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Abstract

Most combinations of NLP tasks and lan-

guage varieties lack in-domain examples for

supervised training because of the paucity

of annotated data. How can neural models

make sample-efficient generalizations from

task–language combinations with available

data to low-resource ones? In this work, we

propose a Bayesian generative model for the

space of neural parameters. We assume that

this space can be factorized into latent vari-

ables for each language and each task. We infer

the posteriors over such latent variables based

on data from seen task–language combinations

through variational inference. This enables

zero-shot classification on unseen combina-

tions at prediction time. For instance, given

training data for named entity recognition

(NER) in Vietnamese and for part-of-speech

(POS) tagging in Wolof, our model can per-

form accurate predictions for NER in Wolof.

In particular, we experiment with a typolog-

ically diverse sample of 33 languages from

4 continents and 11 families, and show that

our model yields comparable or better results

than state-of-the-art, zero-shot cross-lingual

transfer methods. Our code is available at

github.com/cambridgeltl/parameter

-factorization.

1 Introduction

The annotation efforts in NLP have achieved im-

pressive feats, such as the Universal Dependen-

cies (UD) project (Nivre et al., 2019), which now

includes 83 languages. But even UD covers only

a meager subset of the world’s estimated 8,506

languages (Hammarström et al., 2016). What is

more, the Association for Computational Linguis-

tics Wiki1 lists 24 separate NLP tasks. Labeled

data, which is both costly and labor-intensive, is

missing for many of such task–language combi-

nations. This shortage hinders the development

of computational models for the majority of the

world’s languages (Snyder and Barzilay, 2010;

Ponti et al., 2019a).

A common solution is transferring knowledge

across domains, such as tasks and languages

(Yogatama et al., 2019; Talmor and Berant, 2019),

which holds promise to mitigate the lack of

training data inherent to a large spectrum of NLP

applications (Täckström et al., 2012; Agić et al.,

2016; Ammar et al., 2016; Ponti et al., 2018;

Ziser and Reichart, 2018, inter alia). In the most

extreme scenario, zero-shot learning, no annotated

examples are available for the target domain.

In particular, zero-shot transfer across languages

implies a change in the data domain, and leverages

information from resource-rich languages to

tackle the same task in a previously unseen target

language (Lin et al., 2019; Rijhwani et al., 2019;

Artetxe and Schwenk, 2019; Ponti et al., 2019a,

inter alia). Zero-shot transfer across tasks within

the same language (Ruder et al., 2019a), on the

other hand, implies a change in the space of labels.

As our main contribution, we propose a

Bayesian generative model of the neural parame-

ter space. We assume this to be structured, and for

this reason factorizable into task- and language-

specific latent variables.2 By performing transfer

of knowledge from both related tasks and related

languages (i.e., from seen combinations), our

model allows for zero-shot prediction on unseen

task–language combinations. For instance, the

1aclweb.org/aclwiki/State of the art.
2By latent variable we mean every variable that has to

be inferred from observed (directly measurable) variables.

To avoid confusion, we use the terms seen and unseen when

referring to different task–language combinations.
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availability of annotated data for part-of-speech

(POS) tagging in Wolof and for named-entity

recognition (NER) in Vietnamese supplies plenty

of information to infer a task-agnostic represen-

tation for Wolof and a language-agnostic repre-

sentation for NER. Conditioning on these, the

appropriate neural parameters for Wolof NER

can be generated at evaluation time. While this

idea superficially resembles matrix completion for

collaborative filtering (Mnih and Salakhutdinov,

2008; Dziugaite and Roy, 2015), the neural

parameters are latent and are non-identifiable.

Rather than recovering missing entries from par-

tial observations, in our approach we reserve

latent variables to each language and each task to

tie together neural parameters for combinations

that have either of them in common.

We adopt a Bayesian perspective towards infer-

ence. The posterior distribution over the model’s

latent variables is approximated through stochastic

variational inference (Hoffman et al., 2013, SVI).

Given the enormous number of parameters, we

also explore a memory-efficient inference scheme

based on a diagonal plus low-rank approximation

of the covariance matrix. This guarantees that our

model remains both expressive and tractable.

We evaluate the model on two sequence label-

ing tasks: POS tagging and NER, relying on a

typologically representative sample of 33 lan-

guages from 4 continents and 11 families. The

results clearly indicate that our generative model

surpasses standard baselines based on cross-

lingual transfer 1) from the (typologically) nearest

source language; 2) from the source language with

the most abundant in-domain data (English); and

3) from multiple source languages, in the form

of either a multi-task, multi-lingual model with

parameter sharing (Wu and Dredze, 2019) or an

ensemble of task- and language-specific models

(Rahimi et al., 2019).

2 Bayesian Generative Model

In this work, we propose a Bayesian generative

model for multi-task, multi-lingual NLP. We train

a single Bayesian neural network for several

tasks and languages jointly. Formally, we con-

sider a set T = {t1, . . . , tn} of n tasks and a set

L = {l1, . . . , lm} of m languages. The core mod-

eling assumption we make is that the parameter

space of the neural network is structured: Spe-

cifically, we posit that certain parameters corre-

yijk

xijk

θij

ti lj

K mn

Figure 1: A graph (plate notation) of the generative
model based on parameter space factorization. Shaded

circles refer to observed variables.

spond to tasks and others correspond to languages.

