
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5717–5726

June 6–11, 2021. ©2021 Association for Computational Linguistics

5717

SGG: Learning to Select, Guide, and Generate
for Keyphrase Generation

Jing Zhao, Junwei Bao, Yifan Wang, Youzheng Wu, Xiaodong He, Bowen Zhou
JD AI Research

{zhaojing857,baojunwei,wangyifan15,wuyouzheng1}@jd.com
{xiaodong.he,bowen.zhou}@jd.com

Abstract

Keyphrases, that concisely summarize the
high-level topics discussed in a document, can
be categorized into present keyphrase which
explicitly appears in the source text, and ab-
sent keyphrase which does not match any con-
tiguous subsequence but is highly semantically
related to the source. Most existing keyphrase
generation approaches synchronously gener-
ate present and absent keyphrases without ex-
plicitly distinguishing these two categories. In
this paper, a Select-Guide-Generate (SGG) ap-
proach is proposed to deal with present and
absent keyphrase generation separately with
different mechanisms. Specifically, SGG is
a hierarchical neural network which consists
of a pointing-based selector at low layer con-
centrated on present keyphrase generation, a
selection-guided generator at high layer ded-
icated to absent keyphrase generation, and
a guider in the middle to transfer informa-
tion from selector to generator. Experimen-
tal results on four keyphrase generation bench-
marks demonstrate the effectiveness of our
model, which significantly outperforms the
strong baselines for both present and absent
keyphrases generation. Furthermore, we ex-
tend SGG to a title generation task which indi-
cates its extensibility in natural language gen-
eration tasks.

1 Introduction

Automatic keyphrase prediction recommends a set
of representative phrases that are related to the
main topics discussed in a document (Liu et al.,
2009). Since keyphrases can provide a high-level
topic description of a document, they are beneficial
for a wide range of natural language processing
(NLP) tasks, such as information extraction (Wan
and Xiao, 2008), text summarization (Wang and
Cardie, 2013) and question generation (Subrama-
nian et al., 2018).

<title> enhancing product recommender systems on sparse binary data </title>

<abstract>… rank the recommendations online for the customer . the second
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methods including dependency networks …</abstract>
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Figure 1: An example of keyphrase prediction by SGG.

Existing methods for keyphrase prediction can
be categorized into extraction and generation ap-
proaches. Specifically, keyphrase extraction meth-
ods identify important consecutive words from
a given document as keyphrases, which means
that the extracted keyphrases (denoted as present
keyphrases) must exactly come from the given doc-
ument. However, some keyphrases (denoted as
absent keyphrases) of a given document do not
match any contiguous subsequence but are highly
semantically related to the source text. The extrac-
tion methods fail to predict these absent keyphrases.
Therefore, generation methods have been proposed
to produce a keyphrase verbatim from a prede-
fined vocabulary, no matter whether the gener-
ated keyphrase appears in the source text. Com-
pared with conventional extraction methods, gener-
ation methods have the ability of generating absent
keyphrases as well as present keyphrases.

CopyRNN (Meng et al., 2017) is the first to em-
ploy the sequence-to-sequence (Seq2Seq) frame-
work (Sutskever et al., 2014) with the copying
mechanism (Gu et al., 2016) to generate keyphrases
for the given documents. Following the Copy-
RNN, several Seq2Seq-based keyphrase genera-
tion approaches have been proposed to improve
the generation performance (Chen et al., 2018;
Ye and Wang, 2018; Chen et al., 2019; Zhao
and Zhang, 2019; Wang et al., 2019; Yuan et al.,
2020). All these existing methods generate present
and absent keyphrases synchronously without ex-
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Training(%)
Test(%)

Inspec Krapivin NUS SemEval
49.79 13.12 11.74 11.30 11.25

Table 1: Proportions of absent keyphrases in training
set and predictions of CopyRNN on four commonly
used datasets, where top-10 predictions are considered.

