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Abstract

Most models of inflectional morphology rely
at their core on the identification of recurrent
and diverging material across inflected forms.
Across theoretical frameworks, this can be ex-
pressed in terms of morpheme segmentation,
rules, processes, patterns or analogies.

Finding these recurrences in large structured
lexicons is an important step in empirical com-
putational morphology, where analyses are in-
duced bottom-up from inflected forms. This
can be done by aligning all the forms in each
paradigm, a task of Multiple Sequence Align-
ments which is well known in other fields such
as evolutionary biology and historical linguis-
tics.

In this paper, we present the specific problems
which arise when aligning inflected forms, pro-
vide a simple alignment format, define evalua-
tion measures and compare two implemented
methods on 13 inflectional lexicons. Our in-
tent is to provide the conditions for the inter-
operability of future systems, and for incre-
mental improvements in this fundamental step
for quantitative morphology.

1 Introduction

When analyzing inflectional systems, linguists
draw on complex intuitions informed by segmen-
tation conventions, diachronic evidence and their
own sense of grammatical elegance. As a result,
these analyses are not meant to produce commen-
surate units across languages. This is an obstacle
in comparative research such as linguistic typology
and evolutionary linguistics. The alternative is to
induce inflectional generalizations bottom-up, start-
ing from paradigms of word forms, using the same
procedure across languages.

∗This work was done in part while working at the Max
Planck Institute for the Science of Human History, Jena, and
at the Max Planck Institute for Evolutionary Anthropology,
Leipzig.

PRS.IND.1SG l i b E R t - - u -
PRS.IND.2SG l i b E R t 5 - - S
PRS.IND.3SG l i b E R t 5 - - -
PRS.IND.1PL l i b @ R t 5 m u S
PRS.IND.2PL l i b @ R t a - i S
PRS.IND.3PL l i b E R t 5̃ - ũ -

indexes 0 1 2 3 4 5 6 7 8 9

Table 1: Alignment for a sub-paradigm of the European
Portuguese verb LIBERTAR, ‘to free’

This program resembles that of the unsupervised
learning of morphology (Goldsmith, 2001; Creutz
and Lagus, 2002; Kurimo et al., 2010), but differs
in its goals: rather than reproducing morphemic
segmentations or scaling them up for NLP, we seek
to generate new inflectional analyses for empirical
linguistics. This leads to crucial divergences in
data, tasks and evaluation.

Hockett (1954) classifies inflectional models ac-
cording to the units they manipulate (morphemes,
roots, markers, words) and the way these are re-
lated to each other (rules, processes, analogies).
Despite this considerable variation, most models
of inflection rely at their core on the identification
of recurrent and diverging material across inflected
forms.

We propose that this fundamental step of gram-
matical description can be performed by aligning
all the surface forms of a same lexeme, as shown
in Table 11.

Most systems which attempt to induce inflec-
tional rules from paradigms do start by aligning
forms (Albright and Hayes, 2002; Durrett and DeN-
ero, 2013; Ahlberg et al., 2014; Bonami and Boyé,
2014; Beniamine, 2017; Guzmán Naranjo, 2020;
Guzmán Naranjo and Becker, in press). But so far,

1For the sake of brevity we show only the present sub-
paradigm, though the full alignment has 69 rows.
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contributions have been devised only in the con-
text of specific applications. As a result, there is
no existing generic solution, and the alignments
themselves are not evaluated, even though they im-
pact downstream analyses. Instead, we suggest to
make multiple alignments a common modular step
for the induction of various types of inflectional
analyses.

The goal of this paper is to introduce the task
of multiple alignments in inflectional paradigms.
In order to facilitate incremental improvements,
we define a simple format and provide evaluation
measures of alignment quality. Moreover, we de-
scribe and evaluate two systems on 13 inflectional
lexicons: the nouns of Hungarian, Kasem, Latin,
Latvian, and Russian; and the verbs of Modern
Standard Arabic, English, French, Latin, Navajo,
European Portuguese, Yaitepec Chatino and Zen-
zontepec Chatino.

2 Related work

The two questions which underpin this work are
general enough to have seen contributions from
multiple disciplines. On one hand is the issue of
how to align sequences together. Several methods
were elaborated in biology in order to compare
DNA or protein sequences (Durbin, 1998) and then
adapted to align strings of phonemes in histori-
cal linguistics and phonology. The second is the
Segmentation Problem (Spencer, 2012): how can
we segment inflected forms algorithmically? This
is relevant in NLP in the unsupervised learning
of morphology (Goldsmith, 2001) as well as for
the reinflection task (Cotterell et al., 2016), and in
theoretical and quantitative morphology, where it
figures as a nearly unavoidable step.