This structure assumption allows us to general-

ize to unseen task–language pairs. In this regard,

the model is reminiscent of matrix factorization

as applied to collaborative filtering (Mnih and

Salakhutdinov, 2008; Dziugaite and Roy, 2015).

We now describe our generative model in three

steps that match the nesting level of the plates in

the diagram in Figure 1. Equivalently, the reader

can follow the nesting level of the for loops in

Algorithm 1 for an algorithmic illustration of the

generative story.

(1) Sampling Task and Language Representa-

tions: To kick off our generative process, we

first sample a latent representation for each

of the tasks and languages from multivari-

ate Gaussians: ti ∼ N (µti ,Σti) ∈ R
h and

lj ∼ N (µlj ,Σlj ) ∈ R
h, respectively. While

we present the model in its most general form,

we take µti = µlj = 0 and Σti = Σlj = I

for the experimental portion of this paper.

(2) Sampling Task–Language-specific Param-

eters: Afterward, to generate task–language-

specific neural parameters, we sample θij
from N (fψ(ti, lj), diag(fφ(ti, lj))) ∈ R

d

where fψ(ti, lj) and fφ(ti, lj) are learned

deep feed-forward neural networks fψ :
R
h → R

d and fφ : Rh → R
d
≥0 parametrized

by ψ and φ, respectively, similar to Kingma

and Welling (2014). These transform the
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Algorithm 1 Generative Model of Neural Param-

eters for Multi-task, Multi-lingual NLP.

1: for ti ∈ T :

2: ti ∼ N (µti ,Σti)

3: for lj ∈ L :

4: lj ∼ N (µlj ,Σlj)

5: for ti ∈ T :

6: for lj ∈ L :

7: µθij = fψ(ti, lj)
8: Σθij = fφ(ti, lj)
9: θij ∼ N (µθij ,Σθij )

10: for xijk ∈ Xij :

11: yijk ∼ p(· | xijk, θij)

latent representations into the mean µθij and

diagonal of the covariance matrix σ2
θij

for

the parameters θij associated with ti and

lj . The feed-forward network fψ just has

a final linear layer as the mean can range

over R
d whereas fφ has a final softplus

(defined in Section 3) layer to ensure it

ranges only over Rd≥0. Following Stolee and

Patterson (2019), the networks fψ and fφ
take as input a linear function of the task and

language vectors: t ⊕ l ⊕ (t − l) ⊕ (t ⊙ l),
where ⊕ stands for concatenation and ⊙ for

element-wise multiplication. The sampled

neural parameters θij are partitioned into a

weight Wij ∈ R
e×c and a bias bij ∈ R

c, and

reshaped appropriately. Hence, the dimen-

sionality of the Gaussian is chosen to reflect

the number of parameters in the affine layer,

d = e · c + c, where e is the dimensionality

of the input token embeddings (detailed in

the next paragraph) and c is the maximum

number of classes across tasks.3 The number

of hidden layers and the hidden size of fψ
and fφ are hyper-parameters discussed in

Section 4.2. We tie the parameters ψ and φ

for all layers except for the last to reduce the

parameter count. We note that the space of

parameters for all tasks and languages forms

a tensor Θ ∈ R
n×m×d, where d is the number

of parameters of the largest model.

(3) Sampling Task Labels: Finally, we sam-

ple thekth labelyijk for the ith task and the

3Different tasks might involve different class numbers; the

number of parameters hence oscillates. The extra dimensions

not needed for a task can be considered as padded with zeros.

jth language from a final softmax: p(yijk |
xijk, θij) = softmax(Wij BERT(xijk) + bij)
where BERT(xijk) ∈ R

e is the multi-lingual

BERT (Pires et al., 2019) encoder. The incor-

poration of m-BERT as a pre-trained mul-

tilingual embedding allows for enhanced

cross-lingual transfer.

Consider the Cartesian product of all tasks

and languages T × L. We can decompose this

product into seen task–language pairs S and un-

seen task–language pairs U , i.e., T ×L = S ⊔ U .

Naturally, we are only able to train our model on

the seen task–language pairs S . However, as we

estimate all task–language parameter vectors θij
jointly, our model allows us to draw inferences

about the parameters for pairs in U as well. The

intuition for why this should work is as follows: By

observing multiple pairs where the task (language)

is the same but the language (task) varies, the

model learns to distill the relevant knowledge for

zero-shot learning because our generative model

structurally enforces a disentangled representations

—separating representations for the tasks from

the representations for the languages rather than

lumping them together into a single entangled

representation (Wu and Dredze, 2019, inter alia).

Furthermore, the neural networks fψ and fφ map-

ping the task- and language-specific latent vari-

ables to neural parameters are shared, allowing the

model to generalize across task–language pairs.

