
refer to the Appendix for more details.
Evaluation Metrics We automatically evalu-
ate the quality of generated explanations us-
ing average-BLEU (n=4) (Papineni et al., 2002),
ROUGE-l (Lin, 2004), Perplexity (Horgan, 1995),
together with our proposed CEQ score.
Human Evaluation We also assess the quality
of model-generated explanations through human
evaluation. Specifically, we sampled 200 explana-
tions generated by each method. Then three work-
ers were shown with the generated explanations,
together with corresponding causal facts, and were
asked to label whether the generated explanation
can explain the corresponding causal fact.
Quantitative Results As shown in Table 6, 89.5%
of human-written explanations are found to be
valid, while the generative pretrained language
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Causal Facts (Generated) Explanation Human Annotation CEQ
Cause: He was infected with gram-positive bacteria.
Effect: The doctor raised the lysozyme in his body.

Lysozyme is a chemical produced by the
bacterium Bacillus thuringiensis to kill bacteria.

Lysozyme destroys cell wall of
bacteria. 0.193

Cause: Pneumonia pervaded in this area.
Effect: Many people died of Pneumonia.

Pneumonia is a leading infectious disease caused
by a bacterium called Pseudomonas aeruginosa.

Pneumonia is the most common
infectious disease leading to death. 0.069

Cause: Tom wanted to prevent cancer.
Effect: The doctor told him to eat more foods
containing Vitamin C.

Vitamin C is a naturally occurring
amino acid found in many foods.

Vitamin C slow the growth of small
cell lung cancer cells. 0.012

Table 8: Examples of explanations generated by GPT2. We highlighted the factual mistakes within the generated explanations
and the totally irrelevant explanation in yellow and pink, respectively.

Model Accu (%) AVG-BLEU ROUGE-l CEQ Human Eval. (%) ∆Accu. (%) after Adv. Attack
GPT2CR 69.51 - - - - -6.40
GPT2EG - 32.04 31.47 0.035 20.0 -
GPT2CR-EG 71.06 34.83 34.22 0.042 26.5 -5.49

Table 9: Model performance on the test set of Joint Causal Reasoning and Explanation Generation task.

model GPT2 only achieves a correctness of 20.0%.
The last row of Table 6 reports the score of held-
out human-written explanations, which serves as
a ceiling for model performance. The significant
gap indicates that, although GPT2 can achieve im-
pressive performance on various natural language
generation tasks, it still remains especially chal-
lenging for GPT2 to deeply understand the causal
facts and then generate explanations like human
beings. This may be one of the main obstacles hin-
dering the further improvement of present causal
reasoning models.

Moreover, we measure the similarity between
the automatic scores with the results of human
evaluation using the Spearman correlation coeffi-
cient. As Table 7 shows, ROUGH-l and average-
BLEU barely have a correlation with the results of
human evaluation. This is because average-BLEU
and ROUGH-l only implicitly evaluate the quality
of generated explanations by measuring the tex-
tual similarity with the golden annotations. Com-
pared to average-BLEU and ROUGH-l, the CEQ
score has a significant positive relationship with
the human evaluation results. This indicates the
efficiency of the CEQ score in evaluating the qual-
ity of generated explanations.

Qualitative Analysis In Table 8, we provide ex-
amples of explanations generated by GPT2. We
observe that GPT2 can generate a reasonable ex-
planation for some causal facts, while the gener-
ated explanations may still contain factual mis-
takes, or be totally irrelevant to the given causal
fact (highlighted in yellow and pink, respectively).
This indicate that the explanation generation still
remains challenging for the GPT2 model.

5.3 Joint Causal Reasoning and Explanation
Generation

To investigate the role of causal explanations in
the causal reasoning process, we trained models
to jointly conduct these two tasks.
Settings Since this task requires a model to predict
a label meanwhile generate an explanation, we
conduct the experiments using the GPT2 model,
which can be adapted to conduct the predictive
causal reasoning task and explanation generation
simultaneously. We denote this multi-task fine-
tuned GPT2 model as GPT2CR-GE. Details for
training GPT2CR-GE is provided in the Appendix.

