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Abstract
Abstract Meaning Representation (AMR) is a
sentence-level meaning representation based
on predicate argument structure. One of the
challenges we find in AMR parsing is to capture
the structure of complex sentences which ex-
presses the relation between predicates. Know-
ing the core part of the sentence structure in ad-
vance may be beneficial in such a task. In this
paper, we present a list of dependency patterns
for English complex sentence constructions de-
signed for AMR parsing. With a dedicated pat-
tern matcher, all occurrences of complex sen-
tence constructions are retrieved from an input
sentence. While some of the subordinators
have semantic ambiguities, we deal with this
problem through training classification mod-
els on data derived from AMR and Wikipedia
corpus, establishing a new baseline for future
works. The developed complex sentence pat-
terns and the corresponding AMR descriptions
will be made public1.

1 Introduction

Abstract Meaning Representation (AMR) is a
sentence-level meaning representation based on
predicate argument structure (Banarescu et al.,
2013). AMR Parsing is the task of transforming a
sentence into an AMR graph with nodes and edges,
each representing a concept or relation. While
early studies (Flanigan et al., 2014; Wang et al.,
2015; Artzi et al., 2015; Pust et al., 2015) used de-
pendency parsers to integrate syntactic features to
their models, recent deep neural network-based ap-
proaches (Konstas et al., 2017; Peng et al., 2017;
Zhang et al., 2019; Cai and Lam, 2020) tend to en-
code the input sentence as a sequence without con-
sidering its syntactic structure.

Generally speaking, syntactic and semantic
structures share much in common. It is assumed

1Code and resource are available at https://github.
com/yama-yuki/skeletal-amr.
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Figure 1: Representation of as long as-construction in
dependency tree (left) and AMR graph (right).

that dependency trees and semantic role label-
ing structures have a strong correlation in that
nsubj and dobj can be used interchangeably for
ARG0 and ARG1 role (Xia et al., 2019). Since
AMR is annotated based on PropBank frames
(Palmer et al., 2005), the same could be said for
AMR structures.

This holds to be true for a simple sentence, which
is basically a matrix clause, comprised of a predi-
cate and its arguments. However, it is not always
the case with complex sentence constructions, each
of which consists of a matrix clause and one or
more subordinate clause(s). Consider Figure 1
which shows both dependency and AMR represen-
tation of a complex sentence with a subordinator
as long as. While variables S’s and V’s are inter-
changeable between the representations, predica-
tive relations and subordinator itself are expressed
quite differently. Compared to uniform structures
of simple sentences, various types of complex sen-
tence are used in human language. This charac-
teristics makes it challenging for existing AMR
parsers to capture its structure correctly.

Among AMR parsers which are aware of syntac-
tic structures, CAMR (Wang et al., 2015) directly
transforms the result of dependency parsing into an
AMR graph with transition-based algorithm. As
Figure 2(a) shows an example parse with CAMR,
existing parsers have trouble capturing the relation
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(a) Parser’s Output AMR
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(b) Correct AMR

Figure 2: Result of parsing “As the boy seemed reliable, the girl believed him.” with CAMR.

between two clauses. In this case, CAMR predicts
the relation between believe-01 and seem-01 as
ARG1, though it should be represented as a causal
relation with cause-01 as shown in Figure 2(b).
This is a crucial error as it incorrectly determines
the very core structure of the output graph. We
assume that the solution could be achieved either
by retraining the parser on larger annotated data or
providing the parser with the core structure of the
input sentence in advance. The latter seems more
reasonable in terms of the cost of annotation.

With the motivation to aid AMR parsing task,
we present a method to retrieve all occurrences of
complex sentence constructions from an input sen-
tence using a dedicated pattern matcher. At the
moment, there is no comprehensive resource that
provides structural information about the relations
between two clauses, particularly in AMR frame-
work. Therefore, as our first step, we attempt to
develop a pattern dictionary of English complex
sentences together with the corresponding AMRs
which represent the skeleton structure of the sen-
tence (hereinafter referred to as“skeletal AMRs”).
Then, we provide a pattern matcher which captures
clausal relations between a superordinate and sub-
ordinate clauses in a complex sentence.

Our pattern matching approach faces the prob-
lem of syntactic and semantic ambiguities. When
a complex sentence has more than one subordi-
nate clause, we need to determine which pair of
clauses are related. Consider the following ex-
ample where two subordinate clauses appear in a
single sentence.