3 Variational Inference

Exact computation of the posterior over the

latent variables p(θ, t, l | x) is intractable. Thus,

we need to resort to an approximation. In this

work, we consider variational inference as our

approximate inference scheme. Variational infer-

ence finds an approximate posterior over the latent

variables by minimizing the variational gap, which

may be expressed as the Kullback–Leibler (KL)

divergence between the variational approximation

q(θ, t, l) and the true posterior p(θ, t, l | x). In

our work, we employ the following variational

distributions:

qλ = N (mt, St) mt ∈ R
h, St ∈ R

h×h (1)

qν = N (ml, Sl) ml ∈ R
h, Sl ∈ R

h×h (2)

qξ = N (fψ(t, l), diag(fφ(t, l))) (3)

We note the unusual choice to tie parameters

between the generative model and the variational
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KL (q(θ, t, l) || p(θ, t, l | x)) = − E
t∼qλ

E
l∼qν

E
θ∼qξ

log
p(θ, t, l | x)

q(θ, t, l)

= − E
t∼qλ

E
l∼qν

E
θ∼qξ

[log p(θ, t, l,x)− log p(x)− log q(θ, t, l)]

= log p(x)− E
t∼qλ

E
l∼qν

E
θ∼qξ

log
p(θ, t, l,x)

q(θ, t, l)
, log p(x)−L (4)

log p(x) = log

(∫∫∫

p(x,θ, t, l) dθ dt dl

)

= log

(∫∫∫

p(x | θ) p(θ | t, l) p(t) p(l) dθ dt dl

)

= log

(∫∫∫
qλ(t) qν(l) qξ(θ | t, l)

qλ(t) qν(l) qξ(θ | t, l)
p(x | θ) p(θ | t, l) p(t) p(l) dθ dt dl

)

= log

(

E
t∼qλ

E
l∼qν

E
θ∼qξ

p(θ | t, l) p(t) p(l) p(x | θ)

qλ(t) qν(l) qξ(θ | t, l)

)

≥ E
t∼qλ

E
l∼qν

E
θ∼qξ

[

log
p(x | θ) p(θ | t, l) p(t) p(l)

qλ(t) qν(l) qξ(θ | t, l)

]

, L (5)

= E
t∼qλ

E
l∼qν

[

E
θ∼qξ

[

log p(x | θ) + log
p(θ | t, l)

qξ(θ | t, l)

]

+ log
p(t)

qλ(t)
+ log

p(l)

qν(l)

]

= E
θ∼qξ

log p(x | θ)

︸ ︷︷ ︸

requires approximation

−

(

KL (qλ(t) || p(t)) + KL (qν(l) || p(l)) + KL (qξ(θ | t, l) || p(θ | t, l))

)

︸ ︷︷ ︸

closed-form solution

(6)

family in Equation (3); however, we found that

this choice performs better in our experiments.
Through a standard algebraic manipulation in

Equation (4), the KL-divergence for our genera-

tive model can be shown to equal the marginal

log-likelihood log p(x), independent from q(·),
and the so-called evidence lower bound (ELBO)

L. Thus, approximate inference becomes an opti-

mization problem where maximizing L results in

minimizing the KL-divergence. One derives L is

by expanding the marginal log-likelihood as in

Equation (5) by means of Jensen’s inequality. We

also show that L can be further broken into a

series of terms as illustrated in Equation (6). In

particular, we see that it is only the first term in

the expansion that requires approximation. The

subsequent terms are KL-divergences between

variational and true distributions that have closed-

form solution due to our choice of prior. Due

to the parameter-tying scheme above, the KL-

divergence in Equation (6) between the variational

distribution qξ(θ | t, l) and the prior distribution

p(θ | t, l) is zero.

In general, the covariance matrices St and Sl in

Equation (1) and Equation (2) will require O(h2)
space to store. Ash is often very large, it is imprac-

tical to materialize either matrix in its entirety.

Thus, in this work, we experiment with smaller

matrices that have a reduced memory footprint;

specifically, we consider a diagonal covariance

matrix and a diagonal plus low-rank covariance

structure. A diagonal covariance matrix makes

computation feasible with a complexity of O(〈);
this, however, comes at the cost of not letting

parameters influence each other, and thus failing

to capture their complex interactions. To allow

for a more expressive variational family, we also

consider a covariance matrix that is the sum of a

diagonal matrix and a low-rank matrix:

St = diag(δ2t) + BtB
⊤
t (7)

Sl = diag(δ2l ) + BlB
⊤
l (8)
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where B ∈ R
h×k ensures that rank

(
BB⊤

)
≤ k,

and diag(δ) is diagonal. We can store this struc-

tured covariance matrix in O(kh) space.

By definition, covariance matrices must be sym-

metric and positive semi-definite. The first prop-

erty holds by construction. The second property is

enforced by a softplus parameterization where

softplus(·) , ln(1 + exp(·)). Specifically, we

define δ2 = softplus(ρ) and we optimize over ρ.

3.1 Stochastic Variational Inference

To speed up the training time, we make use of

stochastic variational inference (Hoffman et al.,

2013). In this setting, we randomly sample a task

ti ∈ T and language lj ∈ L among seen combi-

nations during each training step,4 and randomly

select a batch of examples from the dataset for the

sampled task–language pair. We then optimize the

parameters of the feed-forward neural networksψ

and φ as well as the parameters of the variational

approximation to the posteriormt,ml, ρt, ρl, Bt,

and Bl with a stochastic gradient-based optimizer

(discussed in Section 4.2).

The KL divergence terms and their gradients

in the ELBO appearing in Equation (6) can be

computed in closed form as the relevant densities

are Gaussian (Duchi, 2007, p. 13). Moreover, they

can be calculated for Gaussians with diagonal

and diagonal plus low-rank covariance structures

without explicitly unfolding the full matrix. For a

choice of prior p = N (0, I) and a diagonal plus

low-rank covariance structure, we have:

KL (q || p) =
1

2

[ h∑

i=1

(m2
i + δ2i +

k∑

j=1

b2ij)

− h− lndet(S)
]

(9)

where bij is the element in the i-th row and j-th

column of B. The last term can be estimated with-

out computing the full matrix explicitly thanks

to the generalization of the matrix–determinant

lemma,5 which, applied to the factored covariance

structure, yields:

4As an alternative, we experimented with a setup where

sampling probabilities are proportional to the number of

examples of each task–language combination, but this

achieved similar performances on the development sets.
5det(A+UV ⊤) = det(I+V ⊤A−1U) ·det(A). Note that

the lemma assumes that A is invertible.

lndet(S) =ln
[

det(I + B⊤diag(δ−2)B)
]

+

h∑

i=1

ln(δ2i )
(10)

where I ∈ R
k. The KL divergence for the variant

with diagonal covariance is just a special case of

Equation (9) with bij = 0.