As in the task of unsupervised morphological
segmentation (Goldsmith, 2001; Creutz and Lagus,
2002; Kurimo et al., 2010), we are concerned with
identifying morphologically motivated sub-word
recurrences. However, our task differs in several
important respects. First, we take as input struc-
tured paradigms rather than lists of forms. Second,
we take inflected forms to be strings of phonemes,
not orthographic strings. Third, we seek to identify
only inflectional morphology. Fourth, alignments
do not entirely determine segmentations, and the
segmentations which can be inferred from align-
ments do not need to coincide with traditional mor-
phemic analyses. Finally, it would not make sense
for us to evaluate alignment algorithms against a

gold standard, as our intent is to induce new de-
scriptions: it is then impossible to select in advance
a single preferred segmentation.

Aligning two sequences together is a task of
PAIRWISE ALIGNMENT, which can be solved op-
timally for a given scoring scheme using the dy-
namic Needleman-Wunsch algorithm (Needleman
and Wunsch, 1970), also called Wagner-Fischer
(Wagner and Fischer, 1974) algorithm in the con-
text of Levenshtein distances. Aligning more than
two sequences is a problem of MULTIPLE SE-
QUENCE ALIGNMENT, which is NP-complete. Var-
ious heuristic algorithms have been devised to find
good multiple alignments of DNA sequences (for
a review, see Durbin, 1998). Two methods which
make use of repeated pairwise alignments are rele-
vant to the current work. In ITERATIVE approaches
(Barton and Sternberg, 1987), a first solution is ob-
tained by repeated pairwise alignments, then it is
refined by repeatedly taking a sequence out of the
alignment and re-aligning it to the others. PRO-
GRESSIVE approaches use hierarchical clustering
to calculate a similarity tree between sequences,
then align (clusters of) sequences two by two fol-
lowing this guide tree (Feng and Doolittle, 1987).

Both pairwise and multiple alignments have
been used in historical linguistics for cognate de-
tection, aligning sequences of phonemes across
languages. Covington (1996) and Kondrak (2000,
2003) use pairwise alignments with phonetically
weighted scores. Kondrak (2003) implements sev-
eral improvements from the biology literature. In
particular, he retrieves a set of alignments rather
than a single best alignment. List (2010, 2014)
adapted multiple progressive alignment methods
to the alignment of cognate words, relying on the
simplification of sequences into classes of sounds
which are likely to be historically related. This
method, called Sound Class Alignment (SCA) si-
multaneously reduces the number of sequences to
be aligned and the overall vocabulary size, while in-
troducing a simple sensitivity to phonetic similarity.
While this is linguistically motivated for cognate
detection, it does not fit the needs of language-
internal comparisons.

The need to align inflected forms is a leitmotiv in
symbolic approaches to reinflection and paradigm
completion. Durrett and DeNero (2013) align all
forms pairwise to a selected ‘base form’, then per-
form iterative alignments. Nicolai et al. (2015)
uses a modified version of the EM-driven, many-to-

217



many aligner from Jiampojamarn et al. (2007). The
baselines for Cotterell et al. (2016, 2017) rely on
pairwise alignments. Rather than directly aligning
sequences, Ahlberg et al. (2014) find the longest
common subsequence (LCS) in paradigms. The
most successful solutions to reinflection are neural,
and do not provide explicit alignments.

In quantitative morphology, most approaches so
far have used pairwise alignments obtained through
heuristics such as justifying all forms left or right
(Albright and Hayes, 1999, 2002, 2003; Bonami
and Boyé, 2014). Beniamine et al. (2017a)2 use left
justification for both pairwise and multiple align-
ments. Albright and Hayes (2006); Beniamine
(2017), find pairwise alignments using the dynamic
algorithm and a phonologically weighted edit dis-
tance based on Frisch (1997). The use of pairwise
alignments fits with the emphasis on implicative
relations and the Paradigme Cell Filling Problem in
Word of Paradigm morphology. However, they can
not support other types of generalizations such as
affixal segmentations. Patterns result in very large
analyses which are difficult to evaluate by hand.
Moreover, strictly pairwise alignments are some-
times counter-intuitive, as they neglect information
available in the rest of the paradigm.

3 Inflectional alignments

Input lexicons consist of triples of 〈 lexeme iden-
tifier, paradigm cell, inflected form 〉, and can be
written in tabular format as shown in the first three
columns of Table 2. Each inflected form of a lex-
eme is a sequence of phonological segments. Since
a segment can be written by more than one charac-
ter, we separate phonemes by spaces in the table.

An alignment of n sequences of maximal length
m, is a matrix with n rows and at least m columns
(see Table 1). Rows of the matrix represent se-
quences, and columns represent matches across
sequences. Gaps, noted ’-’, pad empty cells and
represent the absence of a match.

