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Abstract

We train and test five open-source taggers,
which use different methods, on three
Swedish corpora, which are of compara-
ble size but use different tagsets. The KB-
Bert tagger achieves the highest accuracy
for part-of-speech and morphological tag-
ging, while being fast enough for practi-
cal use. We also compare the performance
across tagsets and across different genres.
We perform manual error analysis and per-
form a statistical analysis of factors which
affect how difficult specific tags are. Fi-
nally, we test ensemble methods, showing
that a small (but not significant) improve-
ment over the best-performing tagger can
be achieved.

1 Introduction

The standard approach to automatic part-of-
speech tagging for Swedish has been using the
Hunpos tagger (Halácsy et al., 2007), trained by
Megyesi (2009) on the Stockholm-Umeå corpus
(Ejerhed et al., 1992). Just over a decade later neu-
ral methods have reshaped the NLP landscape, and
it is time to re-evaluate which taggers are most ac-
curate and effective for Swedish text.

In this paper we explore part-of-speech and
morphological tagging for Swedish text. The
primary purpose is to see which tagger or tag-
gers to include in the open annotation pipeline
Sparv1 (Borin et al., 2016) for tagging the multi-
billion token corpora of Språkbanken Text, avail-
able through Korp2 (Borin et al., 2012). We there-
fore train and test a set of part-of-speech taggers,
which rely on different methods, on a set of cor-
pora of comparable size, with different part-of-

1https://spraakbanken.gu.se/sparv
2https://spraakbanken.gu.se/korp

speech annotation models. We apply a 5-fold
training and evaluation regime.

In Section 2 we describe the corpora, and in
Section 3 the taggers and models. We evaluate
the taggers along a number of dimensions in Sec-
tion 4, including the potential for using ensemble
methods, and discuss the results in Section 5.

2 Data

2.1 Corpora and tagsets
Corpora and treebanks have a long history in Swe-
den; the first large annotated treebank, Talbanken,
was compiled in the mid 1970s (Teleman, 1974).
For several decades, the Stockholm-Umeå corpus
(SUC, Ejerhed et al., 1992) has been the main re-
source for training part-of-speech taggers.

In this paper, however, we use three other cor-
pora: Talbanken-SBX, Talbanken-UD, and Eu-
kalyptus. The primary reason for using these
three resources is that they are annotated with dif-
ferent tagsets, which allows us to compare re-
sults between tagsets. Talbanken-SBX follows the
same annotation model as SUC. Talbanken-UD
follows the Swedish version of the Universal De-
pendencies (UD) framework (Nivre et al., 2016;
Nivre, 2014). The UD project develops a cross-
linguistic annotation framework and resources an-
notated with it for a large number of languages. In
contrast, the Eukalyptus treebank (Adesam et al.,
2015) was developed specifically for Swedish to
be “in line with the currently standard view on
Swedish grammar” (Adesam and Bouma, 2019, p.
7). We also exclude SUC because these three re-
sources are of comparable size – close to 100,000
tokens and with a type-token ratio of around 0.17.
SUC is much larger, and would have to be scaled
down to be comparable.

We briefly describe the corpora below. For
consistency, we use the same terms to describe
the annotation in the corpora: POS for coarse-

https://spraakbanken.gu.se/sparv
https://spraakbanken.gu.se/korp


TB-SBX TB-UD Euk
Tokens 96,346 96,858 99,909
Types 16,242 16,305 17,237
POS-tags 25 16 13
MSD-tags 130 213 117

Table 1: Statistics for the corpora used in the
tagging experiments; Talbanken-SBX, Talbanken-
UD, and Eukalyptus. Tag counts are used tags, not
potential tags.

grained part-of-speech level tags and MSD for
finer-grained morphosyntactic descriptions (fea-
tures in the UD parlance).

The two Talbanken corpora originate from a
subset (the professional prose section) (Nivre
et al., 2006) of the original Talbanken (Tele-
man, 1974), which was converted to the SUC
tagset (Ejerhed et al., 1992) for the Swedish Tree-
bank (Nivre and Megyesi, 2007)3. The morpho-
logical annotation was manually checked and re-
vised. Both Talbanken-SBX and Talbanken-UD
are based on the output of this conversion.

