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Abstract
This paper describes the submission of
Huawei Translation Service Center (HW-TSC)
to WMT21 biomedical translation task in
two language pairs: Chinese↔English and
German↔English (Our registered team name
is HuaweiTSC). Technical details are intro-
duced in this paper, including model frame-
work, data pre-processing method and model
enhancement strategies. In addition, us-
ing the wmt20 OK-aligned biomedical test
set, we compare and analyze system perfor-
mances under different strategies. On WMT21
biomedical translation task, Our systems in
English→Chinese and English→German di-
rections get the highest BLEU scores among
all submissions according to the official evalu-
ation results.

1 Introduction

We have witnessed great progress made by neu-
ral machine translations (Bahdanau et al., 2015;
Vaswani et al., 2017) in recent years. However,
domain adaptation remains to be a tough issue. As
noted by Koehn and Knowles (Koehn and Knowles,
2017), translations by NMT systems in out-of-
domain scenarios are relatively poor, and high-
quality data in specific domains are difficult to
obtain, which pose great challenges to certain trans-
lation tasks (e.g. biomedical translation). To ad-
dress the domain adaptation issue, on one hand, we
leverage data diversification (Nguyen et al., 2020),
forward translation (Wu et al., 2019) and back trans-
lation (Sennrich et al., 2016a; Edunov et al., 2018)
to generate synthetic in-domain corpora. On the
other hand, fine-tuning (Sun et al., 2019) and en-
semble (Freitag et al., 2017; Li et al., 2019) are
used to further enhance system performances in the
biomedical domain.

We introduce our data strategy in section 2, and
model architectures as well as model enhancement
techniques in section 3. Section 4 presents experi-
mental results of both language pairs on the wmt20

OK-aligned biomedical test set. Section 5 is a con-
clusion of our work.

2 Dataset

2.1 Data Source
Our baseline model is trained with out-of-domain
WMT21 news data. The sizes of bilingual
and monolingual data for Chinese↔English and
German↔English language pairs are shown in Ta-
ble 1.

With regard to in-domain data, we use both the
bilingual data and monolingual data provided by
the WMT21 Biomedical Translation Shared task.
For German↔English task, we select Biomed-
ical Translation and UFAL Medical Corpus as
in-domain training data. Besides, 21.43M in-
house English monolingual data are used. For
Chinese↔English task, the used in-house data
includes: 1.35M parallel data, 21.43M English
monolingual data, and 36.11M Chinese monolin-
gual data. Table 2 shows the details of data in
the biomedical domain for German↔English and
Chinese↔English tasks.

2.2 Data Pre-processing
Our data pre-processing methods include:

• Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Normalize punctuations using Moses (Koehn
et al., 2007).

• Filter out sentences with repeated fragments.

• Filter out sentences with mismatched paren-
theses and quotation marks.

• Filter out sentences of which punctuation per-
centage exceeds 0.3.

• Filter out sentences with the character-to-
word ratio greater than 12 or less than 1.5.
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corpus Mono
Language WMT21 News Shared Task’s Corpus English German Chinese

German↔English 96.6M 150M 150M -
Chinese↔English 16.5M 150M - 150M

Table 1: Out-domain data size of WMT21 Biomedical Translation Task

corpus Mono
Language Biomedical Translation && UFAL In-house Corpus English German Chinese

German↔English 3.06M - 21.43M - -
Chinese↔English - 1.35M 21.43M - 36.11M

Table 2: In-domain data size of WMT21 Biomedical Translation Task

• Filter out sentences with more than 120 words.

• Apply langid (Joulin et al., 2017, 2016) to
filter sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

It should be noted that for the German↔English
translation task, we employ joint SentencePiece
model(SPM) (Kudo and Richardson, 2018; Kudo,
2018) for word segmentation, with the size of the
vocabulary set to 32k. As for the Chinese↔English
translation task, Jieba tokenizer is used for Chi-
nese word segmentation while Moses tokenizer for
English word segmentation. Byte Pair Encoding
(BPE) (Sennrich et al., 2016b) is adopted for Chi-
nese and English sub-word segmentation. We train
BPE models with 32,000 merge operations for both
the source and target sides.

3 System overview

3.1 Model
Our system uses Transformer (Vaswani et al., 2017)
model architecture, which adopts full self-attention
mechanism to realize algorithm parallelism, accel-
erate model training speed, and improve translation
quality. Two Transformer deep-large model archi-
tectures are used in our experiments:

• Deep 25-6 (Wang et al., 2018; Li et al., 2019):
Based on the Transformer-base model archi-
tecture, the deep 25-6 model features 25-layer
encoder, 6-layer decoder, 1024 dimensions
of word vector, 4096-hidden-state, 16-head
self-attention and layer normalization.