(1) ... [if you wish to look at the comparative
risks]SUB1 [if we do not confront terrorist or-
ganizations in their staging areas]SUB2, [how
many people could die as a result of weapons
of mass destruction at some point in the not
too distant future]MAT ? (AMR: bolt-eng-DF-

199-192783-6849434_0102.3)

While there has been studies regarding the syn-
tactic scope of a subordinate clause such as
Utsuro et al. (2000), this problem is beyond the
scope of this paper. We rely on the output of the
dependency parser, which we employ in our pattern
matching system, to decide which pair of clauses
are syntactically related.

Meanwhile, when a subordinator itself is am-
biguous between several senses, we need to select
the correct type of coherence relation between the
clauses. Sentences in (2) show usages of a sub-
ordinator since, which is semantically ambiguous
between causal and temporal senses.

(2) a. Since there is responsibility, we are not
afraid. (AMR: bolt12_6455_6561.15)

b. Also since he turned 80, people had
been paying more and more attention
to Mao Zedong’s birthday. (AMR:
bolt12_10511_7302.5)

In order to resolve the semantic ambiguities
of clause-level coherence relation, inspired by
the work of Shi and Demberg (2019), we take
finetuning-based approach with data augmentation
method. With the support of weakly supervised
data derived from Wikipedia, we achieve the scores
of 75.65% and 83.94% on macro and micro F1 re-
spectively, establishing a new baseline for coher-
ence relation classification of complex sentence
constructions in AMR framework.

To sum up, the contributions of this paper are
the followings:

• We create a comprehensive resource of com-
plex sentence constructions.

• We develop a pattern matching system which
takes a sentence as an input and returns a
corresponding skeletal AMR.
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• We establish a new baseline for semantic dis-
ambiguation task of complex sentence con-
structions in AMR framework.

2 Related Works

While our focus is on clause-level relation of com-
plex sentence constructions, not much study has
been done specifically on this topic in AMR frame-
work. Rather, the topic is dealt with in the field
of discourse structures, where coherence relations
between any text segments are the main focus.

In the studies of discourse parsing, vari-
ous attempts have been made to capture co-
herence relations between pairs of sentences
or clauses (Pitler et al., 2008; Rutherford et al.,
2017; Qin et al., 2017; Bai and Zhao, 2018).
These works basically rely on discourse frame-
works such as Rhetorical Structure Theory (RST;
Thompson and Mann 1987) or Penn Discourse
Tree Bank (PDTB; Prasad et al. 2008).

Most recently, Shi and Demberg (2019) has pre-
sented a finetuning-based approach using the bidi-
rectional encoder representation from transformers
(BERT; Devlin et al. 2019). They designed their
model to learn 11 classes to achieve the state-of-
the-art performance on implicit discourse relation
classification task in PDTB framework.

Their work was motivated by the method taken
by Devlin et al. (2019) to pretrain BERT, which is
called “next sentence prediction task” (NSP). In
the process of pretraining using NSP, the model
is presented with pairs of sentences. The model
predicts whether the second sentence is the actual
subsequent sentence. NSP enables BERT to repre-
sent a pair of sentences by packing them together
as a single sequence.

Some studies have focused on discourse struc-
ture in AMR framework. Donatelli et al. (2018)
enhances AMR by annontating tense and aspect
phenomena at discourse-level. The work by
O’Gorman et al. (2018) targets relations of sen-
tences and provides annotation of coreference in
multi-sentence AMR corpus. Yet, neither the
structure of the complex sentence constructions
nor the coherence relations between subordinate
and matrix clauses have been much of a concern in
this framework.

3 Pattern Matching System

In this section, we will give a description of our
pattern matching system. The entire workflow is
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Figure 3: Pattern matching system workflow for a sen-
tence “Since airline flights were disrupted, the company
chartered a plane to fly the executives back to the West
Coast.”.

illustrated in Figure 3, where the system takes a
sentence as an input and returns a skeletal AMR
if it is a type of complex sentence construction.
The disambiguation module will be described in
the later section. We will use the sentence given
as a running example throughout this paper.

3.1 Dictionary of Dependency Patterns

Complex sentence constructions in English gram-
mar can be distinguished by their consisting sub-
ordinator. When creating a pattern dictionary,
we refer to comprehensive studies on grammars
(Quirk et al., 1985; Yamaguchi, 2013), which pro-
vide a typology of subordinators. To cover various
types of constructions, we include simple (e.g. if,
because), complex (e.g. as if, so that) and corre-
late (e.g. no sooner ... than) subordinators clas-
sified in Quirk et al. (1985). In addition to that,
we also include the type of constructions involving
degree and quantity which are introduced to AMR
in Bonial et al. (2018).