Talbanken-SBX4 has the converted SUC tags,
and is the result of some minor corrections made
later at Språkbanken Text. Among our three cor-
pora, the SUC tagset is the largest set at the POS-
level (see Table 1). It has a very fine-grained set of
tags for determiners, pronouns, adverbs, and punc-
tuation symbols. There are also separate tags for
infinitival markers, participles, verb particles, and
ordinals.

Talbanken-UD5 is the result of an independent
conversion of the same corpus to UD. The texts
themselves were cleaned during this conversion,
some sentences that had been lost during the initial
conversion were recovered, and sentence segmen-
tation and the order of texts was changed. Thus,
Talbanken-UD and Talbanken-SBX are not strictly
parallel. The conversion to UD has partly been
manually checked and revised. We use version
2.7.

The number of POS-tags in the UD tagset is
quite small, but together with MSD-tags the tagset

3https://cl.lingfil.uu.se/˜nivre/
swedish_treebank/

4https://spraakbanken.gu.se/en/
resources/talbanken

5https://universaldependencies.org/
treebanks/sv_talbanken/index.html

is the largest among our corpora (Table 1). The
tagset does not have separate categories for the
infinitival marker, ordinals, or participles. It also
does not mark foreign words as a category, but in-
stead treats this as a feature in the morphological
description. In contrast to the other tagsets, it does,
however, mark auxiliaries separately.

Eukalyptus6 contains texts of five different
types, including Wikipedia and blog texts, which
makes this data the most recent and allows us
to compare different genres. The tagset loosely
builds upon the SUC tagset. The treebank is cur-
rently in an early version, and although tagging
has been checked, there are still some known er-
rors, such as inconsistencies in noun gender. This
tagset is the smallest one, both at POS- and MSD-
levels (Table 1). The tagset does not, for exam-
ple, distinguish determiners, infinitival markers,
participles, particles, or ordinals as separate cat-
egories.

2.2 Preprocessing and data splits
We pre-processed all corpora in a similar manner.
For all corpora, spaces within tokens, if present,
were replaced with underscore, since some taggers
do not allow spaces in the input. We divided all
three datasets into five folds for cross-validation.
In the case of Eukalyptus, the treebank is shipped
in five different files, one for each text type, which
were used as is. In the case of Talbanken, we split
the data into five consecutive splits, i.e. putting the
first fifth of the data into the first split, the second
fifth in the second, etc. We would have preferred
to divide the data according to text types or docu-
ments, but this is not easily retrievable for all the
data. Using consecutive splits rather than random
splits or splits where the first sentence is put in
the first split, the second sentence in the second
split, etc, means that the data splits are more dis-
tinct than with random splits (see the discussion
in e.g. Gorman and Bedrick, 2019; Søgaard et al.,
2020). This means that the same text is not divided
over all splits, although possibly into two splits.

One of the five folds (20%) is always used a test
set. Some of the taggers we investigated do use
a separate validation (dev) set, some do not (see
Table 2). For the latter ones, we merge all four
remaining folds into a training set (80%). For the
former ones, we first merge the four folds and then

6https://spraakbanken.gu.se/en/
resources/eukalyptus
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randomly (not consecutively) split them into train
and dev in the proportion 3:1 (60% of the total data
for training and and 20% for validation). We con-
sider this solution to be more fair to the “dev-less”
taggers than using the same training sets through-
out and then adding dev for some taggers, but not
for others.

3 Taggers

We have selected five open-source taggers. Our
goal was to sample taggers that use different meth-
ods, are (or were at some point) known to have
high performance and either can be easily incorpo-
rated into our annotation pipeline Sparv or already
are (as Hunpos and Stanza). This last considera-
tion steers the selection to a large extent (Stanza,
for instance, has an important advantage of being
a convenient pipeline that achieves high perfor-
mance on other tasks, such as dependency pars-
ing).