However, as stated before, the following expec-

tation does not admit a closed-form solution. Thus

we consider a Monte Carlo approximation:

E
θ∼qξ

log p(x | θ) =

∫

qξ(θ) log p(x | θ) dθ

≈
1

V

V∑

v=1

log p(x | θ(v)) where θ(v) ∼ qξ

(11)

where V is the number of Monte Carlo samples

taken. In order to allow the gradient to easily

flow through the generated samples, we adopt

the re-parametrization trick (Kingma and Welling,

2014). Specifically, we exploit the following iden-

tities ti = µti + σti ⊙ ǫ and lj = µlj +
σlj ⊙ ǫ, where ǫ ∼ N (0, I) and ⊙ is the

Hadamard product. For the diagonal plus low-rank

covariance structure, we exploit the identity:

µ+ diag(δ2 ⊙ ǫ) + Bζ (12)

where ǫ ∈ R
h, ζ ∈ R

k, and both are sampled

from N (0, I). The mean µθij and the diagonal of

the covariance matrix σ2
θij

are deterministically

computed given the above samples and the param-

eters θij are sampled from N (µθij , diag(σ2
θij
)),

again with the re-parametrization trick.

3.2 Posterior Predictive Distribution

During test time, we perform zero-shot predictions

on an unseen task–language pair by plugging

in the posterior means (under the variational

approximation) into the model. As an alternative,

we experimented with ensemble predictions

through Bayesian model averaging. That is, for

data for seen combinations xS and data for unseen

combinations xU , the true predictive posterior

can be approximated as p(xU | xS) =
∫
p(xU |

θ,xS) qξ(θ | xS) dθ ≈
∑V

v=1 p(xU | θ(v),xS),
where V are 100 Monte Carlo samples from the

posterior qξ. Performances on the development

sets are comparable to simply plugging in the

posterior mean.
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4 Experimental Setup

4.1 Data

We select NER and POS tagging as our exper-

imental tasks because their datasets encompass

an ample and diverse sample of languages, and

are common benchmarks for resource-poor NLP

(Cotterell and Duh, 2017, inter alia). In particular,

we opt for WikiANN (Pan et al., 2017) for the NER

task and Universal Dependencies 2.4 (UD; Nivre

et al., 2019) for POS tagging. Our sample of

languages is chosen from the intersection of those

available in WikiANN and UD. However, we

remark that this sample is heavily biased towards

the Indo-European family (Gerz et al., 2018).

Instead, the selection should be: i) typologically

diverse, to ensure that the evaluation scores truly

reflect the expected cross-lingual performance

(Ponti et al., 2020); ii) a mixture of resource-rich

and low-resource languages, to recreate a realis-

tic setting and to allow for studying the effect of

data size. Hence, we further filter the languages in

order to make the sample more balanced. In par-

ticular, we sub-sample Indo-European languages

by including only resource-poor ones, and keep

all the languages from other families. Our final

sample comprises 33 languages from 4 continents

(17 from Asia, 11 from Europe, 4 from Africa,

and 1 from South America) and from 11 fami-

lies (6 Uralic, 6 Indo-European, 5 Afroasiatic, 3

Niger-Congo, 3 Turkic, 2 Austronesian, 2 Dra-

vidian, 1 Austroasiatic, 1 Kra-Dai, 1 Tupian, 1

Sino-Tibetan), as well as 2 isolates. The full list of

language ISO 639-2 codes is reported in Figure 2.

In order to simulate a zero-shot setting, we hold

out in turn half of all possible task–language pairs

and regard them as unseen, while treating the

others as seen pairs. The partition is performed in

such a way that a held-out pair has data available

for the same task in a different language, and for

the same language in a different task.6 Under this

constraint, pairs are assigned to train or evaluation

at random.7

We randomly split the WikiANN datasets into

training, development, and test portions with a

6We use the controlled partitioning for the following

reason. If a language lacks data both for NER and for POS,

the proposed factorization method cannot provide estimates

for its posterior. We leave model extensions that can handle

such cases for future work.
7See Section 5.2 for further experiments on splits con-

trolled for language distance and sample size.

proportion of 80-10-10. We use the provided

splits for UD; if the training set for a language

is missing, we treat the test set as such when the

language is held out, and as a training set when it

is among the seen pairs.8

4.2 Hyper-parameters

The multilingual M-BERT encoder is initialized

with parameters pre-trained on masked language

modeling and next sentence prediction on 104

languages (Devlin et al., 2019).9 We opt for the

cased BERT-BASE architecture, which consists of

12 layers with 12 attention heads and a hidden size

of 768. As a consequence, this is also the dimen-

sion e of each encoded WordPiece unit, a subword

unit obtained through BPE (Wu et al., 2016). The

dimension h of the multivariate Gaussian for task

and language latent variables is set to 100. The

deep feed-forward networks fψ and fφ have 6

layers with a hidden size of 400 for the first layer,

768 for the internal layers, and ReLU non-linear

activations. Their depth and width were selected

based on validation performance.
The expectations over latent variables in Equa-

tion (6) are approximated through 3 Monte Carlo

samples per batch during training. The KL terms

are weighted with 1
|K | uniformly across training,

where |K| is the number of mini-batches.10 We ini-

tialize all the meansm of the variational approxi-

mation with a random sample fromN (0, 0.1), and

the parameters for covariance matrices S of the

variational approximation with a random sample

from U(0, 0.5) following Stolee and Patterson

(2019). We choose k = 10 as the number of

columns of B so it fits into memory. The maxi-

mum sequence length for inputs is limited to 250.