plicitly distinguishing these two different cate-
gories of keyphrases, which leads to two problems:
(1) They complicate the identification of present
keyphrases. Specifically, they search for words
over the entire predefined vocabulary containing
a vast amount of words (e.g., 50,000 words) to
generate a present keyphrase verbatim, which is
overparameterized since a present keyphrase can
be simply selected from a continuous subsequence
of the source text containing limited words (e.g.,
less than 400 words). (2) They weaken the gen-
eration of absent keyphrases. Existing models for
absent keyphrase generation are usually trained on
datasets mixed with a large proportion of present
keyphrases. Table 1 shows that nearly half of the
training data are present keyphrases, which leads to
the extremely low proportions of absent keyphrases
generated by such a model, i.e., CopyRNN. The
above observation demonstrates that these methods
are biased towards replicating words from source
text for present keyphrase generation, which will
inevitably affect the performance on generating
absent keyphrases.

To address the aforementioned problems, we
propose a Select-Guide-Generate (SGG) approach,
which deals with present and absent keyphrase gen-
eration separately with different stages based on
different mechanisms. Figure 1 illustrates an ex-
ample of keyphrase prediction by SGG. The mo-
tivation behind is to solve keyphrase generation
problem from selecting to generating, and use the
selected results to guide the generation. Specifi-
cally, our SGG is implemented with a hierarchical
neural network which performs Seq2Seq learning
by applying a multi-task learning strategy. This net-
work consists of a selector at low layer, a generator
at high layer, and a guider at middle layer for in-
formation transfer. The selector generates present
keyphrases through a pointing mechanism (Vinyals
et al., 2015), which adopts attention distributions
to select a sequence of words from the source text
as output. The generator further generates the
absent keyphrases through a pointing-generating
(PG) mechanism (See et al., 2017). Since present

keyphrases have already been generated by the se-
lector, they should not be generated again by the
generator. Therefore, a guider is designed to mem-
orize the generated present keyphrases from the
selector, and then fed into the attention module of
the generator to constrain it to focus on generat-
ing absent keyphrases. We summarize our main
contributions as follows:

• We propose a SGG approach which models
present and absent keyphrase generation sep-
arately in different stages, i.e., select, guide, and
generate, without sacrificing the end-to-end train-
ing through back-propagation.

• Extensive experiments are conducted to verify
the effectiveness of our model, which not only
improves present keyphrase generation but also
dramatically boosts the performance of absent
keyphrase generation.

• Furthermore, we adopt SGG to a title genera-
tion task, and the experiment results indicate the
extensibility and effectiveness of our SGG ap-
proach on generation tasks.

2 Related Work

As mentioned in Section 1, the extraction and gener-
ation methods are two different research directions
in the field of keyphrase prediction. The existing
extraction methods can be broadly classified into
supervised and unsupervised approaches. The su-
pervised approaches treat keyphrase extraction as
a binary classification task, which train the models
with the features of labeled keyphrases to determine
whether a candidate phrase is a keyphrase (Witten
et al., 1999; Medelyan et al., 2009; Gollapalli et al.,
2017). In contrast, the unsupervised approaches
treat keyphrase extraction as a ranking task, scor-
ing each candidate using some different ranking
metrics, such as clustering (Liu et al., 2009), or
graph-based ranking (Mihalcea and Tarau, 2004;
Wang et al., 2014; Gollapalli and Caragea, 2014;
Zhang et al., 2017).

