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Abstract

This paper presents the Adam Mickiewicz
University’s (AMU) submissions to the
WMT 2021 News Translation Task. The
submissions focus on the English↔Hausa
translation directions, which is a low-resource
translation scenario between distant languages.
Our approach involves thorough data cleaning,
transfer learning using a high-resource lan-
guage pair, iterative training, and utilization
of monolingual data via back-translation.
We experiment with NMT and PB-SMT
approaches alike, using the base Transformer
architecture for all of the NMT models while
utilizing PB-SMT systems as comparable
baseline solutions.

1 Introduction

We describe the Adam Mickiewicz University’s
submissions to the WMT 2021 News Translation
Task. We focused on translation between Hausa
and English – a low-resource translation scenario
between distant languages. Our methods combine
data cleaning with OpusFilter (Aulamo et al., 2020)
and fastText (Joulin et al., 2016), transfer learning
(Aji et al., 2020; Zoph et al., 2016), iterative train-
ing, and back-translation (Sennrich et al., 2016a).

All NMT models were trained with
FAIRSEQ (Ott et al., 2019), while the first it-
eration of the back-translation was generated with
Moses (Koehn et al., 2007).

The results presented in the paper are based
on the first released development set ("Dev-1"),
which consists of 1000 sentences, the final devel-
opment set ("Dev-full"), which adds additional
1000 sentences to the first development set, and
the released test set without additional test suites
("Test"). The test set consists of 1000 sentences
in English→Hausa direction and 997 sentences in
Hausa→English direction.

The final submissions significantly outperform
the vanilla NMT baselines in terms of BLEU (Pap-

ineni et al., 2002) metric results, as implemented
in SACREBLEU (Post, 2018) with default settings.

All systems were trained in a constrained sce-
nario i.e., using the data provided by the organizers
of WMT 2021 only.

2 Data preparation

The quality of the training data has a great im-
pact on the final performance of the NMT mod-
els (Rikters, 2018). The data preparation consisted
of data cleaning and filtering performed by using
OpusFilter (Aulamo et al., 2020) pipelines. We
specified separate pipelines for monolingual and
parallel data. Data cleaning phase consisted of
normalizing punctuation, removing non-printable
characters, and decoding HTML entities by using
Moses (Koehn et al., 2007) pre-processing scripts.

We applied subword segmentation on fil-
tered data by using SentencePiece (Kudo and
Richardson, 2018) tool with byte-pair-encoding
(BPE) (Sennrich et al., 2016b) algorithm. The cor-
pora we used for model training, along with the
number of sentences before filtering, are specified
in Table 1. Number of sentences after filtering is
presented in Table 2.

Monolingual data filtering For the monolingual
data filtering, we defined an OpusFilter pipeline
that consists of the following filters:

• deduplication filter,

• sentence length filter,

• word length filter,

• Latin character score filter,

• language identification filter.

The sentence length filter requires that the sen-
tence contain a minimum of 3 and a maximum
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Data type Sentences Corpora
Parallel en-ha 751,560 Khamenei, Opus, ParaCrawl
Monolingual en 41,428,626 News crawl (only 2020)
Monolingual ha 2,311,959 News crawl, CommonCrawl
Parallel de-en 8,600,361 Tilde Rapid, CommonCrawl, Europarl, News commentary, ParaCrawl

Table 1: Corpora statistics before filtering.

of 100 words. A maximum of 40 characters is re-
quired for the word length. The required Latin char-
acter score for a sentence is set to 100%. Language
identification filter is based on a fastText (Joulin
et al., 2016) language identifier. The open-source
fastText language identification models do not iden-
tify Hausa, so we used the JW300 corpus from the
English-Hausa Opus collection to train our custom
language identifier. A sentence must pass all filters
to be included in the training data.

Data type Sentences
Monolingual en 39,812,834
Monolingual ha 1,227,921
Parallel ha-en 494,246

Table 2: Monolingual corpora statistics after filtering.

Parallel data filtering The filters used in the
parallel data filtering pipeline are nearly identi-
cal to those used in the monolingual data filtering
pipeline. Filters are applied to both the source and
target sentences in this scenario. We also included
a length ratio filter with a threshold of 2, indicat-
ing that a sentence on the source side can be up to
twice as long as a sentence on the target side and
vice versa.

A similar pipeline was applied to the German-
English data that was used for transfer learning. We
downsampled 3M sentence pairs from ParaCrawl
due to the imbalance in the German-English data.

3 Approach

Our models combine transfer learning from a
high-resource language pair (German-English), it-
erative training, and back-translation. We used
FAIRSEQ (Ott et al., 2019) toolkit in our experi-
ments with NMT models, while we used Moses
(Koehn et al., 2007) toolkit for our experiments
with PB-SMT models.

All of our NMT models follow the base Trans-
former architecture (Vaswani et al., 2017), us-
ing ReLU as the activation function and Adam

(Kingma and Ba, 2015) as the optimizer with the
following parameters: β1 = 0.9, β2 = 0.98,
ε = 1e−8. We set the inverse square root learning
rate scheduling with a peak value of 1e−3. We
used learning rate warmup stage for 4000 updates
with initial learning rate of 1e−7. Dropout prob-
ability was set to 0.2, while the attention dropout
probability was set to 0.1. We also used label
smoothing with a value of 0.1. In the case of base-
line English-Hausa models, the joint vocabulary
was based on both English and Hausa data. In all
cases, the vocabulary size was set to 32,000.