The batch size is set to 8, and the best setting for

the Adam optimizer (Kingma and Ba, 2015) was

found to be an initial learning rate of 5 ·10−6 based

on grid search. In order to avoid over-fitting, we

perform early stopping with a patience of 10 and

a validation frequency of 2.5K steps.

4.3 Baselines

We consider four baselines for cross-lingual trans-

fer that also use BERT as an encoder shared across

all languages.

8Note that, in the second case, no evaluation takes place

on such language.
9Available atgithub.com/google-research/bert

/blob/master/multilingual.md.
10We found this weighting strategy to work better than

annealing as proposed by Blundell et al. (2015).
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First Baseline. A common approach is transfer

from the nearest source (NS) language, which

selects the most compatible source to a target

language in terms of similarity. In particular, the

selection can be based on family membership

(Zeman and Resnik, 2008; Cotterell and Heigold,

2017; Kann et al., 2017), typological features

(Deri and Knight, 2016), KL-divergence between

part-of-speech trigram distributions (Rosa and

Žabokrtský 2015; Agić, 2017), tree edit distance

of delexicalized dependency parses (Ponti et al.,

2018), or a combination of the above (Lin et al.,

2019). In our work, during evaluation, we choose

the classifier associated with the observed lan-

guage with the highest cosine similarity between

its typological features and those of the held-out

language. These features are sourced from URIEL

(Littell et al., 2017) and contain information about

family, area, syntax, and phonology.

Second Baseline. We also consider transfer

from the largest source (LS) language, that is,

the language with most training examples. This

approach has been adopted by several recent

works on cross-lingual transfer (Conneau et al.,

2018; Artetxe et al., 2020, inter alia). In our imple-

mentation, we always select the English classifier

for prediction.11 In order to make this baseline

comparable to our model, we adjust the number

of English NER training examples to the sum of

the examples available for all seen languages S .12

Third Baseline. Next, we apply a protocol de-

signed by Rahimi et al. (2019) for weighting the

predictions of a classifier ensemble according to

their reliability. For a specific task, the reliability

of each language-specific classifier is estimated

through a Bayesian graphical model. Intuitively,

this model learns from error patterns, which be-

have more randomly for untrustworthy models

and more consistently for the others. Among the

protocols proposed in the paper, we opt for BEA

in its zero-shot, token-based version, as it achieves

the highest scores in a setting comparable to the

current experiment. We refer to the original paper

for the details.13

11We include English to make the baseline more com-

petitive, but note that this language is not available for our

generative model as it is both Indo-European and resource-

rich.
12The number of NER training examples is 1,093,184 for

the first partition and 520,616 for the second partition.
13We implemented this model through the original code at

github.com/afshinrahimi/mmner.

Fourth Baseline. Finally, we take inspiration from

Wu and Dredze (2019). The joint multilingual

(JM) baseline, contrary to the previous baselines,

consists of two classifiers (one for POS tagging

and another for NER) shared among all observed

languages for a specific task. We follow the orig-

inal implementation of Wu and Dredze (2019),

closely adopting all recommended hyper-parameters

and strategies, such as freezing the parameters of

all encoder layers below the 3rd for sequence label-

ing tasks.

It must be noted that the number of parameters

in our generative model scales better than base-

lines with language-specific classifiers, but worse

than those with language-agnostic classifiers, as

the number of languages grows. However, even in

the second case, increasing the depth of baselines

networks to match the parameter count is detri-

mental if the BERT encoder is kept trainable, which

was also verified in previous work (Peters et al.,

2019).

5 Results and Discussion

5.1 Zero-shot Transfer

Firstly, we present the results for zero-shot predic-

tion based on our generative model using both of

the approximate inference schemes (with diago-

nal covariance PF-d and factor covariance PF-lr).

Table 1 summarizes the results on the two tasks

of POS tagging and NER averaged across all

languages. Our model (in both its variants) outper-

forms the four baselines on both tasks, including

state-of-the-art alternative methods. In particu-

lar, PF-d and PF-lr gain 4.49 / 4.20 in accuracy

(∼7%) for POS tagging and 7.29 / 7.73 in F1 score

(∼10%) for NER on average compared to transfer

from the largest source (LS), the strongest baseline

for single-source transfer. Compared to multilin-

gual joint transfer from multiple sources (JM), our

two variants gain 0.95 / 0.67 in accuracy (∼1%) for

POS tagging and +0.61 / +1.05 in F1 score (∼1%).

More details about the individual results on each

task–language pair are provided in Figure 2, which

includes the mean of the results over 3 separate

runs. Overall, we obtain improvements in 23/33

languages for NER and on 27/45 treebanks for

POS tagging, which further supports the benefits

of transferring both from tasks and languages.