We also wanted to compare taggers that were
state-of-the-art in the “pre-neural” era7 with the
current ones. The key properties of the taggers are
summarized in Table 2. Note that the classifica-
tion in the “Key method” column is of course very
crude (Flair, for instance, can be labelled as both
neural and CRF).

As can be seen from the table, different tag-
gers use different kinds of additional information.
Hunpos does not take any further input. For Mar-
mot, we plug in Saldo-Morphology (Borin et al.,
2013), a morphological dictionary of 1M words
with a tagset that is similar (but not equivalent)
to the SUC tagset. From previous experiments
we know that using Saldo gives Marmot a boost
when it is applied to texts tagged with the SUC
tagset (i.e. TalbankenSBX in our case). We as-
sume it can also boost performance on Eukalyptus,
since the tagsets are similar, but we do not expect
a boost for UD. For Stanza, we use word2vec em-
beddings8 trained on the CONLL17 corpus (Ze-
man et al., 2017), which was built using the Com-
monCrawl data and contains approximately 3 bil-
lion words for Swedish. One of the main ideas
of Flair is to combine various types of embed-
dings; the best combination we were able to find
was that of the CONLL17 word2vec and Flair’s

7An anonymous reviewer notes that the best label for the
current era is not “neural”, but “post-neural” or “language-
model” era.

8http://vectors.nlpl.eu/repository

own embeddings (trained on Wikipedia/OPUS9,
size is not reported). For KB-Bert10, we used the
bert-base-swedish-cased model, trained
by the Datalab of the National Library of Swe-
den (KB) on 3.5 billion words from the library
collection. The collection contains predominantly
(85%) newspaper texts, but also official reports
from authorities, books, magazines, social me-
dia and Wikipedia. The training and tagging it-
self was done as in (Malmsten et al., 2020), us-
ing the run ner.py script from the Hugging-
face framework11. For Stanza and Flair, we exper-
imented with using different classic and contextu-
alized embeddings, for instance, word2vec trained
on a press corpus (Fallgren et al., 2016) or Bert
instead of Flair’s own embeddings, but the results
were always slightly worse than those we report.

4 Evaluation

We evaluate the taggers on the treebanks along
several dimensions. In the following we report
tagger speed and accuracy. We also explore un-
seen words, specific tags that seem more difficult
to get right, as well as an ensemble approach.

4.1 Speed
We trained the neural taggers on GPU (on CPU the
training time is prohibitively long) and the non-
neural ones on CPU. This means the time mea-
surements are not directly comparable, and we
thus do not report detailed quantitative results, but
the qualitative picture is very clear. For Hunpos,
the training on one fold takes about a second, so
does tagging. For Marmot, training takes about 1.5
minutes, tagging about 10 seconds. For Stanza,
training takes about 2 hours, tagging about 8 sec-
onds. For Flair, training takes about 6 hours, tag-
ging about 5 seconds. KB-Bert, however, breaks
the pattern “the better the slower”: training takes
about 3 minutes, tagging takes about 5 seconds.
Note that for the neural taggers the tagging time

9https://github.com/flairNLP/flair/
blob/master/resources/docs/embeddings/
FLAIR_EMBEDDINGS.md

10The script crashes if the dev set contains previously un-
seen tags. To solve this, we replace all such tags with the
tag for adverb (AB for SBX and Eukalyptus, ADV for UD)
when training Bert. This can potentially affect the results, but
the number of such tags is always small (varying from 0 to
10 across various folds), which should only give a negligible
bias against KB-Bert.

11https://github.com/huggingface/
transformers/blob/master/examples/
token-classification
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Embeddings
Name Key method Token Type Dictionary Dev References
KB-Bert Neural KB-BERT - - Yes Malmsten et al. (2020);

Wolf et al. (2020)
Flair Neural Flair Word2vec - Yes Akbik et al. (2019)
Stanza Neural - Word2vec - Yes Qi et al. (2020)
Marmot CRF - - SALDO No Mueller et al. (2013)
Hunpos HMM - - - No Halácsy et al. (2007)

Table 2: Basic info about the taggers. HMM = hidden Markov models, CRF = conditional random fields,
Dev = whether the tagger uses a development set. Type embeddings = “classic” (“static”) embeddings,
token = “contextualized” (“dynamic”).

excludes the time necessary to load models, em-
beddings and all necessary modules. If this is
taken into account, the tagging time becomes con-
siderably longer (for KB-Bert, for instance, about
30 seconds).