To make the performance comparable, when
evaluating the performance of GPT2CR-GE on the
causal expatiations generation task, the same as
the settings in the explanation generation task, the
premise and the correct hypothesis are taken as the
input of GPT2CR-GE for generating explanations.
Results We measure the quality of generated ex-
planations using the same automatic scores and
human evaluation settings as the Explanation Gen-
eration experiment. The performance of causal
reasoning is also measured using accuracy. The re-
sults are shown in Table 9, where GPT2CR denotes
the GPT2 model finetuned for the causal reasoning
task, and GPT2EG refers to the GPT2 model fine-
tuned for the explanation generation task. We ob-
serve that compared with GPT2CR, the improved
performance of GPT2CR-EG on causal reasoning
indicates that the additional explanation can be
helpful for the causal reasoning task, as it prompts
model to have a deep understanding of the causal
mechanisms. Interestingly, by comparing with
GPT2EG and GPT2CR-EG, we find that learning to
predict the label can also be helpful for the ex-
planation generation process. This indicates the
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synergistic effect of the causal reasoning and the
explanation generation on promoting models’ un-
derstanding of causal mechanism.

5.4 Stability Analysis
Previous studies indicate that models may utilize
some superficial cues within the dataset to predict
the label. This leads to the vulnerability of mod-
els when facing adversarial attacks (Poliak et al.,
2018; McCoy et al., 2019). Learning to gener-
ate the additional conceptual explanation may pro-
mote the understanding of causality to increase the
stability of the reasoning model. Hence, we con-
duct a stability analysis to examine the specific ef-
fect of additional explanations.

Following Bekoulis et al. (2018) and Yasunaga
et al. (2018), we attack the causal reasoning sys-
tem by adding a perturbation term on the word em-
beddings of inputs. The perturbation term is de-
rived using the gradient-based FGM method (Miy-
ato et al., 2016). Table 9 shows the change of
causal reasoning accuracy (∆Accu.) brought by
the adversarial attack. For example, ∆ = −6.40
means a 6.40% decrease of prediction accuracy
after the adversarial attack. We find that, com-
pared to the vanilla GPT2CR model, the explana-
tion enhanced GPT2 model GPT2CR-EG demon-
strates stronger stability. This suggests that, by
training reasoning models to generate correct ex-
planations of the causal facts, the understanding of
the causality can be promoted, and then the stabil-
ity of model performance can be increased.

5.5 Enhancing Pretrained Language Model
with e-CARE

Causal knowledge is critical for various NLP ap-
plications. In this section, we investigate if the
causality knowledge provided by e-CARE can
be used as a resource to boost model perfor-
mance on other causal-related tasks. To this end,
we apply transfer learning by first finetuning a
BERT model on e-CARE, then adapting the e-
CARE-enhanced model (denoted as BERTE) on a
causal extraction task EventStoryLine 0.9 (Caselli
and Vossen, 2017), two causal reasoning tasks
BECauSE 2.0 (Dunietz et al., 2017) and COPA
(Roemmele et al., 2011), as well as a common-
sense reasoning dataset CommonsenseQA (Tal-
mor et al., 2019). On the EventStoryLine 0.9
dataset, we conduct experiment only on the in-
stances about within-sentence causal relationship.
The results are shown in Table 10. We observe

Dataset Metric BERT BERTE

EventStoryLine 0.9 F1 (%) 66.5 68.1
BECauSE 2.1 Accu. (%) 76.8 81.0
COPA Accu. (%) 70.4 75.4
CommonsenseQA Accu. (%) 52.6 56.4

Table 10: Performance of e-CARE-enhanced BERT.

Figure 2: Conceptual explanations of observed causality can
be helpful for understanding the unseen causal facts.

that the additional training process on e-CARE
can consistently increase the model performance
on all four tasks. This indicates the potential of e-
CARE in providing necessary causality informa-
tion for promoting causal-related tasks in multiple
domains.

