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Abstract

We introduce a method that transforms a rule-
based relation extraction (RE) classifier into
a neural one such that both interpretability
and performance are achieved. Our approach
jointly trains a RE classifier with a decoder
that generates explanations for these extrac-
tions, using as sole supervision a set of rules
that match these relations. Our evaluation on
the TACRED dataset shows that our neural RE
classifier outperforms the rule-based one we
started from by 9 F1 points; our decoder gen-
erates explanations with a high BLEU score of
over 90%; and, the joint learning improves the
performance of both the classifier and decoder.

1 Introduction

Information extraction (IE) is one of the key chal-
lenges in the natural language processing (NLP)
field. With the explosion of unstructured informa-
tion on the Internet, the demand for high-quality
tools that convert free text to structured information
continues to grow (Chang et al., 2010; Lee et al.,
2013; Valenzuela-Escarcega et al., 2018).

The past decades have seen a steady transition
from rule-based IE systems (Appelt et al., 1993) to
methods that rely on machine learning (ML) (see
Related Work). While this transition has generally
yielded considerable performance improvements, it
was not without a cost. For example, in contrast to
modern deep learning methods, the predictions of
rule-based approaches are easily explainable, as a
small number of rules tends to apply to each extrac-
tion. Further, in many situations, rule-based meth-
ods can be developed by domain experts with mini-
mal training data. For these reasons, rule-based IE
methods remain widely used in industry (Chiticariu
et al., 2013).

In this work we demonstrate that this transition
from rule- to ML-based IE can be performed such
that the benefits of both worlds are preserved. In
particular, we start with a rule-based relation ex-

traction (RE) system (Angeli et al., 2015) and boot-
strap a neural RE approach that is trained jointly
with a decoder that learns to generate the rules that
best explain each particular extraction. The contri-
butions of our idea are the following:

(1) We introduce a strategy that jointly learns a RE
classifier between pairs of entity mentions with a
decoder that generates explanations for these ex-
tractions in the form of Tokensregex (Chang and
Manning, 2014) or Semregex (Chambers et al.,
2007) patterns. The only supervision for our
method is a set of input rules (or patterns) in these
two frameworks (Angeli et al., 2015), which we
use to generate positive examples for both the clas-
sifier and the decoder. We generate negative exam-
ples automatically from the sentences that contain
positives examples.

(2) We evaluate our approach on the TACRED
dataset (Zhang et al., 2017) and demonstrate that:
(a) our neural RE classifier outperforms consider-
ably the rule-based one we started from; (b) our
decoder generates explanations with high accuracy,
i.e., a BLEU overlap score between the generated
rules and the gold, hand-written rules of over 90%;
and, (c) joint learning improves the performance of
both the classifier and decoder.

(3) We demonstrate that our approach generalizes
to the situation where a vast amount of labeled
training data is combined with a few rules. We com-
bined the TACRED training data with the above
rules and showed that when our method is trained
on this combined data, the classifier obtains near
state-of-art performance at 67.0% F1, while the de-
coder generates accurate explanations with a BLEU
score of 92.4%.

2 Related Work

Relation extraction using statistical methods is
well studied. Methods range from supervised,
“traditional” approaches (Zelenko et al., 2003;
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Bunescu and Mooney, 2005) to neural meth-
ods. Neural approaches for RE range from meth-
ods that rely on simpler representations such as
CNNs (Zeng et al., 2014) and RNNs (Zhang and
Wang, 2015) to more complicated ones such as
augmenting RNNs with different components (Xu
et al., 2015; Zhou et al., 2016), combining RNNs
and CNNs (Vu et al., 2016; Wang et al., 2016),
and using mechanisms like attention (Zhang et al.,
2017) or GCNs (Zhang et al., 2018). To solve the
lack of annotated data, distant supervision (Mintz
et al., 2009; Surdeanu et al., 2012) is commonly
used to generate a training dataset from an existing
knowledge base. Jat et al. (2018) address the in-
herent noise in distant supervision with an entity
attention method.