Considering the baselines, the relative perfor-

mance of LS versus NS is an interesting finding

per se. LS largely outperforms NS on both POS
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Figure 2: Results for NER (top) and POS tagging (bottom): Four baselines for cross-lingual transfer compared to
Matrix Factorization with diagonal covariance and diagonal plus low-rank covariance.

Task BEA NS LS JM PF-d PF-lr

POS 47.65 ± 1.54 42.84 ± 1.23 60.51 ± 0.43 64.04 ± 0.18 65.00 ± 0.12 64.71 ± 0.18

NER 66.45 ± 0.56 74.16 ± 0.56 78.97 ± 0.56 85.65 ± 0.13 86.26 ± 0.17 86.70 ± 0.10

Table 1: Results per task averaged across all languages.
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tagging and NER. This shows that having more

data is more informative than relying primarily on

similarity according to linguistic properties. This

finding contradicts the received wisdom (Rosa and

Žabokrtský, 2015; Cotterell and Heigold, 2017;

Lin et al., 2019, inter alia) that related languages

tend to be the most reliable source. We conjecture

that this is due to the pre-trained multi-lingual BERT

encoder, which helps to bridge the gap between

unrelated languages (Wu and Dredze, 2019).

The two baselines that hinge upon transfer
from multiple sources lie on opposite sides of the
spectrum in terms of performance. On the one

hand, BEA achieves the lowest average score for

NER, and surpasses only NS for POS tagging.
We speculate that this is due to the following: i)

adapting the protocol from Rahimi et al. (2019) to

our model implies assigning a separate classifier

head to each task–language pair, each of which is

exposed to fewer examples compared to a shared

one. This fragmentation fails to take advantage of

the massively multilingual nature of the encoder;

ii) our language sample is more typologically

diverse, which means that most source languages

are unreliable predictors. On the other hand, JM

yields extremely competitive scores. Similarly

to our model, it integrates knowledge from mul-

tiple languages and tasks. The extra boost in

our model stems from its ability to disentangle

each aspect of such knowledge and recombine it

appropriately.

Moreover, comparing the two approximate in-

ference schemes from Section 3.1, PF-lr obtains

a small but statistically significant improvement
over PF-d in NER, whereas they achieve the

same performance on POS tagging. This means

that the posterior is modeled well enough by a

Gaussian where covariance among co-variates is

negligible.

We see that even for the best model (PF-lr) there

is a wide variation in the scores for the same task
across languages. POS tagging accuracy ranges

from 12.56 ± 4.07 in Guaranı́ to 86.71 ± 0.67
in Galician, and NER F1 scores range from

49.44±0.69 in Amharic to 96.20±0.11 in Upper

Sorbian. Part of this variation is explained by

the fact that the multilingual BERT encoder is not

pre-trained in a subset of these languages (e.g.,
Amharic, Guaranı́, Uyghur). Another cause is

more straightforward: The scores are expected to

be lower in languages for which we have fewer

training examples in the seen task–language pairs.

Task |L| = 11 |L| = 22
Sim Dif Sim Dif

POS 72.44 53.25 66.59 63.22

NER 89.51 81.73 86.78 85.12

Table 2: Average performance when relying on

|L| similar (Sim) versus different (Dif ) languages

in the train and evaluation sets.

5.2 Language Distance and Sample Size

While we designed the language sample to be both

realistic and representative of the cross-lingual

variation, there are several factors inherent to

a sample that can affect the zero-shot transfer

performance: i) language distance, the similarity

between seen and held-out languages; and ii)

sample size, the number of seen languages. In

order to disentangle these factors, we construct

subsets of size |L| so that training and evaluation

languages are either maximally similar (Sim) or

maximally different (Dif ). As a proxy measure,

we consider as ‘similar’ languages belonging to

the same family. In Table 2, we report the perfor-

mance of parameter factorization with diagonal

plus low-rank covariance (PF-lr), the best model

from Section 5.1, for each of these subsets.

Based on Table 2, there emerges a trade-off

between language distance and sample size. In

particular, performance is higher in Sim subsets

compared to Dif subsets for both tasks (POS and

NER) and for both sample sizes |L| ∈ {11, 22}. In

larger sample sizes, the average performance in-

creases for Dif but decreases for Sim. Intuitively,

languages with labeled data for several relatives

benefit from small, homogeneous subsets. Intro-

ducing further languages introduces noise. In-

stead, languages where this is not possible (such as

isolates) benefit from an increase in sample size.

5.3 Entropy of the Predictive Distribution

A notable problem of point estimate methods

is their tendency to assign most of the proba-

bility mass to a single class even in scenarios

with high uncertainty. Zero-shot transfer is one

of such scenarios, because it involves drastic

distribution shifts in the data (Rabanser et al.,

2019). A key advantage of Bayesian inference, in-

stead, is marginalization over parameters, which

yields smoother posterior predictive distributions

(Kendall and Gal, 2017; Wilson, 2019).
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Figure 3: Entropy of the posterior predictive distributions over classes for each test example. The higher the
entropy, the more uncertain the prediction.

We run an analysis of predictions based on

(approximate) Bayesian model averaging. First,

we randomly sample 800 examples from each test

set of a task–language pair. For each example,

we predict a distribution over classes Y through

model averaging based on 10 samples from the

posteriors. We then measure the prediction

entropy of each example—that is, H(p) =

−
∑|Y |

y p(Y = y)lnp(Y = y)—whose plot is

shown in Figure 3.