6 Discussion

In this paper, we introduce additional explanation
information for the causal reasoning process, and
propose a corresponding explanation generation
task. Previous literature concluded the explanation
generation process as an abductive reasoning pro-
cess (Hanson, 1958; Peirce, 1974) and highlighted
the importance of the abdutive explanation gener-
ation, as it may interact with the causal reason-
ing process to promote the understanding of causal
mechanism, and increase the efficiency and relia-
bility of causal reasoning.

For example, as Figure 2 shows, one may
have an observation that C1: adding rock into
hydrochloric acid caused E1: rock dissolved.
Through abductive reasoning, one may come up
with a conceptual explanation for the observation
that acid is corrosive. After that, one can confirm
or rectify the explanation by experiments, or re-
sorting to external references. In this way, new
ideas about causality can be involved for under-
standing the observed causal fact. Then if the ex-
planation is confirmed, it can be further utilized
to support the causal reasoning process by helping
to explain and validate other related causal facts,
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such as C2: adding rust into sulphuric acid may
lead to E2: rust dissolved. This analysis high-
lights the pivotal role of conceptual explanation in
learning and inferring causality. In this paper, we
introduce the e-CARE dataset to provide causal
explanations and support future research towards
stronger human-like causal reasoning systems.

7 Conclusion

In this paper, we present an explainable CAusal
REeasoning dataset e-CARE, which contains over
21K causal questions, together with over 13K
unique conceptual explanations about the deep un-
derstanding of the causal facts, which also makes
e-CARE the largest causal reasoning benchmark.
Experimental results show that both the causal rea-
soning task and especially the explanation gener-
ation task remain challenging for the SOTA pre-
trained language models. Moreover, the additional
explanation signal can promote both the prediction
accuracy and stability of models, highlighting the
vital importance of the conceptual explanations in
causal reasoning.
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9 More Discussions about the e-CARE
Dataset

9.1 The Generality of the Conceptual
Explanation

In this paper, we construct the dataset by first ob-
taining the conceptual explanations, then obtain-
ing the causal questions. This is because, we
also hope to find the conceptual explanations with
more generality, that that can explain more than
one causal fact, but can explain a set of correlated
causal facts. Table 11 demonstrate an example
of such conceptual explanation. The explanation
points out the nature of Copper that Copper is a
good thermal conductor, so that holding copper
on fire will make fingers feel burnt immediately.
Additionally, the same explanation can also pro-
vide insights about another causal fact seemingly
totally different from the case in Table 3 (a), that
putting copper tubes into computer can promote
thermal dispersion. This is because, the concep-
tual explanation points out the nature of copper,
which drives a set of causal facts into existence.

This example demonstrate the usefulness of the
conceptual explanations in providing the deep un-
derstanding of causality to support the causal rea-
soning. However, note that in this paper, we do
not assume all the statements we collected can ex-
plain multiple causal facts. Instead, we resort to
the empirical knowledge of human annotators to
find such explanations. Specifically, we distribute
statements to several annotators, and require each
annotator to generate a causal fact that can be ex-
plained by the statement. For a certain statement,
if it is distributed to multiple annotators and more
than one annotator can generate a corresponding
causal fact, then we assume that this statement can
be a conceptual statement.

9.2 The Exhaustiveness of the Explanations

Another point we wish to elucidate is about the
exhaustiveness of the explanations. In this paper,
we only aim at providing plausible explanations
that can explain the causal fact, but do not assume
the provided explanations to be exhaustive or self-
sufficient.
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(a) Premise: Tom held a copper block by hand and heated it on fire. (b) Premise:This computer’s heat dispersion performance is bad.
Ask-for: Effect Ask-for: Effect
Hypothesis 1: His fingers felt burnt for a short time. (!) Hypothesis 1: Designers add copper tubes into the computer. (!)
Hypothesis 2: The copper block kept the same. (×) Hypothesis 2: Designers put the computer into the ice water. (×)
Explanation: Copper is a good thermal conductor. Explanation: Copper is a good thermal conductor.