Alignment matrices of entire paradigms can have
a large number of columns, which makes them
impractical to write. We submit instead a simple
sparse format: each row of the matrix is encoded
as the space separated list of non-gap indexes, as in
Table 2, which describes the matrix from Table 1.

2They use the terms ”local” and ”global” for resp. pairwise
and multiple alignments. This choice is unfortunate, as these
terms already have an established meaning (Durbin, 1998;
List, 2014), and refer resp. to partial alignments of sequences
and complete alignments of entire sequences.

Given a set of sequences and these indexes, it is
trivial to reconstitute the matrix.

The semantics of a match varies according to the
purpose of alignments. In evolutionary biology as
in historical linguistic, they express common ances-
try. In the case of inflectional paradigms, matches
relate recurrent material, that is phonological seg-
ments which can be identified by speakers as be-
ing ”the same” across sequences, whether they are
identical or not. Identical matches can be part of in-
variant lexical material (the initial /l/ in Table 1), or
be common to only some cells (for PRS.IND.2SG,
PRS.IND.3SG and PRS.IND.1PL share /5/ in column
6). Non identical matches relate distinct segments
when a clear correspondence can be identified, e.g
/5/, /a/ and /5̃/ in column 6 or /E/ and /@/ in column 3.

3.1 Downstream applications
Alignments of all the paradigms in a lexicon can
support the computational induction of entire gram-
mars, both in word-based or morpheme-based ap-
proaches, in the form of processes, analogies, seg-
mentations, or other descriptive devices.

For example Table 1 supports a segmenta-
tion into suffixes /-u/, /-5S/, /-5/, /-5muS/, /-5iS/,
/-5̃ũ/ and two stem allomorphs /libERt-/ and
/lib@Rt-/. The same information could serve as
a basis to compute alternation patterns such as
[E � @ 5m S / lib Rt u ] relating the PRS.IND.1SG

and PRS.IND.1PL cells.
Providing procedures to extract such analyses

is beyond the goals of the current paper. For the
purposes of discussing and evaluating our systems,
we provide however two simple definitions for units
which can be readily deduced from alignments and
bear some resemblance to more usual linguistic
abstractions:

• CONSTANT STEM: the discontinuous se-
quence of phonemes which expresses no in-
flectional meaning. It is extracted from identi-
cal match columns in the alignment matrix.

• MARKERS: the discontinuous substrings re-
maining in each form after removing the con-
stant stem.

For example, in Table 1, the constant stem lib-Rt-
is highlighted in gray columns, and the marker
for the PRS.IND.1SG is /-E-u/. Constant stems can
not, by definition, have allomorphs. As a result,
suppletion is either analyzed as an empty stem,
transferring entire words to markers, or as a short
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lexeme cell form alignment

LIBERTAR PRS.IND.1SG l i b E R t u 0 1 2 3 4 5 8
LIBERTAR PRS.IND.2SG l i b E R t 5 S 0 1 2 3 4 5 6 9
LIBERTAR PRS.IND.3SG l i b E R t 5 0 1 2 3 4 5 6
LIBERTAR PRS.IND.1PL l i b @ R t 5 m u S 0 1 2 3 4 5 6 7 8 9
LIBERTAR PRS.IND.2PL l i b @ R t a i S 0 1 2 3 4 5 6 8 9
LIBERTAR PRS.IND.3PL l i b E R t 5̃ ũ 0 1 2 3 4 5 6 8

Table 2: Tabular format for aligned paradigms

common substring. To find suppletive and allomor-
phic stems, further processing would be necessary
to determine stem alternants. To find morphemes
or exponential sub-strings, it would be necessary to
contrast systematically sets of forms according to
shared grammatical features in their cells. Phono-
logical similarity could be leveraged in order to
identify allomorphy in both stems and exponents.

3.2 Challenges
In some suffixal systems, a left alignment of all
sequences is enough to identify the constant stem,
and conversely a right alignment may work for
some prefixal systems. However, this is inadequate
in the presence of allomorphy (which may result in
variable stem lengths) and will always fail to iden-
tify recurrences across markers. Good solutions
to the problem should be able to identify various
types of alignments, including non-concatenative
morphology, without knowing in advance the type
of exponence to expect.

lexeme cell form

DESESPERAR INF d @ z @ S p @ R a R
DESESPERAR PST.IND.1SG d @ z @ S p E R u
DESESPERAR COND.1PL d @ z @ S p @ R a R i 5 i S

Table 3: Three forms of the European Portuguese verb
DESESPERAR

1. d @ z @ S p @ R a R - - - - -
d @ z @ S p E R - - u - - - -
d @ z @ S p @ R 5 R - i 5 i S

2. d @ z @ S p @ R a R - - - - -
d @ z @ S p E - - R u - - - -
d @ z @ S p @ R 5 R - i 5 i S

Table 4: Two alignments for the forms of Table 3

Repeated material between stems and markers

can make it impossible to choose between conflict-
ing alignments without looking at other paradigms.
As an example, Table 3 presents three forms of the
Portuguese lexeme DESESPERAR. Table 4 shows
two alignments of these forms which only differ
by the position of the phoneme /R/ shown in shaded
cells. These alignments could be scored identically
by an alignment algorithm, yet only the first one
appears linguistically motivated: no lexemes have
infinitives in /-Ra-/, but many do have an infinitive
in /-aR/. This problem justifies a strategy in two
steps (following Beniamine, 2017): (i) generate
competing hypotheses, and (ii) compare across lex-
emes to select the most general hypotheses.