This work is mainly related to keyphrase gener-
ation approaches which have demonstrated good
performance on keyphrase prediction task. Follow-
ing CopyRNN (Meng et al., 2017), several exten-
sions have been proposed to boost the generation
capability. In CopyRNN, model training heavily re-
lies on large amount of labeled data, which is often
unavailable especially for the new domains. To ad-
dress this problem, Ye and Wang (2018) proposed
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a semi-supervised keyphrase generation model that
utilizes both abundant unlabeled data and limited
labeled data. CopyRNN uses the concatenation
of article title and abstract as input, ignoring the
leading role of the title. To address this deficiency,
Chen et al. (2019) proposed a title-guided Seq2Seq
network to sufficiently utilize the already summa-
rized information in title. In addition, some re-
search attempts to introduce external knowledge
into keyphrase generation, such as syntactic con-
straints (Zhao and Zhang, 2019) and latent topics
(Wang et al., 2019).

These approaches do not consider the one-to-
many relationship between the input text and tar-
get keyphrases, and thus fail to model the corre-
lation among the multiple target keyphrases. To
overcome this drawback, Chen et al. (2018) in-
corporated the review mechanism into keyphrase
generation and proposed a model CorrRNN with
correlation constraints. Similarly, SGG separately
models one-to-many relationship between the input
text and present keyphrases and absent keyphrases.
To avoid generating duplicate keyphrases, Chen
et al. (2020) proposed an exclusive hierarchical de-
coding framework that includes a hierarchical de-
coding process and either a soft or a hard exclusion
mechanism. For the same purpose, our method
deploys a guider to avoid the generator generat-
ing duplicate present keyphrases. Last but most
important, all these methods do not consider the
difference between present and absent keyphrases.
We are the first to discriminately treat present and
absent keyphrases in keyphrase generation task.

3 Methodology

3.1 Problem Definition

Given a dataset including K data samples, where
the j-th data item 〈x(j), y(j,p), y(j,a)〉 consists of
a source text x(j), a set of present keyphrases
y(j,p) and a set of absent keyphrases y(j,a). Dif-
ferent from CopyRNN (Meng et al., 2017) split-
ting each data item into multiple training exam-
ples, each of which contains only one keyphrase
as target, we regard each data item as one training
example by concatenating its present keyphrases
as one target and absent keyphrases as another one.
Specifically, assume that the j-th data item con-
sists of m present keyphrases {y(j,p)1 , ..., y

(j,p)
m }

and n absent keyphrases {y(j,a)1 , ..., y
(j,a)
n }, the

target present keyphrases y(j,p) and target absent

keyphrases y(j,a) are represented as:

y(j,p) = y
(j,p)
1 || y(j,p)2 || ... || y(j,p)m

y(j,a) = y
(j,a)
1 || y(j,a)2 || ... || y(j,a)n

where || is a special splitter to separate the
keyphrases. We then get the source text x(j), the
present keyphrases y(j,p) and the absent keyphrases
y(j,a) all as word sequences. Under this set-
ting, our model is capable of generating multiple
keyphrases in one sequence as well as capturing
the mutual relations between these keyphrases. A
keyphrase generation model is to learn the mapping
from the source text x(j) to the target keyphrases
(y(j,p), y(j,a)). For simplicity, (x, yp, ya) is used to
denote each item in the rest of this paper, where
x denotes a source text sequence, yp denotes its
present keyphrase sequence and ya denotes its ab-
sent keyphrase sequence.

3.2 Model Overview
The architecture of our proposed Select-Guide-
Generate (SGG) approach is illustrated in Fig-
ure 2. Our model is the extension of Seq2Seq
framework which consists of a text encoder, a
selector, a guider, and a generator. The text
encoder converts the source text x into a set of
hidden representation vectors {hi}Li=1 with a bi-
directional Long Short-term Memory Network
(bi-LSTM) (Hochreiter and Schmidhuber, 1997),
where L is the length of source text sequence. The
selector is a uni-directional LSTM, which predicts
the present keyphrase sequence yp based on the
attention distribution over source words. After se-
lecting present keyphrases, a guider is produced by
a guider to memorize the prediction information of
the selector, and then fed to the attention module
of a generator to adjust the information it pays at-
tention to. The selection-guided generator is also
implemented as a uni-directional LSTM, which
produces the absent keyphrase sequence ya based
on two distributions over predefined-vocabulary
and source words, respectively. At the same time,
a soft switch gate pgen is employed as a trade-off
between the above two distributions.