Table 11: Two instances from the e-CARE dataset.

9.3 The Relationship between the Unique
Explanations and Causal Questions

Due to the practical limits, to ensure the coverage
of dataset, only a part of statements are distributed
to multiple annotators, as described in Section 3.1.

10 Data Collection Details

10.1 Collection of Explanations

We collect the potential explanations from a com-
monsense knowledge base GenericsKB (Bhaktha-
vatsalam et al., 2020), which contains naturally
occurring generic statements, such as “Trees re-
move carbon dioxide from the atmosphere”, col-
lected from multiple corpora. We first filtered
the statements according to their quality score s,
which is a human-annotation based metric, pro-
vided in the GenericsKB and evaluating the cor-
rectness of each statement. To ensure the factual
correctness of the potential explanations, we only
kept the statements whose quality score are among
the highest 1%. In addition, we also excluded the
statements including: (1) Overly complex state-
ments. The statements with connective, and state-
ments with more than 20 words are excluded. This
is because, by observation, we found that the an-
notators always struggle with understand and gen-
erate plausible causal facts for the over complex
explanations. The number 20 is an empirical set-
ting. (2) Statements describing named entities. (3)
Statements describing the hypernymy or hyper-
onymy relationship between the subject and ob-
ject. For example, the statement Monkey is a kind
of mammal. describes the hypernymy relation-
ship between the subject monkey and object mam-
mal. This kind of statement does not belong to the
three kinds of information that a valid explanation
contains, as mentioned in Section 3.1.

After the filtering process, totally 19K state-
ments are remained to be the potential explana-
tions. Note that we do not assume that the state-
ments after the filtering process are necessarily to
be valid potential explanation and force the anno-
tators to generate corresponding causal fact(s). In-
stead, we left the judgment to the annotators. If

a statement has already been distributed to three
annotators and no annotator can generate a corre-
sponding causal question for this statement, then
it is discarded.

10.2 Collection of Causal Questions

We guided the annotators using illustrative exam-
ples to avoid the following mistakes:
(1) The generated cause and effect cannot be ex-
plained by the statement.

• Wrong Case

Explanation: Copper is a good The copper
block was oxidized and the surface became
dark..
Cause: Tom held a copper block and heated
it on fire.
Effect: The copper block was oxidized and
the surface became dark.

• Correct Case

Explanation: Copper is a good thermal
conductor.
Cause: Tom held a copper block by hand and
heated it on fire.
Effect: His fingers felt burnt for a short time.

(2) The generated “cause” and “effect” do not
form a valid causal relationship.

• Wrong Case

Explanation: Oncologists specialize in the
treatment of cancer.
Cause: Jerry suffered from cancer.
Effect: Jerry consulted many artists.

• Correct Case

Explanation: Oncologists specialize in the
treatment of cancer.
Cause: Jerry suffered from cancer.
Effect: Jerry consulted many oncologists.
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(3) The distractor can also form a causal relation-
ship with the premise.

• Wrong Case

Explanation: Oncologists specialize in the
treatment of cancer.
Cause: Jerry suffered from cancer.
Effect: Jerry consulted many oncologists.
Disctractor Cause: Jerry consulted many
traditional herbalists.

(4) The generated distractor is uninformative.

• Wrong Case

Explanation: Copper is a good thermal con-
ductor.
Cause: Tom held a copper block by hand and
heated it on fire.
Effect: His fingers felt burnt for a short time.
Disctractor Effect: His fingers did not feel
burnt for a short time.

11 Adversarial Filtering

During the annotation process, some superficial
clues may be incurred into the dataset, which
makes the correct and implausible hypothesis can
be distinguished merely using these annotation ar-
tifacts. To decrease the influence of potential an-
notation artifacts, we introduce an Adversarial Fil-
tering algorithm (Bhagavatula et al., 2019) to re-
fine our dataset.