4.2 Overall tagging quality
Table 3 shows the accuracy (macroaverage over
5 folds) for the full POS+MSD label. It shows
that KB-Bert achieves the best results, and that the
Talbanken-SBX corpus is easiest to tag, while Eu-
kalyptus has lower results. It is not surprising that
the newer neural models perform the best, while
the older models achieve lower scores. To test
whether differences between the taggers are sig-
nificant, we rank them by performance and then
do pairwise comparisons of adjacent taggers (KB-
Bert and Flair, Flair and Stanza etc.) by running
paired two-tailed t-tests on 15 (3x5) datapoints.
We apply the same procedure to the sentence-
level accuracy (Table 5) and to accuracy on unseen
words (Table 7). All the differences are significant
(p < 0.05 level) and have non-negligible effect
size (Cohen’s d > 0.2). The results remain signif-
icant after applying the Bonferroni correction for
multiple comparisons.

One may wonder if Eukalyptus has more diffi-
cult distinctions, or is more inconsistently anno-
tated. However, it should be noted that the varia-
tion between splits is much larger for Eukalyptus
than for the other two corpora. If we disregard
testing on the blog part (although we still include
it for training) the 4-fold macro average is more
similar to the Talbanken-UD results, although still
lower. However, the standard deviation (SD) is
also still higher than for the other two corpora.
The reason for this may be the distinctiveness of
text types or genres of the Eukalyptus parts.

To check this, we also ran KB-Bert on ran-
domized versions of the three corpora, where sen-
tences are randomly assigned to folds. This means
that the differences are evened out between folds
and that the test data is more similar to the train-
ing data. The results are shown in Table 4. As
we can see, the results between the three corpora
are more similar than for the consecutive splits
(with Eukalyptus even getting better results than
Talbanken-UD). SD between folds is very low, ex-
cept for Talbanken-UD. However, since the ran-
dom assignment of sentences to splits makes tag-
ging easier, all results reported in this paper, ex-
cept for in Table 4, are based on the consecutive
splits, not the random splits.

In Table 5 we look at sentence-level accuracy,
that is the amount of sentences where all words
have the correct tag. The pattern is the same as for
the token-level results in Table 3 regarding which
tagger performs the best, but the distance between
Bert and the other taggers is even greater. How-
ever, the differences between folds are also greater.

4.3 Unseen words
Since training data can never contain all potential
words or word-tag combinations, how well a tag-
ger does on words previously unseen in the train-
ing data (OOV) is important, and often varies be-
tween different methods.

In Table 6 we show the numbers of unseen
words, averaged over the five folds of each corpus.
It is clear that the different folds for Talbanken-
SBX and Talbanken-UD are quite similar, while
there are larger differences between the folds of
Eukalyptus. There, the Wikipedia part has the
largest number of OOV word forms.

Table 7 shows tagging results for unseen words
only. The only notable deviation from the general



TB-SBX TB-UD Euk Euk 4-fold
KB-Bert 97.71 (0.2) 97.28 (0.1) 96.64 (1.1) 97.14 (0.4)
Flair 97.31 (0.2) 96.79 (0.1) 95.88 (1.6) 96.63 (0.5)
Stanza 96.18 (0.3) 95.79 (0.1) 94.64 (1.7) 95.39 (0.8)
Marmot 95.62 (0.4) 94.94 (0.2) 93.75 (2.1) 94.72 (1.0)
Hunpos 93.58 (0.5) 92.85 (0.2) 91.31 (2.5) 92.33 (1.5)

Table 3: 5-fold macroaveraged accuracy for POS+MSD for all three corpora and all five taggers (standard
deviation in parentheses). The final column shows a 4-fold macro average for Eukalyptus, excluding the
blog part for testing.