Non-identical matches in alignment can support
the identification of morpho-phonological changes
and suppletion. As an example, Table 5 illustrates
palatalization in Russian nouns. To recognize the
palatalization in the dative and locative singular,
the relevant consonants need to be aligned together.
Doing so may require a scoring scheme sensitive to
phonology, in order to prefer a match of the palatal-
ized /mj/ with the first /m/ of /zj"imamji/ rather than
with the identical phoneme /mj/.

lexeme CELL form

ZJ IM"A NOM.SG zji m "a
ZJ IM"A ACC.SG zji m "u
ZJ IM"A GEN.SG zji m "i
ZJ IM"A DAT.SG zji mj "e
ZJ IM"A INS.SG zji m "o j
ZJ IM"A LOC.SG zji mj "e
ZJ IM"A NOM.PL zj"i m i
ZJ IM"A ACC.PL zj"i m i
ZJ IM"A GEN.PL zj"i m
ZJ IM"A DAT.PL zj"i m a m
ZJ IM"A INS.PL zj"i m a mj i
ZJ IM"A LOC.PL zj"i m a x

Table 5: Paradigm of the Russian noun ZJ IM"A, ‘winter’
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The detection of some phenomena require ex-
tensions to the definition of alignments provided
above. Metathesis rearranges the order of segments.
Table 6 describes an example of morphological
metathesis from Saanich, a Central Salishan lan-
guage (Kurisu, 2001) and how it can be coded using
our alignment format. Metathesis is more challeng-
ing to code in a typical alignment matrix (see List,
2014). Consonant gemination and reduplication
can not be written in simple alignment matrices
either but our format would allow the mapping of
more than a single phoneme to a column (one-to-
many alignments). Since these phenomena could
all be identified by post-processing steps, we do
not attempt to recognize them in this paper.

lexeme cell form alignment

QPPP non-actual qPpP"@ t 0 1 2 3
QPPP actual qP"@ pPt 0 2 1 3
StS non-actual S tS "@ t 0 1 2 3
StS actual S "@ tS t 0 2 1 3

Table 6: Metathesis in Saanich QPPP ‘patch’ and StS,
‘whip’.

Finally, the ordering assumption of alignments
is particularly challenged by phenomena where po-
sition is involved in exponence. The example (1)
illustrates parallel exponence in Swahili (Stump
1993, via Crysmann and Bonami 2017). Aligning
the sequence /-penda/ to find the stem is straightfor-
ward, but aligning /-ni-/, /-ta-/ and /-wa-/ requires
a more complex mapping:

(1) a. ni-ta-wa-penda
1SG-FUT-3PL-like
‘I will like them’

b. wa-ta-ni-penda
3PL-FUT-1SG-like
‘They will like me.’

4 Algorithms

This section presents two methods for the align-
ment of inflectional paradigms, designed specifi-
cally for the purpose of aligning the inflected forms
of a paradigm in a given language. The first adapts
a heuristic algorithm for multiple alignment from
the biological literature. The second proceeds by
searching for the Longest Common Subsequence.
Both proceed in two steps: first, they generate sets
of competing hypotheses, then, they pick the best
alignments based on comparisons across lexemes.

4.1 Multiple alignments

Our first system relies on progressive alignments.3

It differs from existing multiple alignment software
and algorithms in three main ways: the scoring
schemes are tailored for inflection; it finds a set of
best alignments rather than a single best; the im-
plementation is multi-threaded in order to process
large inflected lexicons in reasonable time.

4.1.1 Scoring models

We present three scoring models to assign scores
to edit operations. We write s(a, b) the substi-
tution of distinct phonemes and s(a, a) the sub-
stitution of identical phonemes. Both insertion
and deletion are given the same constant score
s(a,−) = s(−, a) = γ. Our schemes rely on simi-
larity (not distances), and scores are maximized by
the algorithms. Affixes are common in inflection,
and their presence in some, but not all paradigm
forms, leads to frequent insertions or deletions in
aligned paradigms. For this reason, we do not pe-
nalize insertion/deletions, and always set γ to zero.
Each scoring model associates positive scores to
good matches, and negative scores to bad matches.