In specific, for an arbitrary causal question
〈p, a, h+, h−〉, where p is the premise, a ∈
[“cause′′, “effect′′] is an ask-for annotator, h+

and h− is the correct and wrong hypothesis, re-
spectively, if 〈p, h+〉 and 〈p, h−〉 can be easily dis-
tinguished by a predictive model, then we replace
h− with another implausible hypothesis h−

′
sam-

pled from an implausible hypothesis setH, so that
〈p, h−′〉 is harder to be distinguished from 〈p, h+〉.
Where the implausible hypothesis setH is the col-
lection of all wrong hypotheses within the dataset.

Algorithm 1 provides a formal description of
our adversarial filtering algorithm. Specifically,
in each iteration i, we randomly split the dataset
into a training set Ti and a validation set Vi.
Then a model Mi is trained on Ti to update Vi
to make it more challenging for Mi. To this
end, given an instance 〈pj , aj , h+j , h

−
j0〉 ∈ Vi, we

randomly sample K more implausible hypothe-
ses h−j 1′, · · · , h−j K ′. Let δMi

k denotes the differ-
ence of model evaluation between 〈pj , aj , h+j , h

−
j 〉

and 〈pj , aj , h−k 〉, where δMi
k < 0 means model

Mi favors h+j to be the plausible hypothesis than
the implausible hypothesis h−jk. With probabil-
ity ti, we replace h−j with the implausible that is
hardest to distinguish with h+j , i.e., h−j = h−jl,

l = arg minl δ
Mi
k . In this way, in each iteration,

the proportion of easy implausible hypotheses de-
creases, and then the adversary model is forced to
capture more causality knowledge.

Algorithm 1 Adversarial Filtering
Input: number of iteration n, dataset D0, implausible hy-

pothesis set H−, initial and final temperature parameter
ts and te.

Output: dataset Dn
1: for iteration i = 1→ (n− 1) do
2: ti = t+ e+ ts−te

1+e0.3(i−3n/4)

3: Random split Mi into training set Ti and validation
set Vi

4: Train Model Mi on Ti
5: for instance j ∈ Si do
6: for h−jk ∈ H

−
j do

7: Calculate δMi
k (〈pj , aj , h+

j 〉, 〈pj , aj , h
−
jk〉)

8: l = arg minl δ
Mi
k

9: Sample r from a Uniform distribution
U(0, 1)

10: If r < ti or δMi
l < 0 then h−j = h−jl

11: Add instance j into Si
12: end for
13: end for
14: end for
15: Dn = Sn

We implemented the adversary model using
pretrained language model RoBERTa-base (Liu
et al., 2019). The AF algorithm is run for 25 it-
erations and the temperature ti follows a sigmoid
function, parameterized by the iteration number,
between ts = 1.0 and te = 0.2. For each instance,
we sampledK = 20 more implausible hypotheses
from the implausible hypothesis setH.

12 Details of Experiments

12.1 Details of the Causal Reasoning
Experiment

Settings In this paper, the causal reasoning task
is defined as a multiple-choice problem, which re-
quires the model to choose a more plausible hy-
pothesis from two candidates, so that the premise
and hypothesis can form a valid causal fact. There-
fore, the causal reasoning task could be formalized
as a prediction problem: given a candidate cause
fact 〈cause, effect〉 composed of the premise
event and one of the hypothesis events, the pre-
diction model is required to predict a score mea-
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Model Input Format
GPT2 < |startoftext| > C [SEP] E < |endoftext| >

RoBERTa <s> C <s> E <s>
BART <s> C <s> E <s>

XLNET <cls> C <sep> E <sep>
BERT [CLS] C [SEP] E [SEP]

ALBERT [CLS] C [SEP] E [SEP]

Table 12: Input format of models in the causal reasoning task.

suring the causality of the event pair. Note that
the ask-for indicator decides whether the premise
or candidate hypothesis to be the cause or effect,
respectively.