Our pattern matching method depends not only
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on lexical processing but also on syntactic pro-
cessing. For syntactic framework, we follow the
annotation of dependency structure in Universal
Dependencies v2 format (UD; Nivre et al. 2020),
which makes our patterns a form of dependency
trees. The nodes in trees are represented either
by a lemma form of a lexical entry or an abstract
one defined by POS tags, where every edge has a
dependency relation label. Regular expression is
employed to place any form of a specific element.
We provide these dependency patterns with a cor-
responding skeletal AMR that describes the core
structure of an input sentence. Depending on the
type of construction, a set of variables are used
to take alignments between patterns and skeletons.
At the moment, our dictionary includes 70 distinct
patterns2.

Figure 4 illustrates an example of a paired en-
try of a dependency pattern and skeletal AMR for
because-construction:
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(a) Dependency Pattern
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(b) Skeletal AMR

Figure 4: Pattern dictionary entry of complex sentence
construction with simple subordinator because.

The dependency pattern in Figure 4(a) describes
the simplest type of structure in our dictionary.
The nodes that are represented as variables s1 and
v1 capture a predicate and its argument in a matrix
clause, whereas s2 and v2 capture a subordinate
clause. Subordinators are basically described as
a’s, where their lemma forms are given as cues.
REGEX operators are used on both nodes and edges
to flexibly match possible elements. For example,
the dependency relation of {REGEX:ˆnsubj} be-
tween s’s and v’s enables us to handle subjects of

2We make it available for users to add new patterns to the
dictionary for further expansion.

both the active (nsubj) and passive (nsubj:pass)
voice. In the case of TAG:{REGEX:ˆV}, REGEX is
used to represent any POS tag that starts from “V”,
meaning that it captures any form of a verb. Fig-
ure 4(b) shows the corresponding skeletal AMR,
which represents a core relation between the two
predicates. In all patterns in the dictionary, V1 and
V2 act as slots for the predicates of the matrix and
subordinate clauses.

Some subordinators could indicate more than
one coherence relations. For example, Figure 5
shows the case of our running example with since,
where the subordinator presents either (a) causal
or (b) temporal relation:
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(a) Causal

������
�

�
�

���	� �
��

(b) Temporal

Figure 5: Skeletal AMRs of ambiguous since.

In the pattern dictionary, rather than enumerating
entries for every possible structure, we describe
a primitive structure of skeletal AMR to dynami-
cally generate the actual relation, which is in ac-
cordance with the Generative Lexicon approach
(Pustejovsky, 1995). More specifically, we acco-
modate all possible relations separating them with
a vertical bar on an edge of a skeletal AMR in
the way described in Figure 6(b), which we call a
“primitive skeleton”:
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(a) Dependency Pattern
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(b) Skeletal AMR

Figure 6: Pattern dictionary entry of complex sentence
construction with simple subordinator since.
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The disambiguation step will follow after the pat-
tern matcher returns the primitive skeleton. For
simplicity and consistency, we use shortcuts to
represent the relations if available, such as using
a relational role :cause instead of a predicative
frame cause-01 that can be substitutionally used.

Aside the semantic ambiguity of relation men-
tioned above, structural ambiguity could be seen
when several types of structure exists within the
same relation. Compare Figure 5(b) and 7, where
both skeletal AMRs represent temporal relation but
show different structures:
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Figure 7: Skeletal AMR of as, once, etc. representing
temporal relation.

Since the primitive skeleton only describes the sim-
plest form, recovery step needs be taken to generate
the final skeletal AMR for ambiguous subordina-
tors. Therefore, we define a possible interpretation
(such as Figure 5(b) and 7) for primitive skeleton
of each ambiguous subordinator, which will be re-
ferred to after the skeletal AMR is disambiguated.
This idea share similarity with the notion of mean-
ing postulates (Carnap, 1952; Dowty, 1979). By
following the definition, the structural ambiguity
of skeletal AMRs will be resolved.

3.2 Pattern Matching Method

Our pattern matching method builds on the
dependency matching module introduced by
Honnibal et al. (2020) that matches subtrees within
a dependency tree. The matcher works in naive
manner, searching from the top to the bottom of
the pattern dictionary. It is originally capable of
handling recursive nature of clauses. Namely, even
when an input sentence has more than two clauses,
the matcher searches all possible patterns for all
clause pairs in a single run.