The PB-SMT models were trained with default
settings with Moses (Koehn et al., 2007) toolkit. In
addition, we trained a 5-gram Operation Sequence
Model (Durrani et al., 2013). All language mod-
els are 5-gram models and were binarized with
KenLM (Heafield et al., 2013). The models were
trained on tokenized, word-level, lowercased sen-
tences. Re-casing was applied to the model outputs.
After training the base models, we also applied
MERT (Minimum Error Rate Training) (Och, 2003;
Bertoldi et al., 2009) tuning on the development
set.

3.1 Baseline systems

We decided to train baseline models of two types:
vanilla Transformer (base) and PB-SMT. The ex-
periments conducted on the first release of the
development set showed that PB-SMT performs
significantly better than NMT: we achieved +1.8
BLEU score on Hausa→English and +0.7 on
English→Hausa. Based on these results, we de-
cided to use PB-SMT models to generate data for
the first iteration of iterative training.

When the test set was published, we computed
the scores for the baselines. To our surprise, the
scores obtained by NMT are much higher than PB-
SMT, especially in the Hausa→English direction.
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System HA→ EN EN→ HA
Dev-1 Test Dev-1 Test

NMT baseline 12.21 11.44 10.28 11.05
PB-SMT baseline 14.00 6.59 11.02 9.36

Table 3: Baseline results according to the automatic
evaluation with BLEU metric.

3.2 Transfer learning
According to recent studies, transfer learning (TL)
enhances translation quality in low-resource sce-
narios (Zoph et al., 2016; Aji et al., 2020). We
chose the German→English translation direction
as a base. In general, we followed (Nguyen and
Chiang, 2017) and trained a shared Hausa-German-
English vocabulary (BPE). Then, we trained a
German→English model using parallel data from
the WMT 2021 Translation Task, which was fil-
tered similarly to Hausa-English data. Finally, we
used the Hausa-English data to fine-tune the pre-
trained German→English model. We obtained a
BLEU score of 13.31 on the "Dev-1" development
set (+1.1 BLEU compared to the NMT baseline),
which was lower than the PB-SMT baseline.

3.3 Iterative back-translation
Monolingual data has been widely employed in
MT to enrich parallel corpora with synthetic data
to improve the quality of MT systems, particularly
in low-resource scenarios (Bojar and Tamchyna,
2011; Bertoldi and Federico, 2009). We applied
the back-translation technique (Edunov et al., 2018)
iteratively (Hoang et al., 2018) to translate Hausa
and English monolingual data into the other lan-
guage, using intermediate models to generate incre-
mentally better translations.

1. First, we used the best baseline model (PB-
SMT based on Moses) in English→Hausa di-
rection to translate 5M English sentences into
Hausa.

2. We used this additional data to train the
Hausa→English model by applying transfer
learning from the German→English model.
We upsampled the original parallel data 10
times to match the size of the back-translated
data. We used the resulting NMT model to
translate all Hausa monolingual data into En-
glish via sampling.

3. We combined the obtained back-translated
data with the original parallel corpora to train

the English→Hausa model in a manner sim-
ilar to step 2, with the exception that we did
not upsample the parallel data in this scenario
due to the fact that back-translated data was
generated through sampling.

4. This technique was applied iteratively, result-
ing in the systems shown in Table 4. In all
Hausa→English systems except the last, we
utilized 5M English monolingual sentences in
the model training; in the last system, we used
25M sentences. We used all accessible Hausa
monolingual data in all English→Hausa sys-
tems.

System HA→ EN EN→ HA
1 16.22 -
2 - 13.04
3 20.05 -
4 - 14.38
5 22.85 -
6 - 14.77

Table 4: Iterative back-translation results of the NMT
systems on the "Dev-1" development set according to
the automatic evaluation with BLEU metric.

4 Final results

Table 5 presents the final results for both the
English→Hausa and Hausa→English translation
directions for both the development and test sets.
These results were produced by the final models
from the iterative back-translation step described
in section 3.3.

Direction Dev-1 Dev-full Test
EN→ HA 14.77 21.21 16.15
HA→ EN 22.85 25.23 14.13

Table 5: Final results according to the automatic evalu-
ation with BLEU metric.

We notice a severe decrease in BLEU metric re-
sults on the test set as compared to the development
set, particularly in the Hausa→English direction.
This could suggest a domain shift between the two
sets. Because our models are heavily based on the
back-translated data, some vocabulary, especially
proper names, may be missing from the training
data.



170

5 Post-submission work

Due to a lack of computing power and time, our
experiments and submissions were based on single
model training. After the submission deadline, we
retrained the final models three times with different
seeds. Table 6 presents the results for the ensemble
of four models in both directions. We obtained
slight improvements on both test sets, but the dif-
ferences are insignificant. On the other hand, the
ensemble performed worse on the development set,
especially on the first version.

Direction Dev-1 Dev-full Test
EN→ HA 14.68 21.00 16.34
HA→ EN 21.24 26.25 14.87

Table 6: Post-submission models ensemble results ac-
cording to the automatic evaluation with BLEU metric.
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