3.3 Text Encoder
The goal of a text encoder is to provide a series of
dense representations {hi}Li=1 of the source text.
In our model, the text encoder is implemented as
a bi-LSTM (Hochreiter and Schmidhuber, 1997)
which reads an input sequence x = {xi}Li=1 from
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Figure 2: The architecture of the proposed SGG which
is implemented with a hierarchical neural network.

two directions and outputs a sequence of forward
hidden states {

−→
hi}Li=1 and backward hidden states

{
←−
hi}Li=1 by iterating the following equations:

−→
hi = LSTM(xi,hi−1) (1)
←−
hi = LSTM(xi,hi+1) (2)

The final hidden representation hi of the i-th source
word is the concatenation of forward and backward
hidden states, i.e., hi = [

−→
hi;
←−
hi].

3.4 Selector

A selector is designed to generate present
keyphrase sequences through the pointer mecha-
nism (Vinyals et al., 2015), which adopts the at-
tention distribution as a pointer to select words
from the source text as output. Specifically, given
source text sequence x and previously generated
words {yp1 , ..., y

p
t−1}, the probability distribution of

predicting next word ypt in present keyphrases is:

P(ypt | y
p
<t, x) = αp,t = softmax(up,t) (3)

up,ti = VT
p tanh(Wp[s

p
t ;hi] + bp) (4)

where αp,t is the attention (Bahdanau et al., 2015)
distribution at decoding time step t, i ∈ (1, ..., L),
and Vp, Wp and bp are trainable parameters of
the model. up,t can be viewed as the degree of
matching between input at position i and output at

position t. spt represents the hidden state at deciding
time step t, and is updated by equation:

spt = LSTM(ypt−1, s
p
t−1, c

p
t−1) (5)

where context vector cpt−1 =
∑L

i=1 α
p,t−1
i hi is the

weighted sum of source hidden states.

3.5 Guider
A guider is designed to fully utilize the attention
information of the selector to guide the generator
on absent keyphrase generation. The idea behind is
to utilize a guider r to softly indicate which words
in source text have been generated by the selector.
This is important for helping the generator to focus
on generating the absent keyphrases. Specifically,
r is constructed through the accumulation of the
attention distributions over all decoding time steps
of the selector, computed as:

r =

M∑
t=1

αp,t (6)

where M is the length of present keyphrase se-
quence. r is an unnormalized distribution over the
source words. As the attention distribution of selec-
tor is equal to the probability distribution over the
source words, r represents the possibility that these
words have been generated by the selector. The
calculation of guider is inspired by the coverage
vector (Tu et al., 2016) that is sequentially updated
during the decoding process. In contrast to this, the
guider here is a static vector which is capable of
memorizing a global information.

3.6 Selection-Guided Generator
A generator aims to predict an absent keyphrase se-
quence based on the guidance of the selection infor-
mation from the guider. Unlike present keyphrases,
most words in absent keyphrases do not appear in
source text. Therefore, the generator generates ab-
sent keyphrases by picking up words from both a
predefined large scale vocabulary and the source
text (See et al., 2017; Gu et al., 2016). The prob-
ability distribution of predicting next word yat in
absent keyphrases is defined as:

P(yat | ya<t, x)

= pgenPvocab(yat ) + (1− pgen)
∑

i:yat =xi

αa,t
i

(7)

where Pvocab is the probability distribution over the
predefined vocabulary, which is zero if yat is an out-
of-vocabulary (OOV) word. Similarly, if yat does
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not appear in the source text, then
∑

i:yat =xi
αa,t
i is

zero. Pvocab is computed as:

Pvocab(yat ) = softmax(W[sat ; c
a
t ] + b) (8)

where W and b are learnable parameters, sat is
the hidden state of generator, and cat is the context
vector for generating absent keyphrase sequence,
computed by the following equations:

cat =
L∑
i=1

αa,t
i hi (9)

αa,t = softmax(ua,t) (10)

ua,ti = VT
a tanh(Wa[s

a
t ;hi; r] + ba) (11)

where Va, Wa and ba are learnable parameters. r
is a vector produced by the guider. The generation
probability pgen at time step t is computed as:

pgen = σ(Wgen[c
a
t ; s

a
t ; emb(y

a
t−1)]+bgen) (12)

where Wgen and bgen are learnable parameters,
σ(·) represents a sigmoid function and emb(yat−1)
is the embedding of yat−1. In addition, pgen in
formula (7) is used as a soft switch to choose ei-
ther generating words over vocabulary or copying
words from source text based on distribution αa,t.

3.7 Training
Given the set of data pairs {x(j), y(j,p), y(j,a)}Kj=1,
the loss function of the keyphrase generation con-
sists of two parts of cross entropy losses:

Lp(θ) = −
K∑
j=1

M∑
i=1

log(P(y(j,p)i |x(j); θ)) (13)

La(θ) = −
K∑
j=1

N∑
i=1

log(P(y(j,a)i |x(j); θ)) (14)

where Lp and La are the losses of generating
present and absent keyphrases, respectively. N
is the word sequence length of absent keyphrases,
and θ are the parameters in our model. The training
objective is to jointly minimize the two losses:

L = Lp + La. (15)

4 Experiment

4.1 Dataset
We use the dataset collected by Meng et al. (2017)
from various online digital libraries, which con-
tains approximately 570K samples, each of which

contains a title and an abstract of a scientific publi-
cation as source text, and author-assigned keywords
as target keyphrases. We randomly select the exam-
ple which contains at least one present keyphrase
to construct the training set. Then, a validation
set containing 500 samples will be selected from
the remaining examples. In order to evaluate our
proposed model comprehensively, we test models
on four widely used public datasets from the scien-
tific domain, namely Inspec (Hulth and Megyesi,
2006), Krapivin (Krapivin et al., 2009), SemEval-
2010 (Kim et al., 2010) and NUS (Nguyen and
Kan, 2007), the statistic information of which are
summarized in Table 2.

Dataset #Abs #PKPs #AKPs

Test

Inspec 500 3,654 1,349

Krapivin 400 1,299 1,040

NUS 211 1,333 1,128

SemEval 100 625 841

Validation 500 1,158 1,418

Training 453,757 1,082,285 1,073,404

Table 2: Statistics of the dataset. #Abs, #PKPs, #AKPs
denote the number of abstracts, present keyphrases, and
absent keyphrases, respectively.

4.2 Baselines and Evaluation Metrics

For present keyphrase prediction, we compare our
model with both extraction and generation ap-
proaches. Extraction approaches include two un-
supervised extraction methods: TF-IDF, TextRank
(Mihalcea and Tarau, 2004) and one classic super-
vised extraction method KEA (Witten et al., 1999).
For the generation baselines, some models, such
as CopyRNN, split each data item into multiple
training examples, each of which only contains
one keyphrase, while the other models concatenate
all keyphrases as target. To simplicity, the pattern
of training model only with one keyphrase is de-
noted as one-to-one and with the concatenation of
all keyphrases as one-to-many. The generation
baselines are the following state-of-the-art encoder-
decoder models:

• CopyRNN(one-to-one) (Meng et al., 2017) rep-
resents a RNN-based encoder-decoder model in-
corporating the copying mechanism.