• Deep 35-6 (Wu et al., 2020; Sun et al., 2019):
Based on the Transformer-base model archi-
tecture, the deep 35-6 model features 35-layer

encoder, 6-layer decoder, 788 dimensions of
word vector, 3072-hidden-staten, 16-head self-
attention and layer normalization.

We use the open-source Fairseq (Ott et al., 2019)
for training. The main parameters are as follows:
Each model is trained using 8 GPUs. The size of
each batch is set as 2048, parameter update fre-
quency as 32, learning rate as 5e-4 (Vaswani et al.,
2017) and label smoothing as 0.1 (Szegedy et al.,
2016). The number of warmup steps is 4000, and
the dropout is 0.1. We also use the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, β2
= 0.98. In the inference phase, The beam-size is
8, The length penalties for Chinese→English and
German→English are set to 0.5, and the length
penalties for the other two directions are set to 1.5.

3.2 Data augmentation
Given the small size of in-domain bilingual data,
how to generate more training data becomes a cru-
cial issue for model performance enhancement in
the biomedical field. We adopt three data augmen-
tation methods:

• Data diversification (Nguyen et al., 2020):
Data diversification is a simple but effective
strategy to enhance the performance of NMT.
It uses predictions from multiple forward and
backward models and then combines the re-
sults with raw data to train the final NMT
model. The method does not require addi-
tional monolingual data and is suitable for
all types of NMT models. It is more effi-
cient than knowledge distillation and dual
learning, and exhibits strong correlation with
model integration. In our Chinese↔English
and German↔English systems, we use only
the forward model and the backward model to
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create synthetic data and add the data to the
original parallel corpora.

• Forward translation (Wu et al., 2019): For-
ward translation usually refers to using source
language monolinguals to generate synthetic
data through beam search decoding, and then
add synthetic data to the training data so as
to increase the training data size. Although
merely using forward translation may not
work well, forward translation can be used
in conjunction with a back translation strat-
egy, which also works better than using back
translation alone. We do not use forward trans-
lation for the German→English system task
due to the lack of high-quality in-domain Ger-
man monolinguals. We then give up forward
translation for the English→German direction
because forward translation and back transla-
tion cannot be used jointly for better effects.
Ultimately, we only adopt forward translation
for our Chinese↔English systems.

• Back translation (Edunov et al., 2018): Back
translation translates target side monolingual
data back to the source language so as to
increase the training data size, which has
been proved to be an effective method to
improve neural machine translation perfor-
mances. There are many methods for gen-
erating synthetic corpus through back trans-
lation. In a non-extremely low-resource sce-
nario, sampling or noisy beam search decod-
ing method is more effective than beam search
or greedy search, and the synthetic data gener-
ated by sampling or noisy beam search decod-
ing method may introduce more diversity to
training data. In our experiment, sampling de-
coding is adopted. We use back translation for
all directions expect English→German, due
to the lack of high-quality in-domain German
monolinguals.

3.3 Training strategy

We first use in-domain training data to conduct
incremental training with baseline models trained
by WMT21 news data for domain transfer. Then,
we use three monolingual enhancement strategies,
data diversity, forward translation and back trans-
lation, to create synthetic data and add them to the
in-domain training data to further expand the scale

of the training data, and then perform incremen-
tal training again. In addition, we fine-tune our
models with test sets from previous years of the
same task in hope of further improving in-domain
performances. Specifically, we ensemble multiple
models to forward translate the source side of test
sets to increase the size of the training data, and
then add noise (Meng et al., 2020) to the target side
of the training data to achieve a better fine-tuning
effect. Finally, multiple models are ensembled to
achieve better performance.

Algorithm 1: Strategies for selecting en-
semble models

Input :
The list of all NMT models to

be selected M := [M1, ..., Mn], n is
the Number of M , and the test Set T ;
Output :

The optimal model combination
B := [M i, ..., M j ];

1 Initialize the test set T ’s maximum BLEU
score maxbleu := 0;

2 Initialize the optimal model combination
B := [];

3 for num ∈ range(1, n) do
4 Generate a list of model combination

numlist, which is all possible
combination of num models in M ;

5 for current model combination
subnumlist ∈ numlist do

6 Calculate the current BLEU score
curbleu of the current combined
model on the test set T .;

7 if curbleu > maxbleu: then
8 B := subnumlist
9 maxbleu := curbleu

10 end
11 end

12 end
13 return B

3.4 Ensemble

For each translation task, we randomize two sets of
training data and train four models using the two
model architectures mentioned above. In the course
of our experiments, we find that directly ensemble
all models does not necessarily perform better on
test set than a single model. To achieve a better
ensemble effect, we design an algorithm, as shown
in the algorithm 1. The core idea is to traverse all
combinations of models and find the best one in the
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System English→Chinese Chinese→English
baseline 40.0 28.3
+ biomedical corpus 44.5 (+4.5) 31.4 (+3.1)
+ data diversification 44.9 (+0.4) 32.3 (+0.9)
+ forward translation & back translation 45.8 (+0.9) 34.6 (+2.3)
+ fine-tuning 47.6 (+1.8) 35.9 (+1.3)
+ ensemble 47.7 (+0.1) 36.4 (+0.5)
WMT20 best official 46.9 35.3

Table 3: Chinese↔English BLEU scores on the WMT20 OK-aligned biomedical test set.

test set. The experiment results show that ensemble
with the best combination found by the traverse
strategy is much better than simply ensemble all
models. In our experiment, the model combina-
tion that performs best on the wmt20 OK-aligned
biomedical test set is used as the final submission.