TB-SBX TB-UD Euk
97.94 (0.05) 97.36 (0.11) 97.42 (0.04)

Table 4: 5-fold macroaveraged accuracy for
POS+MSD for all three corpora using KB-Bert,
where the data has been divided over the folds ran-
domly (SD in parentheses).

TB-SBX TB-UD Euk
KB-Bert 72.69 (4.5) 68.83 (3.4) 59.86 (5.2)
Flair 68.98 (4.9) 64.47 (2.7) 54.15 (5.8)
Stanza 60.10 (5.0) 57.55 (2.8) 46.27 (5.1)
Marmot 55.31 (4.6) 51.11 (2.6) 40.84 (5.2)
Hunpos 45.47 (4.4) 39.99 (2.1) 31.86 (5.4)

Table 5: 5-fold macroaveraged sentence-level ac-
curacy for POS+MSD for all three corpora and all
five taggers (SD in parentheses).

results is that Hunpos does equally well on un-
seen words for all three corpora. Given that Euka-
lyptus exhibits a large variation of unseen words,
we examine the results per split. The results for
the Blog fold are the worst (about 10 points lower
POS+MSD-tagging accuracy on OOV tokens than
the rest of the folds), while the number of OOV
tokens in this fold is relatively low. This indicates
that the unseen words in the blog data are difficult
to tag given the context.

4.4 Difficult categories
If we look at the top-3 and bottom-3 POS tags,
ranked by F1-score, for each fold and each tagger,
we see that for Eukalyptus the worst tags are for-
eign words, interjections and proper nouns. Ad-
verbs and adjectives appear among the bottom 3
once each (over all testfolds and all taggers). For
Talbanken-SBX and Talbanken-UD the bottom is
not as clear. The most frequent in the bottom 3

TB-SBX TB-UD Euk
train 3377 (319) 3246 (257) 4368 (723)
train-dev 3076 (270) 2948 (242) 4065 (717)

Table 6: Average numbers of unseen words for the
5-fold test data sets (SD in parentheses). The train-
dev data was used for training Hunpos and Mar-
mot, while the train data only was used for KB-
Bert, Flair, and Stanza.

TB-SBX TB-UD Euk
KB-Bert 93.31 (0.4) 92.90 (0.4) 91.21 (3.2)
Flair 92.65 (0.6) 92.17 (0.4) 89.36 (3.8)
Stanza 88.65 (1.0) 88.49 (0.6) 85.33 (4.5)
Marmot 87.78 (0.9) 86.96 (0.7) 82.68 (5.8)
Hunpos 82.68 (3.5) 82.68 (3.2) 82.68 (12.6)

Table 7: 5-fold macroaveraged results for
POS+MSD for previously unseen wordforms for
all three corpora and all five taggers (SD in paren-
theses).

for Talbanken-SBX are foreign word, verb parti-
cle and interjection, while proper nouns, posses-
sive wh-pronouns and wh-determiners appear a
few times. Participles and ordinals appear only
once. For Talbanken-UD symbols, subordinating
conjunctions, interjections and proper nouns ap-
pear in the bottom 3 most frequently, while ad-
verbs appear only twice.

Overall, this shows that interjections, foreign
words, and proper nouns are difficult to predict
correctly. This may not be surprising, since these
categories generally apply to words with a high
type count and there are no visible morphologi-
cal cues. Foreign words additionally have a wide
range of syntactic functions. Note that UD has
a feature (MSD-tag) for foreign words, but not a
POS-tag.



Another reason for these categories being dif-
ficult, at least in part, is that they are infrequent.
Let us therefore explore categories with higher
frequencies. Considering that there are generally
around 20,000 tokens in the test sets, we can look
at categories with more than 200 instances in the
test data (ignoring categories with less than 1% of
the test tokens each).