Rule-based methods in IE have also been ex-
tensively investigated. Riloff (1996) developed a
system that learns extraction patterns using only
a pre-classified corpus of relevant and irrelevant
texts. Lin and Pantel (2001) proposed a unsuper-
vised method for discovering inference rules from
text based on the Harris distributional similarity
hypothesis (Harris, 1954). Valenzuela-Escárcega
et al. (2016) introduced a rule language that covers
both surface text and syntactic dependency graphs.
Angeli et al. (2015) further show that converting
rule-based models to statistical ones can capture
some of the benefits of both, i.e., the precision of
patterns and the generalizability of statistical mod-
els.

Interpretability has gained more attention re-
cently in the ML/NLP community. For example,
some efforts convert neural models to more inter-
pretable ones such as decision trees (Craven and
Shavlik, 1996; Frosst and Hinton, 2017). Some
others focus on producing a post-hoc explanation
of individual model outputs (Ribeiro et al., 2016;
Hendricks et al., 2016).

Inspired by these directions, here we propose
an approach that combines the interpretability of
rule-based methods with the performance and gen-
eralizability of neural approaches.

3 Approach

Our approach jointly addresses classification and
interpretability through an encoder-decoder archi-
tecture, where the decoder uses multi-task learn-
ing (MTL) for relation extraction between pairs of
named entities (Task 1) and rule generation (Task
2). Figure 1 summarizes our approach.

3.1 Task 1: Relation Classifier
We define the RE task as follows. The inputs con-
sist of a sentence W = [w1, . . . , wn], and a pair
of entities (called “subject” and “object”) corre-
sponding to two spans in this sentence: Ws =
[ws1 , . . . , wsn ] and Wo = [wo1 , . . . , won ]. The
goal is to predict a relation r ∈ R (from a pre-
defined set of relation types) that holds between the
subject and object or “no relation” otherwise.

For each sentence, we associate each word wi

with a representation xxxi that concatenates three
embeddings: xxxi = eee(wi) ◦ eee(ni) ◦ eee(pi), where
eee(wi) is the word embedding of token i, eee(ni) is
the NER embedding of token i, eee(pi) is the POS
Tag embedding of token i. We feed these represen-
tations into a sentence-level bidirectional LSTM
encoder (Hochreiter and Schmidhuber, 1997):

[hhh1, . . . ,hhhn] = LSTM([xxx1, . . . ,xxxn]) (1)

Following (Zhang et al., 2018), we extract the
“K-1 pruned” dependency tree that covers the two
entities, i.e., the shortest dependency path between
two entities enhanced with all tokens that are di-
rectly attached to the path, and feed it into a
GCN (Kipf and Welling, 2016) layer:

hhh
(l)
i = σ(

n∑
j=1

ÃijWWW
(l)hhh

(l−1)
j /di + bbb(l)) (2)

where AAA is the corresponding adjacency matrix,
Ã̃ÃA = AAA+ III with III being the n× n identity matrix,
di =

∑n
j=1 Ãij is the degree of token i in the

resulting graph, and WWW (l) is linear transformation.
Lastly, we concatenate the sentence represen-

tation, the subject entity representation, and the
object entity representation as follows:

hhhsent = f(hhh(L)) = f(GCN(hhh(0)) (3)

hhhs = f(hhh(L)
s1:sn) (4)

hhho = f(hhh(L)
o1:on) (5)

hhhfinal = hhhsent ◦ hhhs ◦ hhho (6)

where hhh(l) denotes the collective hidden repre-
sentations at layer l of the GCN, and f : Rd×n →
Rd is a max pooling function that maps from n
output vectors to the representation vector. The
concatenated representation hhhfinal is fed to a feed-
forward layer with a softmax function to produce a
probability distribution over relation types.
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Figure 1: Neural architecture of the proposed multitask learning approach. The input is a sequence of words
together with NER labels and POS tags. The pair of entities to be classified (“subject” in blue and “object” in
orange) are also provided. We use a concatenation of several representations, including embeddings of words, NER
labels, and POS tags. The encoder uses a sentence-level bidirectional LSTM (biLSTM) and graph convolutional
networks (GCN). There are pooling layers for the subject, object, and full sentence GCN outputs. The concatenated
pooling outputs are fed to the classifier’s feedforward layer. The decoder is an LSTM with an attention mechanism.