4 Experimental result

We train baseline models using WMT21 news data,
then incrementally train them using medical bilin-
gual corpora and synthetic data generated by data
augmentation techniques, fine-tune models with
previous years’ test sets, and finally ensemble mul-
tiple models to produce submitted results. We
benchmark our submissions using the WMT20 OK-
align test set. BLEU scores are calculated using the
MTEVAL script from Moses (Koehn et al., 2007).
The results are shown in Table 3 and Table 4. Our
models outperform last year’s official best results
in three language directions. The tables mainly
show the results of deep 35-6 models. Only in the
last ensemble phase, multiple model architectures
are used. we compare our results with the best
official results from last year. We notice that our
baseline models trained by WMT news data may
also perform quite well in the biomedical field. For
example, in German→English, Our baseline model
is only 2.2 BLEU below last year’s best result.

4.1 Chinese↔English

For Chinese↔English task, we first train the base-
line model on WMT21 news data. Then, in-
cremental training is conducted with in-domain
bilingual and synthetic data. Finally, models are
fine-tuned with the previous test sets, and multi-
ple models are ensembled to produce the final re-
sult. The experimental results of Chinese↔English
are shown in Table 3. Compared with the
baseline model, the final systems achieve im-
provements of 8.1 BLEU and 7.7 BLEU on

Chinese→English and English→Chinese direc-
tions, respectively. Incremental training alone
leads to increases of 3.1 BLEU and 4.5 BLEU
on Chinese→English and English→Chinese re-
spectively. Besides, the combination of data di-
versity, forward translation, and back translation
also lead to significant improvements (3.2 BLEU
increase for Chinese→English and 1.3 BLEU for
the opposite direction). Fine-tuning on previous
test sets further improves the model quality by
1.3 BLEU for Chinese→English and 1.8 BLEU
for English→Chinese. Notably, no further im-
provements is achieved by ensemble all models,
while ensemble the model combinations found
through the ergodic approach further improves
translation quality by 0.5 BLEU and 0.1 BLEU on
Chinese→English and English→Chinese, respec-
tively. Ultimately, on Chinese↔English task, our
results outperform last year’s official best results.

4.2 German↔English

For German↔English task, the model train-
ing strategy used is similar to that for
Chinese↔English task, except data augmen-
tation techniques. As mentioned above, due
to the lack of in-domain German monolingual
data, we use data diversity and back translation
strategies for German→English direction and only
data diversity for English→German direction.
The German↔English experiment results are
shown in Table 4. Data augmentation results
in significant performance improvements, with
1.1 BLEU and 1.7 BLEU on German→English
and English→German respectively. Fine-tuning
with previous years’ test sets has also improved
the quality of in-domain translations. On
German→English, we fine-tune the model
with wmt18 and wmt19 test sets and see an
improvement of 1.1 BLEU. On English→German,
fine-tuning leads to an increase of 0.4 BLEU.
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System English→German German→English
baseline 33.8 39.5
+ biomedical corpus 34.9 (+1.1) 39.8 (+0.3)
+ data diversification 35.5 (+0.6) 40.4 (+0.6)
+ back translation - 40.6 (+0.2)
+ fine-tuning 35.9 (+0.4) 41.7 (+1.1)
+ ensemble 36.5 (+0.6) 42.4 (+0.7)
WMT20 best official 36.9 41.7

Table 4: German↔English BLEU scores on the WMT20 OK-aligned biomedical test set.

Ensemble the model combinations found through
the ergodic approach contribute to 0.7 BLEU
increase for German→English and 0.6 BLEU for
English→German. Ultimately, due to the lack of
effective in-domain German monolingual data,
we only surpass last year’s official best results on
German→English direction.

5 Conclusion

This paper presents the submissions of HW-TSC to
the WMT21 Biomedical Translation Task. We per-
form experiments with a series of pre-processing
and training strategies. The effectiveness of each
strategy is demonstrated by our experiment re-
sults. Combining with data augmentation strate-
gies, incremental training with in-domain data
on the basis of a baseline model from new do-
main can effectively improve in-domain transla-
tion quality. Our systems in English→Chinese and
English→German directions get the highest BLEU
scores among all submissions according to the offi-
cial evaluation results.
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