To this end, we concatenate the premise with
each one of the candidate hypothesis to form two
candidate causal facts. Then each of the candi-
date causal fact is fed into the models, to obtain a
probability measuring the plausibility of the can-
didate causal fact. To satisfy the input format of
the pretrained language models, the input candi-
date causal fact is preprocessed by adding special
tokens. Additionally, we adapt GPT2 and BART
to predictive causal reasoning task by adding an
EOS token to the end of input text, and making
predictions based on the representation of the EOS
token. The specific input format of the models is
listed in Table 12, where C, E denotes the cause
and effect of the candidate causal fact, respec-
tively.
Training Details In the causal reasoning task, we
optimize all the models with a batch size of 64,
learning rate of 1e-5, and the model is finetuned
for 3 epochs.

12.2 Details of the Explanation Generation
Experiment

Settings In the explanation generation experiment,
models are trained to generate an explanation for
a given valid causal fact 〈C,E〉. Hence, the input
of GPT2 is formated as:

< |startoftext| > C [SEP ] E < |endoftext| >, (5)

where < |startoftext| > and < |endoftext| >
are two special tokens. The input of the GRU-
Seq2Seq model is formated as:

< SOS > C , E < EOS > . (6)

Training Details In the explanation generation
task, the GPT2 model is trained with a batch size
of 32, learning rate of 1e-5, and the model is
finetuned for 10 epochs. For the GRU-Seq2seq
model, both the encoder and the decoder con-
tains 2 GRU layers with a dimension of 300×300.

The word embedding is initialized using 300-
dimension GloVe. During optimazation, the GRU-
Seq2seq model is trained for 10 epochs as well.

12.3 Details of Explanation AND Generation
Experiment

Settings Given a causal question, we first con-
catenate the premise with each one of the candi-
date hypothesis to form two candidate causal facts.
Then each of the candidate causal fact is fed into
the GPT2 model, to get a distributed representa-
tion of the candidate causal fact. Then probability
measuring the plausibility of the candidate causal
fact is predicted using an MLP based on the dis-
tributed representation. After predicting plausibil-
ity score of two candidate causal facts, the model
is trained to generate an explanation based on only
the representation of the candidate causal fact that
model thinks is more likely to be valid.
Training Details During the training process, to
balance the generation loss and prediction loss, we
introduce an balance coefficient λ. Hence, the loss
function is formulated as L = (1− λ)LPrediction +
λLGeneration. We empirically set λ = 0.1. The
batch size and learning rate are also set as 32 and
1e-5, respectively. While different to the explana-
tion generation process, in the Generate And Pre-
diction experiment, the GPT2 model is trained for
5 epochs, as it receives two kinds of supervision
signals.

12.4 Details of Transfer Analysis

Settings
All four tasks in the transfer analysis can be for-

malized as multiple-choice problem. Specifically,
the causal event extraction task EventStoryLine
requires model to predict whether two phrase-level
events within a sentence can form a causal re-
lationship. While in two causal reasoning tasks
BECauSE 2.0 (Dunietz et al., 2017) and COPA
(Roemmele et al., 2011), models are required to
choose a plausible hypothesis, so that the premise
and the hypothesis can form a valid causal fact.
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Dataset Input Format
EventStoryLine [CLS] Statement
BECauSE 2.0 [CLS] C [SEP] E [SEP]

COPA [CLS] C [SEP] E [SEP]
CommonsenseQA 2.0 [CLS] Q [SEP] A [SEP]

Table 13: Input format of models in the transfer analysis.

The CommonsenseQA (Talmor et al., 2019) task
requires model to choose a correct answer for a
given question. We list the specific format of the
input on these four tasks in Table 13, where C and
E denotes the cause and effect, respectively,Q and
A denotes the question and answer, respectively.
Training Details To equip model with the causal-
ity knowledge within e-CARE, we train a BERT
model for 3 epochs, with a batch size of 32 and a
learning rate of 1e-5. Then in the following fine-
tuning stage, on all four datasets, both BERT and
e-CARE enhanced model BERTE are fine-tuned
using a grid search with the following set of hyper-
parameters:

• batch size: {16, 32}

• number of epochs: {3,5,10}

• learning rate: {1e-6, 1e-5}
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