3.2 Task 2: Rule Decoder

The rule decoder’s goal is to generate the pat-
tern P that extracted the corresponding data
point, where P is represented as a sequence
of tokens in the corresponding pattern lan-
guage: P = [p1, . . . , pn]. For example, the
pattern (([{kbpentity:true}]+)/was/
/born/ /on/([{slotvalue:true}]+))
(where kbpentity:true marks subject tokens,
and slotvalue:true marks object tokens)
extracts mentions of the per:date_of_birth
relation.

We implemented this decoder using an LSTM
with an attention mechanism. To center rule decod-
ing around the subject and object, we first feed the
concatenation of subject and object representation
from the encoder as the initial state in the decoder.
Then, in each timestep t, we generate the attention
context vectorCCCD

t by using the current hidden state
of the decoder, hhhDt :

ssst(j) = hhhE
(L)WWW

AhhhD
t (7)

aaat = softmax(ssst) (8)

CCCD
t =

∑
j

aaat(j)hhh
E
j (9)

where WWWA is a learned matrix, and hhhE(L) are hid-
den representations from the encoder’s GCN.

We feed this CCCD
t vector to a single feed forward

layer that is coupled with a softmax function and

Approach Precision Recall F1 BLEU
Rule-only data

Rule baseline 86.9 23.2 36.6 –
Our approach 60.0 36.7 45.5 90.3

w/o decoder 58.7 36.4 44.9 –
w/o classifier – – – 88.3

Rules + TACRED training data
C-GCN 69.9 63.3 66.4 –
Our approach 70.2 64.0 67.0 92.4

w/o decoder 71.2 62.3 66.5 –
w/o classifier – – – 91.6

Table 1: Results on the TACRED test partition, includ-
ing ablation experiments (the “w/o” rows). We exper-
imented with two configurations: Rule-only data uses
only training examples generated by rules; Rules + TA-
CRED training data applies the previous rules to the
training dataset from TACRED.

use its output to obtain a probability distribution
over the pattern vocabulary.

We use cross entropy to calculate the losses for
both the classifier and decoder. To balance the loss
between classifier and decoder, we normalize the
decoder loss by the pattern length. Note that for
the data points without an existing rule, we only
calculate the classifier loss. Formally, the joint loss
function is:

loss = lossc + lossd/length(P ) (10)

4 Experiments

Data Preparation: We report results on the TA-
CRED dataset (Zhang et al., 2017). We bootstrap
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Hand-written Rule Decoded Rule
(([{kbpentity:true}]+)""" based ""in"([{slotvalue:true}]+)) (([{kbpentity:true}]+)"in"([{slotvalue:true}]+))
(([{kbpentity:true}]+)" CEO "([{slotvalue:true}]+)) (([{kbpentity:true}]+)" president "([{slotvalue:true}]+))

Table 2: Examples of mistakes in the decoded rules. We highlight in the hand-written rules the tokens that were
missed during decoding (false negatives) in green, and in the decoded rules we highlight the spurious tokens (false
positives) in red.

Model Precision Recall F1 BLEU
20% of rules 74.9 20.1 31.7 96.9
40% of rules 69.0 26.9 38.8 90.8
60% of rules 62.7 29.7 40.3 88.8
80% of rules 57.3 36.5 44.6 89.4

Table 3: Learning curve of our approach based on
amount of rules used, in the rule-only data configura-
tion. These results are on TACRED development.

our models from the patterns in the rule-based sys-
tem of Angeli et al. (2015), which uses 4,528 sur-
face patterns (in the Tokensregex language) and
169 patterns over syntactic dependencies (using
Semgrex). We experimented with two configura-
tions: rule-only data and rules + TACRED training
data. In the former setting, we use solely pos-
itive training examples generated by the above
rules. We combine these positive examples with
negative ones generated automatically by assigning
’no_relation’ to all other entity mention pairs in the
same sentence where there is a positive example.1