• CopyTrans(one-to-many) is a transformer-
based (Vaswani et al., 2017) encoder-decoder
model incorporating the copying mechanism.
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Method Inspec Krapivin NUS SemEval
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

TF-IDF 22.1 31.3 12.9 16.0 13.6 18.4 12.8 19.4
TextRank 22.3 28.1 18.9 16.2 19.5 19.6 17.6 18.7

KEA 9.8 12.6 11.0 15.2 6.9 8.4 2.5 2.6

CopyRNN 27.8 34.2 31.1 26.6 33.4 32.6 29.3 30.4
CopyTrans† 21.1 16.2 26.4 20.5 35.1 28.2 29.5 26.3
CorrRNN – – 31.8 27.8 35.8 33.0 32.0 32.0

CatSeq 29.0 30.0 30.7 27.4 35.9 34.9 30.2 30.6

SGG 30.6 35.9 28.8 25.3 36.3 35.8 33.8 33.6

Table 3: F1@5/10 results of predicting present keyphrases of different models on four datasets. The best and
second best performance in each column are highlighted with bold and underline respectively. † indicates that the
model is reimplemented.

Method Inspec Krapivin NUS SemEval

CopyRNN 10.0 20.2 11.6 6.7
CopyTrans† 5.6 16.9 8.9 4.1
CorrRNN† 8.5 15.2 8.0 3.5

CatSeq 2.9 7.4 3.1 2.5

SGG 11.0 23.5 12.4 4.9

Table 4: Recall@50 results of predicting absent
keyphrases of different models on four datasets. The
CorrRNN is retrained following the implementation de-
tails in Chen et al. (2018) as they did not report the Re-
call@50 results.

• CorrRNN(one-to-many) (Chen et al., 2018) is
an extension of CopyRNN incorporating the cov-
erage mechanism (Tu et al., 2016).

• CatSeq(one-to-many) (Yuan et al., 2020) has
the same model structure as CopyRNN. The dif-
ference is CatSeq is trained by one-to-many.

The baseline CopyTrans has not been reported in
existing papers and thus is retrained. The imple-
mentation of Transformer is base on open source
tool OpenNMT 1. For our experiments of absent
keyphrase generation, only generation methods are
chosen as baselines. The copying mechanism used
in all reimplemented generation models is based on
the version (See et al., 2017), which is slightly dif-
ferent from the implementations by version (Meng
et al., 2017; Gu et al., 2016). SGG indicates the
full version of our proposed model, which contains
a selector, a guider, and a generator. Note that SGG
is also trained under one-to-many pattern.

Same as CopyRNN, we adopt top-N macro-
averaged F-measure (F1) and recall as our evalua-

1https://github.com/OpenNMT/OpenNMT-py

tion metrics for the present and absent keyphrases
respectively. The choice of larger N (i.e., 50 v.s. 5
and 10) for absent keyphrase is due to the fact that
absent keyphrases are more difficult to be generated
than present keyphrases. For present keyphrase
evaluation, exact match is used for determining
whether the predictions are correct. For absent
keyphrase evaluation, Porter Stemmer is used to
stem all the words in order to remove words’ suffix
before comparisons.

4.3 Implementation Details

We set maximal length of source sequence as
400, 25 for target sequence of selector and gen-
erator, and 50 for the decoders of all generation
baselines. We choose the top 50,000 frequently-
occurred words as our vocabulary. The dimension
of the word embedding is 128. The dimension
of hidden state in encoder, selector and generator
is 512. The word embedding is randomly initial-
ized and learned during training. We initialize the
parameters of models with uniform distribution
in [-0.2,0.2]. The model is optimized using Ada-
grad (Duchi et al., 2011) with learning rate = 0.15,
initial accumulator = 0.1 and maximal gradient nor-
malization = 2. In the inference process, we use
beam search to generate diverse keyphrases and the
beam size is 200 same as baselines. All the models
are trained on a single Tesla P40.