Meanwhile, it suffers from the following situa-
tions: “overlap” where multiple patterns acciden-
tally match with a pair of clauses and “copula”
where the matcher fails to capture copular con-
structions due to the limitation of expressiveness
of patterns. To account for these cases, we extend
the matching method by incorporating additional
functions.

Overlap Duplicated matching may occur within
a single pair of clauses since some patterns share

their forms.

(3) As if he were still in his old job, Mr.Wright
enjoys a $120,000 annual office expense al-
lowance.

When the target sentence is (3), the dependency
matcher returns the following overlapping patterns:
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Figure 8: Overlap of patterns for as and as if.

This mostly occurs between simple and complex
subordinators in Quirkian term (e.g. as and as
far as, if and even if, etc.). To address this issue,
we assign an ID for each entry in the pattern dic-
tionary to refer to the type of subordinators. For
example, as is assigned “#1.6.1”, whereas as if is
“#2.2.1”. The first number in an ID represents the
number of words consisting the subordinator. The
second describes its sorted order while the third is
organized by the structure of the pattern. When
the matcher detects an overlap, it looks up the IDs
to select the most desirable output. In the case of
overlap between simple and complex subordina-
tors, the matcher compares the first number in ID,
selecting the pattern with more words. In this case,
as if is regarded as the desirable pattern.

Copula Verbs that show a relationship between
subjects and objects are referred to as copulas
(e.g. “is” for “John is tall.”). Since UD format
refrains from using a copula as a head of its com-
plement3, the matcher cannot find a copular clause
with complex sentence patterns alone. To avoid
redundancy of creating additional patterns substi-
tuting V’s with copulas for each entry in dictionary,
we make an extra pattern outside that describes a
copula-complement structure:

3For “John is tall.”, UD treats “tall” as a head of “is”.
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Figure 9: Dependency pattern of copular construction.

With the implementation of a converter, our system
can detect copular clauses in complex sentences
and convert it to a copular-headed structure when
matched, in the way illustrated in the gray nodes in
Figure 3.

4 Semantic Disambiguation Experiment

In this section, we describe details of our study
on semantic disambiguation. We observe that the
coherence relation between subordinate and super-
ordinate clauses are commonly ambiguous among
causal, conditional, concessional, and temporal
senses. Considering that we are dealing with re-
lations between clauses, which basically can be
regarded as pairs of simple sentences, we can cast
the problem of semantic ambiguity as a multi-class
sentence-pair classification task. To be more spe-
cific, we assign the most typical class labels in-
cluding cause, cond, conc, and time to make it a
4-class classification setting.

Throughout the experiment, we use the pre-
trained “bert-base-uncased” model for finetuning.
BERT is pretrained under next sentence prediction
as well as masked language modeling task. During
pretraining, the model predicts the actual next sen-
tence from a pair of candidate sentences. Thus, the
model is expected to learn what the next sentence
should look like. By finetuning BERT on a set of
pairs of clauses, we can further expect the model
to capture coherence relations between them.

Our input will be a separate pair of clauses with
special tokens “[CLS]” and “[SEP]”. While BERT
takes the input in sequential manner, we would like
the model to take advantage of dependency parsing,
which we apply in the process of pattern matching.
Therefore, we add artificial tags of“<”and“>”
to indicate the head verb of each clause. The input
format of our running example would look like:
“[CLS] airline flights < were > disrupted [SEP] the
company < chartered > a plane to fly the executives
back to the West Coast [SEP]”.

4.1 Experimental Setup
For creating the dataset, we use the lateset release
of AMR corpus (LDC2020T02), which provides
59.2k pairs of sentences and AMR graphs. To ex-
tract complex sentence constructions from the cor-
pus, we use the Stanza pipeline (Qi et al., 2020)
for lexical and syntactic processing of the sentences
and employ our pattern matcher with all patterns
in the dictionary. In order to check whether the
corresponding AMR graph describes the relation
we want for each class, we look for alignments be-
tween sentence tokens and AMR graphs45. Finally,
we split the sentence to obtain a pair of clauses and
a subordinator.

While the data derived from AMR corpus can
be regarded as “supervised”, the amount is rela-
tively small with the total of 1,933 pairs of sub-
ordinate and matrix clauses. As it consumes time
and money to create more supervised data, we take
weak supervision approach to augment training
data. In other words, using specific subordina-
tors that are known to be unambiguous in AMR
corpus as linguistic cues, we seek to obtain com-
plex sentences from larger corpus. We use raw data
from Wikipedia for data augmentation to generate
“weakly supervised” data. The list of subordina-
tors used in this method is shown in Table 1. The
distribution of each data, which we will refer to as
AMR and WIKI data, is illustrated in Table 2. The
data comprises (subordinate clause, superordinate
clause, subordinator, class label) quadruplets.