We see that for Eukalyptus, proper nouns, ad-
jectives and adverbs are generally difficult, with
foreign words, conjunctions and nouns also ap-
pearing in the bottom 3 at times. Hunpos seems
to have more problems with nouns, however. Mar-
mot has less difficulties with nouns, instead find-
ing numerals slightly difficult. For Talbanken-
SBX, participles are difficult, as well as proper
nouns, adjectives and adverbs. Bert seems to also
have problems with cardinals, but less with ad-
verbs, while Marmot has less trouble with adjec-
tives. For Talbanken-UD, the most difficult cat-
egories are proper nouns and subjunctions. Ad-
verbs are also difficult for most taggers, although
less so for Hunpos. Auxiliaries are a bit more dif-
ficult for Marmot and Hunpos, while numerals are
bit more difficult for Bert, Flair and Stanza. Alto-
gether, these differences can be exploited, for ex-
ample in an ensemble approach (Section 4.6).

Looking at POS+MSD confusion matrices, we
can see that one of the most frequent confu-
sions (especially for both Talbankens) is that of
singular and plural neuter indefinite nouns (in
both directions). Indefinite singular and plural
forms for Swedish neuter nouns ending in a con-
sonant are syncretic (barn ‘child/children’, hus
‘house/houses’). The problem is exacerbated by
the fact that at least in Talbanken-SBX, there are
many contexts where the number of the noun can-
not actually be inferred (both interpretations are
possible). Such nouns, however, are not annotated
as underspecified for number, but as either sin-
gular or plural, often inconsistently, which makes
learning difficult. One example is shown in the ex-
ample below. Undantag is tagged as plural accord-
ing to the gold data, and as singular by KB-Bert,
and both interpetations are possible.

(1) Undantag:
Exception(s):

periodiskt
periodic

understöd
support

eller
or

därmed jämförlig
comparable

periodisk
periodic

inkomst
income

In Talbanken-UD, a frequent error concerns
confusing verbs and auxiliaries. It seems to be that

the distinction between these two categories is not
entirely consistently annotated in Talbanken-UD.
In the following shortened examples, the gold data
has different annotations for the verb vara ‘be’,
although there is no clear difference between the
two.

(2) Frågan
The question

är [AUX]
is

om
if

man med den konservativa grundsynen kan [...]
one with the conservative basic view can

(3) Frågan
The question

är [VB]
is

om
if

synen på äktenskapet kan [...]
the view of marriage can [...]

An issue particular to Eukalyptus is confusing
symbols and punctuation. They are considered
the same POS category, but two different MSD
tags. This is not very surprising and seems to
emerge from the amount of smileys in the blog
fold. The result is a frequent mistagging of sym-
bols as punctuation in the blog fold, and several
cases of mistagging punctuation as symbols in the
other folds, in particular in the novels. Many of
the latter cases are quotation dashes, indicating a
character’s speech. This method of marking direct
speech is uncommon in the other types of texts.

4.5 What makes a tag difficult: quantitative
analysis

We also perform a systematic statistical analysis of
the factors which can potentially affect tagger per-
formance. More specifically, we attempt to iden-
tify which properties make a tag difficult.

For every corpus, we concatenate all five test
sets (i.e. microaverage across folds), and measure
the following for every POS+MSD tag:

• the accuracy of every tagger on this tag;
• the frequency. The prediction is that frequent

tags are easier to identify;
• type-token ratio (TTR) of tokens that have

this tag. The prediction is that high TTR will
make the tag more difficult to identify, cf.
Section 4.4. TTR is strongly dependent on
the sample size (less frequent tags are more
likely to have higher TTR), but we judge that
in this case, no correction is necessary;

• average “difficulty” of tokens that have this
tag. This is done in two steps. First, we
go through all tokens in the dataset, calculate
the probability distribution of tags for every
token and then the Shannon entropy of this



Predictor Average (%) SD Significance
Frequency 0.003 0.0006 10/15
TTR -85.2 6.4 15/15
Tag-by-token entropy -27.0 7.4 15/15
Tag-by-ending entropy 6.8 3.1 10/15

Table 8: Summary of the regression models: average slope values and SD across all 15 models. Signifi-
cance shows in how many of the models the predictor is significant at 0.05 level.

distribution. The entropy shows for every to-
ken how difficult it is to guess its tag and
thus serves as a measure of “token difficulty”.
At the second step, when analyzing a par-
ticular tag, we weigh the associated entropy
by the relative frequency for every token that
has this tag. We then sum the weighted val-
ues. The result (average conditional entropy)
is meant to gauge how difficult on average the
tokens that have the particular tag are;

• average “difficulty” of token endings (aver-
age entropy of tag conditioned on token end-
ing). The procedure is exactly the same as
for tokens, but instead of the whole token we
are using its ending, which is typically the
main grammatical marker in Swedish. For
instance, -er can mark a present-tense verb
or an indefinite plural noun. We are using the
last two characters of the token as the ending
(or the whole token if it’s shorter than two
characters).