Simple model: In the absence of any knowledge
on a language’s phonology, we can only favor iden-
tical matches, and penalize all substitutions: we set
s(a, b) = −1 and s(a, a) = 1.

Phonological similarity models: In order to
recognize non-affixal morphological alternations,
we need a scoring function which is sensitive
to phonological similarity. We define phonolog-
ical similarity as the Jaccard index over either
sets of features (simnc) or sets of natural classes
(simfeat), following Frisch (1997); Albright and
Hayes (2006). The feature sets are read from a
table of language specific distinctive features, pro-
vided in input.4 Natural classes are computed from
these by using Formal Concept Analysis (Ganter
and Wille, 1998; Bank, 2016). We define a similar-
ity threshold t as the median of all possible simi-
larities. We then set γ = 0, s(a, b) = sim(a, b)− t
and s(a, a) = sim(a, a)− t.

3The code for the progressive method and the evaluation
can be found at https://gitlab.com/sbeniamine/
morphalign/-/tree/v0.1.1-scil

4While it is possible to conceive universal feature systems,
these can not capture language specific phonology. They
could however be used as fallback, and are useful as a basis
for writing language specific distinctive features (several of
the tables used here derive from Hayes (2012), see A).
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4.1.2 Progressive alignments
Progressive alignments proceed in three steps, re-
peated for each paradigm:

First, we compute all pairwise alignments for
unique sequences in the paradigm, using the
Needleman-Wunsch algorithm. Second, we com-
pute a similarity tree between sequences using hi-
erarchical clustering and the scores from the pair-
wise alignments. Third, we align sequences and
alignments pairwise by following the tree bottom-
up. The simplest case is that of aligning a pair
of sequences. However, since alignments can be
seen as sequences of columns, we can also align
sequences to alignments, or alignments together
(Durbin, 1998; List, 2014). The score of align-
ing the columns M·,j and M ′·,l from two align-
ments matrices M and M ′ with resp. m and m′

rows is (Durbin, 1998, p.147): S(M·,j ,M ′·,l) =
∑m

i=0

∑m′
k=0 S(Mij ,M

′
kl).

Usually, this process produces a single best align-
ment at each step. Instead, we backtrack through
multiple paths in the alignment matrix, and retrieve
the k optimal scoring alignments which differ by
at least one substitution. As a result, each pairwise
step yields a set of alignments. When joining two
sets A and B, we compute an alignment for each
(a, b) fromA×B and keep only k of the alignments
with the same best score.

4.2 Longest common subsequence

The second method is based on the fact that our
definition of CONSTANT STEM corresponds to the
longest common subsequence (LCS).5 There are
multiple algorithms (Hirschberg, 1977) to find the
LCS of two sequences, and it is known that the
complexity of the problem increases with the size
of the sequences and the size of the vocabulary
(Ullman et al., 1976). The problem becomes even
more complex when we have k sequences instead
of just 2. While approximations exist for the k = 2
case (Hajiaghayi et al., 2020), here we use a simple
combinatorial approach which works well when k
is large and the length of the sequences is small
(< 100 segments). This implementation follows
(Guzmán Naranjo and Becker, in press).

We solve this problem by generating all possible
subsequences for all sequences, but to save time
we do this sequentially. We start with all subse-

5The code to the R package for finding the LCS can
be found at: https://gitlab.com/mguzmann89/
paradigma.

quences of size p, where p is the length of the
shortest sequence. If one of the generated subse-
quences appears in all sets of subsequences, we are
done. If no subsequence satisfies this condition, we
calculate all subsequences of size p− 1 and repeat
this process until we find a subsequence common
to all sets of subsequences, or until we determine
that there is no stem.

The process can be made fast by using two pre-
processing steps. Since the LCS can only be com-
prised of segments which appear in all sequences,
we first remove segments which do not appear in all
sequences. After this first step, we find and remove
a common prefix and suffix from all sequences. By
taking these two first steps, the computation of the
LCS is fast in the average case.

After finding the stem, we calculate all optimal
alignments of each cell to the stem using Leven-
shtein distance. Segments which do not correspond
to the stem are kept aligned to gaps. If there are
multiple possible alignments of the cell to the stem
or multiple possible stems, we calculate all the re-
sulting hypotheses and disambiguate as explained
in the next section.

4.3 Disambiguation

Both the progressive alignments and the LCS sys-
tem generate a set of hypotheses for each paradigm.
From each hypothesis, we compute the markers
(see section 3.1). Then we select the alignment with
the highest sum of marker frequency. For the pro-
gressive alignments, in case of a tie, we fall back on
the frequency of the continuous sub-strings in the
markers. This step introduces comparisons across
lexemes, selecting the alignments which lead to the
most general analysis of the overall system.