Label Subordinators
cause because
cond if, unless
conc although, though, even if
time once, whenever

Table 1: Subordinators used to create weakly super-
vised data (WIKI data).

Label AMR WIKI
cause 442 27,264
cond 1,002 26,756
conc 75 46,213
time 414 19,558
Total 1,933 119,791

Table 2: Distributions of labels in AMR and WIKI data.

4We use the alignments provided in the corpus that are
automatically generated.

5We only target the simple structure such as the one pre-
sented in Figure 7, which we assume represent typical relation
for each class.
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Cosidering the size of AMR data, we make 5
splits6 of the data to perform 5-fold cross valida-
tion. When training on WIKI data, we average the
scores of 5 runs with different random seeds to en-
sure stability. In addition, we perform grid search
for hyperparameter tuning over the options in Table
3. All models will be evaluated using both Macro
and micro F1 scores (FM and Fm, respectively).
Variances will be given in parentheses.

Hyperparameter Values
batch size 16, 32, 64
learning rate 2e-05, 3e-05, 5e-05
epochs 3, 5, 10

Table 3: Hyperparameter options for grid search.

4.2 Baseline Model

As our baseline, we finetuned BERT solely on
AMR data. To make best use of the data, we com-
pared BERT→AMR with BERT→AMRs (with
subordinators as a feature). One of BERT’s “un-
used tags” is placed to specify the position of a sub-
ordinator in an input sequence: “[CLS] [unused_0]
subordinator [unused_0] subordinate clause [SEP]
matrix clause [SEP]”. As presented in Table 4, it
turned out that explicit information of subordina-
tors was not effective in our experiment, as opposed
to the general tendency in explicit vs implicit con-
nective settings (Pitler et al., 2008). Therefore, we
choose BERT→AMR as our baseline and seek for
other ways to make use of subordinators.

Models FM Fm

BERT→AMR 64.06(±.06) 74.29(±.03)
BERT→AMRs 22.43(±.02) 54.77(±.03)

Table 4: Performance of baseline models.

5 Use of Weakly Supervised Data

5.1 Approaches

In the experiments, we take several approaches to
examine the effect of augmentated data on classi-
fication performance. For direct comparison of
the training data, BERT→WIKI is solely fine-
tuned on WIKI data to see whether the model
would benefit from the larger weakly supervised
data. BERT→MIX is finetuned on a combined
set of data which consists of AMR data and
certain amount of additional WIKI data. The

6Train:Dev:Test=3:1:1 for each split.

amount of WIKI data used ranges from 2～20k,
where we add 2k sentences7 at a time . We take
this approach with an expectation that WIKI data
would complement the inbalanced distribution of
AMR data to perform better than the baseline
or BERT→WIKI. Finally, we evaluate the model
marked as BERT→WIKI→AMR which is first
finetuned on WIKI data, then further finetuned on
AMR data. This is conducted under our hypothe-
sis that “prefinetuning” on WIKI data would make
BERT model fit to our task than the original model,
which is just pretrained on next sentence prediction
task.

5.2 Results and Analyses

Models FM Fm

BERT→AMR (baseline) 64.06(±.06) 74.29(±.03)
BERT→WIKI 47.67(±.00) 61.72(±.00)
BERT→MIX8k 67.12(±.01) 77.50(±.00)
BERT→WIKI→AMR 72.43(±.02) 81.22(±.00)

Table 5: Performance of each approach. Only the best
performing model is presented for BERT→MIX.

The scores of all approaches are presented to-
gether in Table 5. The results show that training on
weakly supervised data by itself does not improve
the baseline, with BERT→WIKI harming the per-
formance by 16.39% points on FM and 12.57%
points on Fm. This may be attributed to the gap of
construction types between WIKI and AMR data.
Meanwhile, we see improvements of 3.06% and
3.21% when we add 8k amount of WIKI data to
AMR data. The transition of scores by the amount
of added data is presented in Figure 10. Both FM

and Fm show an increase as we combine AMR
and WIKI data until they reach the peak at 8k.
Further addition only lead to drop the model’s per-
formance. This suggests that too much amount
of WIKI data dilutes the presence of supervised
AMR data. We could predict that training on full
addition of WIKI data would deteriorate its perfor-
mance near to that of BERT→WIKI. Among all
our approaches, BERT→WIKI→AMR achieved
the best results with 8.37% and 6.93% increase as
expected. This proves the effectiveness of prefine-
tuning on weakly supervised data when you have
supervised data of a small size.