We fit a linear regression model with accuracy
as the dependent variable (measured as percent-
age, i.e. on the 0–100 scale) and the four pre-
dictors described above as independent variables.
We fit a separate model for every tagger and every
corpus, i.e. 15 models in total. For all corpora,
the collinearity of the predictors is very mild (the
condition number varies from 8.2 to 9.5) and thus
acceptable (Baayen, 2008, p. 181–182).

We summarize the results of the 15 models in
Table 8. The results are very similar across cor-
pora and folds for TTR and tag-by-token entropy,
less so for frequency and tag-by-ending entropy.
All models have high goodness-of-fit: the average
multiple R2 is 0.65, SD is 0.05.

In general, the first three predictions are borne
out. On average, the increase in frequency by 1
token is expected to result in the increase in the tag
accuracy by 0.003%. Frequency ranges from 1 to
11,000, which means that theoretically, the largest
expected increase can be 33%.

The increase in tag-by-token entropy by 1 (note
that this is a very large increase: entropy varies
from 0 to 1.86 in our sample) is expected to de-
crease accuracy by 27%. The increase in TTR
by 1 is expected to decrease accuracy by 85.2%
(note that TTR cannot actually be larger than 1).
TTR that is close to 0 is typical for tags that are
assigned to a very small closed class of frequent
tokens (e.g. punctuation marks). TTR of 1, on the
contrary, can be achieved by tags that occur with
(a few) very infrequent tokens (this is often a result
of misannotation, or some very infrequent form or
usage).

Surprisingly, the average conditional entropy of
the tag given the ending goes directly against the
prediction, yielding a positive effect (though small
and not always significant). We cannot explain this
effect. Our best guess is that high tag-by-ending
entropy is correlated with some other properties
that facilitate accurate tagging.

4.6 Ensemble
We tested whether combining the output of the five
taggers may yield improved performance. In the-
ory, it should be possible, since the proportion of
cases where at least one of the taggers outputs a
correct tag is higher than the accuracy of any indi-
vidual tagger (see Table 9, row “Ceiling”).

We tried simple voting and a naive Bayes classi-
fier (as implemented in the NBayes Ruby gem 12).
In both methods, the taggers are ordered by perfor-
mance in descending order. In simple voting, each
tagger gets one vote. In case of a tie, the vote that
has come first wins. The naive Bayes classifier has
to be trained. For that, we split the test set in each
fold of each corpus into a training set (75%) and a
test set (25%). What the classifier learns is how to
match the input string (the token and the tags pro-
posed by each tagger) with the label (which tagger
makes the correct guess). If several taggers make
a correct guess, the first one of those is chosen. If

12https://github.com/oasic/nbayes

https://github.com/oasic/nbayes


Method TB-SBX TB-UD Euk
Ceiling 99.16 (0.1) 98.78 (0.4) 98.26 (1.5)
KB-Bert 97.65 (0.3) 97.35 (0.6) 96.72 (1.6)
Voting 97.50 (0.1) 97.12 (1.0) 96.38 (2.2)
Bayes 97.65 (0.2) 97.41 (0.5) 96.75 (1.6)
Voting-fast 96.96 (0.3) 96.69 (0.7) 95.91 (1.8)
Bayes-fast 97.67 (0.3) 97.37 (0.6) 96.76 (1.7)

Table 9: Results of ensemble methods with comparison to the potential ceiling (at least one of the taggers
guessed right) and the best single tagger (macroaveraged accuracy across all folds, SD in parentheses).

no taggers make a correct guess, KB-Bert is cho-
sen by default. Changing this method (e.g. using
only the tags as the input string) leads to slightly
worse performance. Both voting and the classifier
are then tested on the test set. Since Stanza and
Flair are slow at training time, we also try a com-
bination of the “fast” taggers: KB-Bert, Marmot
and Hunpos.