5 Evaluation

Most NLP tasks, whether supervised or non super-
vised, rely on evaluation by comparison to a gold
standard. This is the case, in particular, of non
supervised approaches to morphological segmen-
tation. In the present task, comparison to a gold
segmentation does not make sense, for two main
reasons.

First, alignments under-determine segmenta-
tions, such that various segmentations could be
generated based on the same alignments. The sim-
ple segmentation described in section 3.1 is not
given as a final linguistic analysis. As a result, it
is unclear how to compare alignments to a given
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segmentation. Second, and more importantly, our
goal is not to reproduce known morphemic segmen-
tations, but to find new analyses through a method-
ology which can be reproduced identically across
systems and languages. The goal of this process
is to obtain comparative units for both typological
and evolutionary linguistics. In this perspective,
even if it was possible, the comparison to known
segmentations would not inform us on the success
of our methods.

Evaluation against gold alignments would be
possible using dedicated datasets for inflection,
similar to existing benchmarks for historical lin-
guistics (List and Prokić, 2014). Unfortunately,
these still have to be created. Instead, we define
two simple measures based on the simple segmen-
tation described in section 3.1.

All other things being equal, we prefer align-
ments which recognize more constant stem ma-
terial. We measure this by computing the Stem
length: Sl = constant stem length

length of the shortest sequence , which we
give as a percentage. This value is averaged over
the entire lexicon.

However, maximizing stem length is not enough,
as we saw in section 3.2: alignments must lead to
sound linguistic generalizations. In order to mea-
sure this, we remove all stems from the paradigms,
so that each lexeme is characterized by a set of
markers. We then observe the number of distinct
marker sets, and their sizes. Any unfortunate
alignment will drive the number of sets up.

Both of these measures are only comparative:
they can not tell us whether an alignment is perfect,
but given several solutions, they can point us to the
best one. They target the two main difficulties in
inflectional alignments: finding a longest common
subsequence, and aligning it in a way which leads
to good morphological generalizations.

6 Data

We evaluate our systems on 13 inflectional systems
from 12 languages, as summarized in Table 7. The
development set is composed of the entire lexicon
for French and of around 18% of lexemes for En-
glish, Modern Standard Arabic, Latin verbs and
European Portuguese. All other paradigms were
held out until evaluation. Because of overabun-
dance and defectivity, the total number of forms is
not always the product of the number of lexemes
and paradigm cells. The detailed source of each

lexicon is given in Appendix A. 6

Language POS Cells
Lexemes Total

Dev Eval Forms

Zenzontepec-Chatino V 4 - 392 1567
Yaitepec-Chatino V 12 - 324 3916
Kasem N 2 - 1909 3936
Latin N 12 - 1038 12355
Latvian N 14 - 3706 43359
English V 8 1092 4972 48732
Mod. Std. Arabic V 109 183 835 95440
Navajo V 70 - 2153 122756
Eur. Portuguese V 69 366 1630 137724
French V 51 5249 - 266490
Hungarian N 34 - 12729 410391
Russian N 12 - 45183 555654
Latin V 254 599 2749 752154

Table 7: Overview of the lexicons

7 Results and discussion

We ran and evaluated alignments for each lexicon
and each method. Progressive alignments ran with
each of the possible scoring schemes. One version
of the progressive algorithm used a random selec-
tion in step 2 in order to evaluate the contribution
of this step. Evaluation results are given in Table 8.

The LCS algorithm is designed to optimize the
average stem length, and it should be no surprise
that it always finds the longest constant stems,
across all datasets. The progressive algorithm often
agrees in finding the LCS, but not always. Qualita-
tive analysis of the result shows that the progressive
algorithm sometimes narrows down the set of hy-
potheses too soon, and due to its greedy nature,
can not recover from early mistakes. Variations
in scoring scheme all lead to quasi-identical stems
lengths, with simfeat most often leading to shorter
stems than the other two schemes.

It should be noted, however, that the right stem
is not simply the longest one, but also that which
leads to the most general alignments, at the level of
the lexicon. This generality is precisely what can
be evaluated by measuring the number of marker
sets.7

6Those of these lexicons which can be shared
freely can be found, together with our dev/eval
splits, at https://gitlab.com/sbeniamine/
inflectionallexicons/-/tree/SCiL-2021

7We would like to stress that marker sets are not intended to
be interpreted directly as inflection classes, as is obvious from
the fact that all methods count more than two thousands sets
in both Navajo and Russian. The sets differ for any variation
in surface realization, and collapse together exponent types
which are usually analyzed as orthogonal dimensions, such
as the two stems of Navajo verbs (McDonough, 1999) or the
stress patterns and affixes of Russian nouns (Brown, 1998).
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step 1. LCS Progressive
step 2. markers markers random
scores simple simfeat simnc simnc