4.4 Results and Analysis

In this section, we present the results of present
and absent keyphrase generation separately. The
results of predicting present keyphrases are shown
in Table 3, in which the F1 at top-5 and top-10 pre-
dictions are given. We first compare our proposed
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Method Inspec Krapivin NUS SemEval
CopyRNN 13.12 11.74 11.30 11.25

SGG 79.16 79.28 76.02 79.20

Table 5: Proportion of absent keyphrases in the predic-
tions of CopyRNN and generator. The proportion of
CopyRNN is same as Table 1.

model with the conventional keyphrase extraction
methods. The results show that our model performs
better than extraction methods with a large margin,
demonstrating the potential of the Seq2Seq-based
generation models in automatic keyphrase extrac-
tion task. We then compare our model with the
generation baselines, and the results indicate that
our model still outperforms these baselines signifi-
cantly. The better performance of SGG illustrates
the pointing based selector is sufficient and more
effective to generate present keyphrase.

We further analyze the experimental results of
absent keyphrase generation. Table 4 presents
the recall results of the generation baselines and
our model on four datasets. It can be observed
that our model significantly improves the perfor-
mance of absent keyphrase generation, compared
to the generation baselines. This is because SGG is
equipped with a generator that is not biased to gen-
erate present keyphrases and the designed guider
in SGG further guides the generator to focus on
generating absent keyphrases. Table 5 shows the
proportion of absent keyphrases generated by SGG.
The comparison of Table 1 and 5 demonstrates that
our model have the ability to generate large por-
tions of absent keyphrases rather than tending to
generate present keyphrases.

In addition, an interesting phenomenon can be
found from the results of CopyRNN and CatSeq
that one-to-one pattern generally performs better
than one-to-many if under the same model struc-
ture in absent keyphrase generation. To explore
this phenomenon, we use the same code, same
training set to retrain CopyRNN under one-to-one
and one-to-many patterns, and the test results show
that one-to-one could boost the performance in ab-
sent keyphrase generation. However, SGG cannot
be trained under one-to-one pattern as the core of
guider in SGG is to memory all present keyphrases.
Even so, SGG still has better performance than
CopyRNN. The results of SGG achieve 1.6% aver-
age gain than CopyRNN and 31.8% average gain
than the best-performing results of one-to-many
baselines over four test sets.

4.5 SGG for Title Generation
In this section, we explore the extensibility of
SGG in other natural language generation (NLG)
tasks, i.e., title generation. We adopt the same
dataset described in Section 4.1 for title genera-
tion, which contains abstracts, present keyphrases,
absent keyphrases, and titles. Specifically, a title
generation model takes an abstract as input and
generates a title as output. To train SGG model for
title generation, present keyphrases appearing in
the titles are used as labels to train the selectors2,
and the titles are used to train the generators. The
idea behind is to utilize the present keyphrase gen-
eration as an auxiliary task to help the main title
generation task. In order to evaluate SGG on ti-
tle generation, we choose models CopyTrans and
pointer-generator (PG-Net) (See et al., 2017) as
baselines. We use ROUGE-1 (unigram), ROUGE-
2 (bi-gram), ROUGE-L (LCS) and human evalua-
tion as evaluation metrics. For human evaluation,
we randomly selects 100 abstracts for each test set,
then distribute them to four people on average. The
evaluation standard is the fluency of generated title
and whether it correctly provides the core topics of
an abstract.

Inspec RG-1 RG-2 RG-L Human
CopyTrans 83.58 43.81 45.25 74/100

PG-Net 83.03 43.44 45.20 77/100

SGG 84.25 44.98 46.87 83/100

Krapivin RG-1 RG-2 RG-L Human
CopyTrans 84.23 50.01 50.63 89/100

PG-Net 84.75 50.82 51.48 87/100

SGG 84.96 51.35 52.34 90/100

NUS RG-1 RG-2 RG-L Human
CopyTrans 86.76 54.90 52.49 82/100

PG-Net 86.59 52.59 50.61 79/100

SGG 87.01 54.90 52.57 89/100

SemEval RG-1 RG-2 RG-L Human
CopyTrans 86.92 55.10 53.05 82/100

PG-Net 86.68 50.16 51.31 78/100

SGG 87.54 53.38 53.55 84/100

Table 6: Results of title generation of various models
on four datasets.