We generated 3,850 positive and 12,311 negative
examples for this configuration. In the latter con-
figuration, we apply the same rules to the entire
TACRED training dataset.2

Baselines: We compare our approach with two
baselines: the rule-based system of Zhang et al.
(2017), and the best non-combination method of
Zhang et al. (2018). The latter method uses an
LSTM and GCN combination similar to our en-
coder.3

Implementation Details: We use pre-trained
GloVe vectors (Pennington et al., 2014) to initialize

1During the generation of these negative examples we
filtered out pairs corresponding to inverse and symmetric re-
lations. For example, if a sentence contains a relation (Subj,
Rel, Obj), we do not generate the negative (Obj, no_relation,
Subj) if Rel has an inverse relation, e.g., per:children is
the inverse of per:parents.

2Thus, some training examples in this case will be asso-
ciated with a rule and some will not. We adjusted the loss
function to use only the classification loss when no rule ap-
plies.

3For a fair comparison, we do not compare against ensem-
ble methods, or transformer-based ones. Also, note that this
baseline does not use rules at all.

our word embeddings. We use the Adagrad opti-
mizer (Duchi et al., 2011). We apply entity mask-
ing to subject and object entities in the sentence,
which is replacing the original token with a spe-
cial <NER>–SUBJ or <NER>–OBJ token where
<NER> is the corresponding name entity label pro-
vided by TACRED.

We used micro precision, recall, and F1 scores
to evaluate the RE classifier. We used the BLEU
score to measure the quality of generated rules, i.e.,
how close they are to the corresponding gold rules
that extracted the same output. We used the BLEU
implementation in NLTK (Loper and Bird, 2002),
which allows us to calculate multi-reference BLEU
scores over 1 to 4 grams.4 We report BLEU scores
only over the non ’no_relation’ extractions with the
corresponding testing data points that are matched
by one of the rules in (Zhang et al., 2017).

Results and Discussion: Table 1 reports the
overall performance of our approach, the baselines,
and ablation settings, for the two configurations
investigated. We draw the following observations
from these results:

(1) The rule-based method of Zhang et al. (2017)
has high precision but suffers from low recall. In
contrast, our approach that is bootstrapped from the
same information has 13% higher recall and almost
9% higher F1 (absolute). Further, our approach
decodes explanatory rules with a high BLEU score
of 90%, which indicates that it maintains almost the
entire explanatory power of the rule-based method.

(2) The ablation experiments indicate that joint
training for classification and explainability helps
both tasks, in both configurations. This indi-
cates that performance and explainability are inter-
connected.

(3) The two configurations analyzed in the table
demonstrate that our approach performs well not
only when trained solely on rules, but also when
rules are combined with a training dataset anno-
tated for RE. This suggests that our direction may

4We scored longer n-grams to better capture rule syntax.
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be a general strategy to infuse some explainability
in a statistical method, when rules are available
during training.
(4) Table 3 lists the learning curve for our ap-
proach in the rule-only data configuration when
the amount of rules available varies.5 This table
shows that our approach obtains a higher F1 than
the complete rule-based RE classifier even when
using only 40% of the rules.6

(5) Note that the BLEU score provides an incom-
plete evaluation of rule quality. To understand if
the decoded rules explain their corresponding data
point, we performed a manual evaluation on 176
decoded rules. We classified them into three cate-
gories: (a) the rules correctly explain the prediction
(according to the human annotator), (b) they ap-
proximately explain the prediction, and (c) they
do not explain the prediction. Class (b) contains
rules that do not lexically match the input text,
but capture the correct semantics, as shown in Ta-
ble 2. The percentages we measured were: (a)
33.5%, (b) 31.3%, (c) 26.1%. 9% of these rules
were skipped in the evaluation because they were
false negatives( which are labeled as no relation
falsely by our model). These numbers support our
hypothesis that, in general, the decoded rules do
explain the classifier’s prediction.