SL MS SL MS SL MS SL MS SL MS
Language POS set

Modern std. Arabic V dev 60.1 67 59.9 66 58.9 69 59.7 65 59.7 65
eval 60.7 144 60.6 137 59.4 160 60.3 140 60.3 140

English V dev 98.3 47 98.3 45 98.3 45 98.3 45 98.3 46
eval 98.1 118 98.1 113 98.1 113 98.1 113 98.1 114

French V dev 97.6 111 97.6 99 97.6 99 97.6 99 97.6 99
Hungarian N eval 96.8 279 96.8 302 96.3 281 96.8 281 96.8 294
Kasem N eval 78.7 326 78.7 318 78.7 318 78.7 318 78.7 331
Latin N eval 81.4 81 81.4 73 81.4 73 81.4 73 81.4 73

V dev 76.1 190 76.1 186 76.0 184 76.1 184 76.1 185
eval 75.0 434 75.0 426 74.9 424 75.0 424 75.0 429

Latvian N eval 85.2 143 85.2 128 85.2 128 85.2 128 85.2 128
Navajo V eval 40.0 2041 38.9 2044 36.4 2040 37.1 2041 37.1 2041
European Portuguese V dev 76.6 34 76.0 31 76.5 31 76.5 31 76.5 31

eval 76.2 59 75.3 61 76.0 55 75.9 57 75.9 57
Russian N eval 85.1 2230 85.1 2116 85.1 2115 85.1 2115 85.1 2118
Yaitepec Chatino V eval 38.3 294 38.3 294 38.2 294 38.3 294 38.3 294
Zenzontepec Chatino V eval 72.4 109 72.4 111 72.2 112 72.4 111 72.4 112

Table 8: Average stem length percentage (SL) and number of market sets (MS) for each algorithm and dataset.
Best values are given in light gray for SL and dark gray for MS.

Despite its lesser performances in finding the
LCS, the progressive method leads to less marker
sets in all but two datasets. A qualitative analysis
of the results confirms that this is due to the quality
of the alignments themselves. The LCS method
usually fails not at identifying the correct stem,
but rather at picking the optimal alignment of the
stem to the individual forms. This leads to frequent
mistakes which impact overall regularity.

The comparison between marker disambigua-
tion and a random choice shows without doubt that
cross-lexeme comparisons are useful. The simi-
larity schemes score overall better than the simple
scheme, with one exception for Modern Standard
Arabic verbs. The cause is again that the similarity
schemes narrow the set of hypotheses too early,
and miss some alignments which are most general
across lexemes. Neither of the similarity schemes
seems much superior to the other.

In two cases, the progressive method is out-
performed by the LCS method. In Zenzontepec
Chatino, this is due to lexemes such as TU2KWA1,
which forms are nku0tu2kwa1 (CPL), tyu0kwa0

(POT), ntyu 0kwa0 (HAB) and nte0tu2kwa1 (PROG).
Two LCS can be found, either /u-kwa/, or /0-kwa/.
Only the first one makes sense in the context of

other lexemes, but the second one is preferred by
all variants of the progressive alignments, as it al-
lows for better partial matches. In this case, the
LCS method finds the correct stem because it gen-
erates hypotheses for all competing LCS. A better
strategy overall would be to consider separate tiers
for tones and segments. In Hungarian, the median
of all similarity scores, used as a threshold to cal-
culate the score matrix, is very low. As a result, the
system prefers most substitutions to insertions, and
fails to find the best alignments. This case calls
into question the use of the median of all scores as
a threshold.

As discussed in Section 3.1, the simple units
we extract for the purposes of evaluation do not
capture suppletive stems. For example, the French
verb ALLER, ‘to go’ is suppletive. Table 9 shows
a few suppletive forms. Because the suppletive
stems share nothing in common, the constant stem
is empty and entire words are pushed into the mark-
ers. Markers are parts of words with inflectional
information, and indeed each suppletive stem is in-
formative: for example, the forms of ALLER which
start in /v-/ are never futures. However, the align-
ments themselves provide enough information to
extract more detailed generalizations. For example,
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PRS.3SG - v - - - a
PRS.2PL a l - - - E
PRS.3PL - v - - - Õ
FUT.2SG i K - - - a
FUT.3SG i K - - - a

PST.SBJV.1PL a l a s j Õ

indexes 0 1 2 3 4 5

Table 9: Progressive alignment (simnc) for a few forms
of the French verb ALLER, ‘to go’.

in Table 9, the observation of identical matches
in columns 0 and 1 can support the identification
of the suppletive stems, and their respective stem
spaces.