The results of title generation are shown in Ta-
ble 6, from which we observe that our proposed

2The present keyphrase information used for training SGG
is not used during inference. Datasets without given present
keyphrases should consider to conduct labeling.
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Dataset Absent keyphrase generation Title generation
Recall@50 RG-1 RG-2 RG-L BLEU-4

Inspec 8.6(-2.4) 83.51(-0.74) 44.40(-0.58) 45.80(-1.07) 11.02(+0.41)

Krapivin 23.2(-0.3) 84.56(-0.40) 50.56(-0.79) 50.87(-0.48) 11.46(-1.38)

Table 7: Results of SG on absent keyphrase generation and title generation tasks. (±) indicates the comparison of
the results of SG and SGG. The results of SGG please refer to Table 4 and Table 6.

model SGG achieves better performance than the
strong baselines on all datasets, proving that SGG
could be directly applied to title generation task
and still keep highly effective.
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Figure 3: Proportions of test examples that the predic-
tions of generator overlap with the predictions of selec-
tor. Here only the top-1 predictions of generator and
selector are used.

4.6 Ablation Study on Guider
In this section, we further study the effectiveness
of our proposed guider module. Table 7 displays
the results of SG (only a selector, a generator, no
guider) and its comparison with SGG on the two
largest test sets Inspec and Krapivin, which illus-
trates that the guider has a remarkable effect on
absent keyphrase and title generation tasks.

In more detail, we analyze that the function of
guiders on these two tasks is different, which de-
pends on the correlation between the targets of
selector and generator. For example, in the task
of keyphrase generation, the words predicted from
selector should not be repeatedly generated by gen-
erator because the present keyphrases and absent
keyphrases in a given text usually do not have over-
lapping words. However, in the task of title gen-
eration, the selected words by selector should be
paid more attention on by generator since they are
usually part of the target titles. To verify the above
analysis, we visualize two examples of the atten-
tion scores in generators for the two tasks in Fig-
ure 4. For keyphrase generation, SG repeatedly
generates “implicit surfaces” that has already been
generated by its selector. In contrast, SGG success-
fully avoids this situation and it correctly generates
the absent keyphrase “particle constraint”. For title
generation, the guider helps SGG to assign higher

attention scores to the words in “seat reservation”
that has been generated by selector.

implicit
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particle

constraint

SG
SG

G
SG

SG
G

fair

randomized

algorithms

seat

reservation

problem

(a) Keyphrase Generation

(b) Title Generation

Figure 4: Visualization of attention score in genera-
tor for keyphrase generation and title generation. The
words marked in red have already been generated by
the selector. The words marked in blue are the gener-
ation of the generator. In these two examples, phrase
“particle constraint” is the correct absent keyphrase for
keyphrase generation and “seat reservation problem” is
part of the correct title for title generation.

Figure 3 gives the proportion of test examples
that the predictions of generator overlap with the
predictions of selector. We observe that SG is more
likely to generate the words that have been gener-
ated by selector than SGG in keyphrase generation.
In contrast, the results on title generation indicate
that SGG is more likely to generate previously se-
lected words than SG for this task. Through the
analysis above, we conjecture that the guider is able
to correctly guide the behaviour of generator in dif-
ferent tasks, i.e., learn to encourage or discourage
generating previously selected words.

5 Conclusion

In this paper, a Select-Guide-Generate (SGG) ap-
proach is proposed and implemented with a hier-
archical neural model for keyphrase generation,
which separately deals with the generation of
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present and absent keyphrases. Comprehensive
empirical studies demonstrate the effectiveness of
SGG. Furthermore, a title generation task indicates
the extensibility of SGG in other generation tasks.
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