Further, out of 750 data points associated with
rules in the evaluation data, our method incorrectly
classifies only 26. Out of these 26, 16 were false
negatives, and had no rules decoded. In the other 10
predictions, 7 rules fell in class (b) (see the exam-
ples in Table 2). The other 3 were incorrect due to
ambiguity, i.e., the pattern created is an ambiguous
succession of POS tags or syntactic dependencies
without any lexicalization. This suggests that, even
when our classifier is incorrect, the rules decoded
tend to capture the underlying semantics.

5 Conclusion

We introduced a strategy that jointly bootstraps a
relation extraction classifier with a decoder that
generates explanations for these extractions, us-
ing as sole supervision a set of example patterns
that match such relations. Our experiments on
the TACRED dataset demonstrated that our ap-
proach outperforms the strong rule-based method

5For this experiment we sorted the rules in descending
order of their match frequency in training, and kept the top
n% in each setting.

6 The high BLEU score in the 20% configuration is due to
the small sample in development for which gold rules exist.

that provided the training patterns by 9 F1 points,
while decoding explanations at over 90% BLEU
score. Further, we showed that the joint training
of the classification and explanation components
performs better than training them separately. All
in all, our work suggests that it is possible to marry
the interpretability of rule-based methods with the
performance of neural approaches.
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A Experimental Details

We use the dependency parse trees, POS and NER
sequences as included in the original release of the
TACRED dataset, which was generated with Stan-
ford CoreNLP (Manning et al., 2014). We use the
pretrained 300-dimensional GloVe vectors (Pen-
nington et al., 2014) to initialize word embeddings.
We use a 2 layers of bi-LSTM, 2 layers of GCN,
and 2 layers of feedforward in our encoder. And 2
layers of LSTM and 1 layer of feedforward in our
decoder. Table 4 shows the details of the proposed
neural network. We apply the ReLU function for
all nonlinearities in the GCN layers and the stan-
dard max pooling operations in all pooling layers.
For regularization we use dropout with p = 0.5 to
all encoder LSTM layers and all but the last GCN
layers.

For training, we use Adagrad (Duchi et al., 2011)
an initial learning rate, and from epoch 1 we start
to anneal the learning rate by a factor of 0.9 ev-
ery time the F1 score on the development set does
not increase after one epoch. We tuned the initial
learning rate between 0.01 and 1; we chose 0.3 as

Encoder and classifier components Size
Vocabulary 53953
POS embedding dimension 30
NER embedding dimension 30
LSTM hidden layers 200
Feedforward layers 200
GCN layers 200
Relation 41
Decoder component Size
LSTM hidden layers 200
Pattern embedding dimension 100
Feedforward layer 200
Maximum decoding length 100
Pattern 1141

Table 4: Details of our neural architecture.

this obtained the best performance on development.
We trained 100 epochs for all the experiments with
a batch size of 50. There were 3,850 positive data
points and 12,311 negative data in the rule-only
data. For this dataset, it took 1 minute to finish
one epoch in average. And for Rules + TACRED
training data, it took 4 minutes to finish one epoch
in average7.

All the hyperparameters above were tuned man-
ually. We trained our model on PyTorch 3.8.5 with
CUDA version 10.0, using one NVDIA Titan RTX.

B Dataset Introduction

You can find the details of TACRED data in
this link: https://nlp.stanford.edu/
projects/tacred/.

C Rules

The rule-base system we use is the combination
of Stanford’s Tokensregex (Chang and Manning,
2014) and Semregex (Chambers et al., 2007). The
rules we use are from the system of Angeli et al.
(2015), which contains 4528 Tokensregex patterns
and 169 Semgrex patterns.

We extracted the rules from CoreNLP and
mapped each rule to the TACRED dataset. We
provided the mapping files in our released dataset.
We also generate the dataset with only datapoints
matched by rules in TACRED training partition and
its mapping file.

7The software is available at this URL:
https://github.com/clulab/releases/tree/master/naacl-
trustnlp2021-edin.
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