Additionally, we checked whether our prepro-
cessing step of adding artificial tags (“<” and “>”)
in section 4 helped the model’s performance. With

7Balanced data with 0.5k for each class label.
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Figure 10: Score transitions of BERT→MIX by amount
of WIKI data added. “k” stands for 1,000.

untagged version of BERT→WIKI→AMR scor-
ing 71.21% for FM and 80.47% for Fm, we see
1.22% and 0.75% increase for tagged version. We
find that the improvements achieved are not as
much as utilizing weakly supervised data, but still
beneficial to some extent considering it is a by-
product of dependency matching.

While it was not effective to use subordinators as
features, it remains reasonable to take advantage of
its information. Therefore, we make modifications
to the trained models in Table 5. We first create
a list of ambiguous subordinators and their possi-
ble labels (e.g. since is ambiguous between cause
and time). When we feed a complex sentence, its
subordinator will be searched in the list to check
whether it is potentially ambiguous. If it turns out
to be true, a restriction will be applied to the soft-
max layer by lowering the probability of irrelevant
class labels to 0. In other words, the models are
modified to only look at possible labels defined in
the list.

Models FM Fm

BERT→AMR+r 67.11(±.05) 77.18(±.03)
BERT→MIX8k+r 70.76(±.01) 80.52(±.00)
BERT→WIKI→AMR+r 75.65(±.03) 83.94(±.01)

Table 6: Performance with subordinator as restrictions
on softmax layer.

The results after applying the restriction are
shown in Table 6 with +r in model names. Com-
pared to the performance in Table 5, we achieve
overall improvements of 3.05～3.64% on FM

and 2.72～3.02% on Fm for all models. Table
7(a) and 7(b) present precision, recall, and F1
of BERT→AMR and BERT→AMR+r by labels.

The approach seems mostly effective except for
conc where the precision decreases by 5.75%.
With further analysis on confusion matrices on
the first split of data for cross validation in Ta-
ble 8, we find the number of false positive errors of
conc increased. This is due to an error predicting
sentences with while, which we regard ambiguous
between conc and time. When the correct label
is time, the model first predicted cause or cond.
Even after the restriction was applied, the model
predicted conc. Overall, the restriction seems to
help the models reduce false positive errors.

(a) BERT→AMR
Labels P R F
cause 60.51(±.07) 68.93(±.04) 64.34(±.04)
cond 84.00(±.02) 84.91(±.03) 84.43(±.02)
conc 48.93(±.46) 43.16(±.19) 45.44(±.25)
time 72.96(±.21) 54.17(±.05) 62.01(±.08)

(b) BERT→AMR+r
Labels P R F
cause 63.71(±.07) 73.19(±.03) 68.00(±.03)
cond 89.17(±.02) 84.91(±.03) 86.97(±.02)
conc 43.18(±.21) 43.16(±.19) 43.07(±.19)
time 73.25(±.18) 67.92(±.06) 70.40(±.10)

Table 7: Performance by labels.

(a) BERT→AMR
Predicted Labels

True Labels cause cond conc time
cause 55 15 4 6
cond 10 179 1 6
conc 4 5 12 1
time 10 12 0 26

(b) BERT→AMR+r
Predicted Labels

True Labels cause cond conc time
cause 57 11 3 9
cond 10 179 1 6
conc 4 5 12 1
time 7 3 5 33

Table 8: Confusion matrices of models trained on the
first split of data for cross validation.

6 Conclusion

With the intention to capture the structure of com-
plex sentence constructions in AMR framework,
we proposed a pattern matching method using a
list of dependency patterns and its corresponding
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skeletal AMRs. In the course of creating a com-
prehensive pattern dictionary, we observed seman-
tically ambiguous entries. In order to resolve the
semantic ambiguities, we framed the problem as a
sentence-pair classification task and finetuned pre-
trained BERT models on data derived from AMR
and Wikipedia corpus. Through the experiments,
we found that the supplemental usage of weakly su-
pervised data generated from Wikipedia effectively
improves performance of the models compared to
the one trained solely on small-sized supervised
data. A natural next step will be to incorporate the
presented method in AMR parsing task, which we
leave for future work.
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