Entropy is a measure of uncertainty. Intuitively,

the uniform categorical distribution (maximum

uncertainty) has the highest entropy, whereas if

the whole probability mass falls into a single

class (maximum confidence), then the entropy

H = 0.14 As it emerges from Figure 3, predictions

in certain languages tend to have higher entropy

on average, such as in Amharic, Guaranı́, Uyghur,

or Assyrian Neo-Aramaic. This aligns well with

the performance metrics in Figure 2. In practice,

languages with low scores tend to display high

entropy in the predictive distribution, as expected.

To verify this claim, we measure the Pearson’s

14The maximum entropy is ≈ 2.2 for 9 classes as in NER

and ≈ 2.83 for 17 classes as in POS tagging.

correlation between entropies of each task–

language pair in Figure 3 and performance met-

rics. We find a very strong negative correlation

with a coefficient of ρ = −0.914 and a two-tailed

p-value of 1.018× 10−26.

6 Related Work

Our approach builds on ideas from several dif-

ferent fields: cross-lingual transfer in NLP, with

a particular focus on sequence labeling tasks, as

well as matrix factorization, contextual parameter

generation, and neural Bayesian methods.

Cross-Lingual Transfer for Sequence Labeling.

One of the two dominant approaches for cross-

lingual transfer is projecting annotations from a

source language text to a target language text.

This technique was pioneered by Yarowsky et al.

(2001) and Hwa et al. (2005) for parsing, and later

extended to applications such as POS tagging (Das

and Petrov, 2011; Garrette et al., 2013; Täckström

et al., 2012; Duong et al., 2014; Huck et al., 2019)

and NER (Ni et al., 2017; Enghoff et al., 2018;

Agerri et al., 2018; Jain et al., 2019). This requires

tokens to be aligned through a parallel corpus, a
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machine translation system, or a bilingual dictio-

nary (Durrett et al., 2012; Mayhew et al., 2017).

However, creating machine translation and word-

alignment systems demands parallel texts in the

first place, while automatically induced bilingual

lexicons are noisy and offer only limited cover-

age (Artetxe et al., 2018; Duan et al., 2020).

Furthermore, errors inherent to such systems

cascade along the projection pipeline (Agić et al.,

2015).

The second approach, model transfer, offers

higher flexibility (Conneau et al., 2018). The main

idea is to train a model directly on the source data,

and then deploy it onto target data (Zeman and

Resnik 2008). Crucially, bridging between differ-

ent lexica requires input features to be language-

agnostic. While originally this implied delexi-

calization, replacing words with universal POS

tags (McDonald et al., 2011; Dehouck and Denis,

2017), cross-lingual Brown clusters (Täckström

et al., 2012; Rasooli and Collins, 2017), or cross-

lingual knowledge base grounding through wikifi-

cation (Camacho-Collados et al., 2016; Tsai et al.,

2016), more recently these have been supplanted

by cross-lingual word embeddings (Ammar et al.

2016; Zhang et al., 2016; Xie et al., 2018; Ruder

et al., 2019b) and multilingual pretrained language

models (Devlin et al., 2019; Conneau et al., 2020).

An orthogonal research thread regards the

selection of the source language(s). In particular,

multi-source transfer was shown to surpass single-

best source transfer in NER (Fang and Cohn, 2017;

Rahimi et al., 2019) and POS tagging (Enghoff

et al., 2018; Plank and Agić, 2018). Our parameter

space factorization model can be conceived as

an extension of multi-source cross-lingual model

transfer to a cross-task setting.

Data Matrix Factorization. Although we are

the first to propose a factorization of the param-

eter space for unseen combinations of tasks and

languages, the factorization of data for collab-

orative filtering and social recommendation is

an established research area. In particular, the

missing values in sparse data structures such

as user-movie review matrices can be filled via

probabilistic matrix factorization (PMF) through

a linear combination of user and movie matrices

(Mnih and Salakhutdinov, 2008; Ma et al., 2008;

Shan and Banerjee, 2010, inter alia) or through

neural networks (Dziugaite and Roy, 2015). Infer-

ence for PMF can be carried out through MAP

inference (Dziugaite and Roy, 2015), Markov

chain Monte Carlo (Salakhutdinov and Mnih,

2008) or stochastic variational inference (Stolee

and Patterson, 2019). Contrary to prior work, we

perform factorization on latent variables (task-

and language-specific parameters) rather than

observed ones (data).

Contextual Parameter Generation. Our model

is reminiscent of the idea that parameters can be

conditioned on language representations, as pro-

posed by Platanios et al. (2018). However, since

this approach is limited to a single task and a joint

learning setting, it is not suitable for generalization

in a zero-shot transfer setting.

Bayesian Neural Models. So far, these models

have found only limited application in NLP for

resource-poor languages, despite their desirable

properties. Firstly, they can incorporate priors

over parameters to endow neural networks with

the correct inductive biases towards language:

Ponti et al. (2019b) constructed a prior imbued

with universal linguistic knowledge for zero-

and few-shot character-level language modeling.

Secondly, they avoid the risk of over-fitting by

taking into account uncertainty. For instance,

Shareghi et al. (2019) and Doitch et al. (2019)

use a perturbation model to sample high-quality

and diverse solutions for structured prediction in

cross-lingual parsing.