The results are summarized in Table 9. Sim-
ple voting always performs worse than the best
single tagger, but naive Bayes performs slightly
better. For Talbanken-SBX and Eukalyptus, the
best performance is achieved when the classifier
is trained on the output of fast taggers only, while
for Talbanken-UD the full training set yields better
results. All differences are, however, very small.
The difference between KB-Bert and Bayes is not
significant (t(14) = -1.1, p = 0.28, d = -0.03), nor is
the one between KB-Bert and Bayes-fast (t(14) = -
1.6, p = 0.12, d = -0.03), no correction for multiple
comparisons.

A possible avenue for future research would be
to use other recently developed ensemble meth-
ods, as for instance Bohnet et al. (2018); Stoeckel
et al. (2020).

5 Conclusions

We applied five taggers to three important Swedish
corpora. The corpora are of comparable size and
have different tagsets. Two of them consist of vir-
tually the same texts, but are not entirely parallel.

We show that the three neural taggers outper-
form the two pre-neural (HMM and CRF) ones
when it comes to tagging quality, but are signif-
icantly slower. KB-Bert, however, while always
yielding the highest accuracy, is also the fastest of
the neural taggers, and its speed on GPU is com-
parable with that of the pre-neural taggers.

Token-level accuracy of KB-Bert (97.2 on av-
erage across corpora) is very high, and is decent

also for OOV tokens (92.5). If we apply sentence-
level accuracy, a less forgiving measure (Manning,
2011), we can see that there is actually much room
for improvement (67.1).

The success of the taggers depends to a large
extent on the additional data (embeddings, mor-
phological dictionaries) that they receive as input,
of which token embeddings (a.k.a. contextualized
or dynamic) seem to be the most powerful ones. It
is reasonable to assume that it is also important on
which corpus the embeddings were trained. The
size of this corpora is comparable for all neural
taggers, but KB-Bert’s is likely to be the most bal-
anced one.

The results vary across corpora/tagsets. If we
use consecutive splits, TalbankenSBX always has
the highest annotation accuracy and Eukalyptus
the lowest one. The reason for that is that the
two Talbankens are more homogeneous (contain
only professional prose texts), while Eukalyptus
contains texts from five different domains, one of
which (blogs) is notoriously difficult. The reason
for TalbankenSBX yielding better results than Tal-
bankenUD is probably the less fine-grained tagset,
but possibly also more consistent annotation. If,
however, we use random splits, the accuracy for
Eukalyptus goes up, surpassing the one for Tal-
bankenUD.

Manual error analysis suggests that a high type
count, absence of morphological cues, a wide
range of syntactic functions, and low frequency
make tags more difficult. Inconsistent annota-
tion (which is very difficult to avoid in border-
line cases) also seems to play an important role.
We also perform a statistical analysis of the fac-
tors that can potentially affect how difficult the
POS+MSD tags are. The regression model shows
that type-token ratio within tag and average “diffi-
culty” of tokens within tag (measured as entropy
of guessing the tag given the token) have con-



sistently significant and very strong negative ef-
fects on the accuracy. Tag frequency has a pos-
itive (though not always significant) effect. Sur-
prisingly, so does the average “difficulty” of token
endings within tag (though the effect is small and
not always significant). The results of the statis-
tical analysis partly support the predictions done
on the basis of the manual one. In general, this is
a promising research avenue which deserves more
systematic attention.

Finally, we test whether the tagger outputs can
be combined using ensemble methods, since in
theory, there clearly is a potential for that. In prac-
tice, it turns out that using a naive Bayes classifier
it is possible to achieve a very small improvement
over the best-performing tagger, but the difference
is not statistically significant.

The data and scripts that are necessary to re-
produce the regression analysis and the ensemble
methods are available as supplementary materi-
als13.
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