In Standard Modern Arabic, the LCS method
scores better for stem length, but worse for marker
sets compared to the best progressive method
(simnc). A qualitative analysis of the results shows
that the LCS method more reliably finds the longest
constant stems, as the progressive method tends to
be derailed by the repetitions of a sound in the stem
(this difficulty was illustrated in Table 4). For exam-
ple, in forms of the verb ’AMADDA (‘to grant a de-
lay, to assist’), the LCS method successfully iden-
tifies a stem /m-d-d/, but the progressive method
sometimes misaligns one /d/ with the other, result-
ing in a shorter stem /m-d/. On the other hand,
the progressive method chose better generalization
among competing stems of identical length. For
example, for the forms of the verb BA’ISA ‘to be
sad’, there are two possible LCS, /b-P-s/ or /b-a-
s/, as the indicative past forms all start in /baPis-/,
while all other forms start with a consonant, fol-
lowed by /-abPas-/. The LCS method finds /b-a-s/,
which results in a unique marker set. The progres-
sive method correctly finds /b-P-s/, resulting in a
marker set common to four other verbs (FARIH. A ‘to
be happy’, ‘ARIQA ‘to sweat’, ḠALIBA ‘to be thick
necked’, and ḠALIMA ‘to be sexually aroused’).
For all of these verbs, the LCS method finds a stem
in /C-a-C/ rather than the correct /C-C-C/.

Overall, the performances of both methods are
close, and we believe that both constitute rea-
sonable, though imperfect solutions. Since they
stumble over different difficulties, combining them
seems promising. For example, a system could
compute all possible LCS, then use them to cus-
tomize the scoring matrix for each paradigm, be-
fore using progressive alignments.

8 Conclusion

Multiple alignments are a crucial task for quanti-
tative morphology, as they constitute the first step
in extracting analytical units from inflectional lexi-
cons. Alignments have important impact on inflec-
tional analyses, therefore they should be carefully
designed and evaluated. Only then can they consti-
tute a first step in computational morphology, from
which to induce comparable inflectional analyses
for typological and evolutionary quantitative work.

The intent of this paper is to bring attention to
this new task, and to provide the conditions for
incremental improvements. Towards this goal, we
described data formats and evaluation measures,
and compared two implemented systems. Since
the evaluations we propose are comparative, these
systems can constitute strong baselines to which
future systems may be compared.

Overall, we found that there are two main
difficulties in multiple alignments of inflectional
paradigms: first, finding the right longest com-
mon subsequence in a given paradigm, and second,
aligning it in a linguistically motivated way. Both
difficulties require the alignment to be optimized
both at the level of a single paradigm, and across
lexemes at the level of the lexicon.

Further research could focus on further improv-
ing scoring schemes and on leaving more ambi-
guity until the disambiguation step. Variants such
as many-to-many alignments (Jiampojamarn et al.,
2007) could also be useful in identifying some in-
flectional phenomena such as gemination or redu-
plication. Moreover, supra-segmental material,
such as tones, may need to be aligned indepen-
dently, and a tiered approach to inflectional align-
ments should be considered. The manual elabora-
tion of gold alignment sets would be beneficial for
the evaluation of new alignment methods. Finally,
more work is necessary in order to extract useful
linguistic units from alignments, whether in the
form of segmentations, processes or analogies.
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Étude quantitative des structures de paradigmes.
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Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
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A Appendix: Sources of the lexicons

The Kasem lexicon was compiled by
Guzmán Naranjo (2019) from the Kasem
dictionary by Niggli and Niggli (2007). The two
Latin lexicons come from LatinFlexi (Pellegrini
and Passarotti, 2018), the distinctive features are
adapted from a table provided by the authors.
The Latvian lexicon is adapted from Wiktionary
with manual corrections. The English lexicon
is from the CELEX database (Baayen et al.,
1995), with distinctive features adapted from
Chomsky and Halle (1968); Halle and Clements
(1983). The French lexicon is based on Flexique
(Bonami et al., 2014), with distinctive features
based on Dell (1973). The Hungarian data was
compiled from Wiktionary with added manual
corrections. The Russian lexicon was compiled
by Guzmán Naranjo (2020) from the Zaliznyak

Russian dictionary (Zaliznyak, 1977). The Chatino
lexicons come from the Oto-Manguean Inflectional
Class Database (Feist and Palancar, 2015). The
European Portuguese lexicon is derived from
Veiga et al. (2013). The Modern Standard Arabic
lexicon is derived from Unimorph (Kirov et al.,
2016). The Navajo lexicon was compiled and
phonemised from Young and Morgan (1987), and
based on data used by Beniamine et al. (2017b).
The phonemisation for Modern Standard Arabic
and Chatino, and the phonological features for
Portuguese are derived from Beniamine (2018).
For Chatino, Modern Standard Arabic and Navajo,
the distinctive features are adapted from Hayes
(2012).
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