7 Conclusion

The main contribution of our work is a Bayesian

generative model for multiple NLP tasks and

languages. At its core lies the idea that the space

of neural weights can be factorized into latent

variables for each task and each language. While

training data are available only for a meager sub-

set of task–language combinations, our model

opens up the possibility to perform prediction in

novel, undocumented combinations at evaluation

time. We performed inference through stochastic

variational methods, and ran experiments on zero-

shot named entity recognition (NER) and part-

of-speech (POS) tagging in a typologically diverse

set of 33 languages. Based on the reported results,

we conclude that leveraging the information from

tasks and languages simultaneously is superior

to model transfer from English (relying on more

abundant in-task data in the source language),

from the most typologically similar language
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(relying on prior information on language related-

ness), or from multiple source languages. More-

over, we found that the entropy of predictive

posterior distributions obtained through Bayesian

model averaging correlates almost perfectly with

the error rate in the prediction. As a consequence,

our approach holds promise to alleviating data

paucity issues for a wide spectrum of languages

and tasks, and to make knowledge transfer more

robust to uncertainty.

Finally, we remark that our model is amenable

to be extended to multilingual tasks beyond

sequence labeling—such as natural language

inference (Conneau et al., 2018) and question

answering (Artetxe et al., 2020; Lewis et al.,

2019; Clark et al., 2020)—and to zero-shot trans-

fer across combinations of multiple modalities

(e.g., speech, text, and vision) with tasks and lan-

guages. We leave these exciting research threads

for future research.
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Blokland, Victoria Bobicev, Loı̈c Boizou,

Emanuel Borges Völker, Carl Börstell, Cristina

Bosco, Gosse Bouma, Sam Bowman, Adriane

Boyd, Kristina Brokaitė, Aljoscha Burchardt,
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Čéplö, Savas Cetin, Fabricio Chalub, Jinho

Choi, Yongseok Cho, Jayeol Chun, Silvie
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Gajdošová, Daniel Galbraith, Marcos Garcia,

Moa Gärdenfors, Sebastian Garza, Kim Gerdes,

Filip Ginter, Iakes Goenaga, Koldo Gojenola,

Memduh Gökirmak, Yoav Goldberg, Xavier
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Urešová, Larraitz Uria, Hans Uszkoreit,

Sowmya Vajjala, Daniel van Niekerk, Gertjan

van Noord, Viktor Varga, Eric Villemonte de

la Clergerie, Veronika Vincze, Lars Wallin,

Abigail Walsh, Jing Xian Wang, Jonathan

North Washington, Maximilan Wendt, Seyi

Williams, Mats Wirén, Christian Wittern,

Tsegay Woldemariam, Tak-sum Wong, Alina
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Anna Korhonen. 2020. XCOPA: A multilingual

dataset for causal commonsense reasoning. In

Proceedings of EMNLP.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni
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A KL-divergence of Gaussians

If both p , N (µ,Σ) and q , N (m, S) are

multivariate Gaussians, their KL-divergence can

be computed analytically as follows:

Figure 4: Samples from the posteriors of 4 languages,

PCA-reduced to 4 dimensions.

KL (q || p) =
1

2

[

ln
|S|

|Σ|
− d+ tr(S−1Σ)

+ (m− µ)⊤S−1(m− µ)
] (13)

By substituting m = 0 and S = I , it is trivial to

obtain Equation (9).

B Visualization of the Learned Posteriors

The approximate posteriors of the latent variables

can be visualized in order to study the learned

representations for languages. Previous work

(Johnson et al., 2017; Östling and Tiedemann

2017; Malaviya et al., 2017; Bjerva and

Augenstein, 2018) induced point estimates of

language representations from artificial tokens

concatenated to every input sentence, or from the

aggregated values of the hidden state of a neu-

ral encoder. The information contained in such

representations depends on the task (Bjerva and

Augenstein, 2018), but mainly reflects the struc-

tural properties of each language (Bjerva et al.,

2019).

In our work, due to the estimation procedure,

languages are represented by full distributions

rather than point estimates. By inspecting the

learned representations, language similarities do

not appear to follow the structural properties of

languages. This is most likely due to the fact that

parameter factorization takes place after the multi-

lingual BERT encoding, which blends the structural
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differences across languages. A fair comparison

with previous works without such an encoder is

left for future investigation.

As an example, consider two pairs of languages

from two distinct families: Yoruba and Wolof

are Niger-Congo from the Atlantic-Congo branch,

Tamil and Telugu are Dravidian. We take 1,000

samples from the approximate posterior over

the latent variables for each of these languages. In

particular, we focus on the variational scheme

with a low-rank covariance structure. We then

reduce the dimensionality of each sample to 4

through PCA,15 and we plot the density along

each resulting dimension in Figure 4. We observe

that density areas of each dimension do not nec-

essarily overlap between members of the same

family. Hence, the learned representations depend

on more than genealogy.

15Note that the dimensionality reduced samples are also

Gaussian since PCA is a linear method.

428


	Introduction
	Bayesian Generative Model
	Variational Inference
	Stochastic Variational Inference
	Posterior Predictive Distribution

	Experimental Setup
	Data
	Hyper-parameters
	Baselines

	Results and Discussion
	Zero-shot Transfer
	Language Distance and Sample Size
	Entropy of the Predictive Distribution

	Related Work
	Conclusion
	KL-divergence of Gaussians
	Visualization of the Learned Posteriors

