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Abstract

Existing works on information extraction (IE)
have mainly solved the four main tasks sep-
arately (entity mention recognition, relation
extraction, event trigger detection, and argu-
ment extraction), thus failing to benefit from
inter-dependencies between tasks. This paper
presents a novel deep learning model to simul-
taneously solve the four tasks of IE in a sin-
gle model (called FourIE). Compared to few
prior work on jointly performing four IE tasks,
FourIE features two novel contributions to cap-
ture inter-dependencies between tasks. First,
at the representation level, we introduce an in-
teraction graph between instances of the four
tasks that is used to enrich the prediction rep-
resentation for one instance with those from
related instances of other tasks. Second, at the
label level, we propose a dependency graph for
the information types in the four IE tasks that
captures the connections between the types ex-
pressed in an input sentence. A new regu-
larization mechanism is introduced to enforce
the consistency between the golden and pre-
dicted type dependency graphs to improve rep-
resentation learning. We show that the pro-
posed model achieves the state-of-the-art per-
formance for joint IE on both monolingual and
multilingual learning settings with three differ-
ent languages.

1 Introduction

Information Extraction (IE) is an important and
challenging task in Natural Language Processing
(NLP) that aims to extract structured information
from unstructured texts. Following the terminology
for IE in the popular ACE 2005 program (Walker
et al., 2006), we focus on four major IE tasks in this
work: entity mention extraction (EME), relation
extraction (RE), event trigger detection (ETD), and
event argument extraction (EAE).

Given an input sentence, a vast majority of prior
work has solved the four tasks in IE independently
at both instance and task levels (called independent
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Figure 1: A sentence example with the annotations for
the four IE tasks. Blue words corresponds to entity
mentions while red words are event triggers. Also, or-
ange edges represent relations while green edges indi-
cate argument roles.

prediction models). First, at the instance level, each
IE task often requires predictions/classifications for
multiple instances in a single input sentence. For
instance, in RE, one often needs to predict relations
for every pair of entity mentions (called relation in-
stances) in the sentence while multiple word spans
in the sentence can be viewed as multiple instances
where event type predictions have to be made in
ETD (trigger instances). As such, most prior work
on IE has performed predictions for instances in a
sentence separately by treating each instance as one
example in the dataset (Zhou et al., 2005; Nguyen
and Grishman, 2015a; Santos and Guimaraes, 2015;
Chen et al., 2015; Nguyen and Grishman, 2015b;
Lai et al., 2020). Second, at the task level, prior
work on IE tends to perform the four tasks in a
pipelined approach where outputs from one task
are used as inputs for other tasks (e.g., EAE is fol-
lowed by EME and ETD) (Li et al., 2013; Chen
et al., 2015; Veyseh et al., 2020c).

Despite its popularity, the main issue of the inde-
pendent prediction models is that they suffer from
the error propagation between tasks and the failure
to exploit the cross-task and cross-instance inter-
dependencies within an input sentence to improve
the performance for IE tasks. For instance, such
systems are unable to benefit from the dependency
that the Victim of a Die event has a high chance to
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Figure 2: Overall architecture of our proposed model. At the representation level, GCNinst is used to enrich
the representations for instances of the four tasks. At the label level, GCNtype is responsible for capturing the
connections between the types in the dependency graphs, thus helping the model learn the structural difference
between the gold graph Ggold and the predicted graph Gpred.

also be the Victim of an Attack event in the same
sentence (i.e., type or label dependencies). To ad-
dress these issues, some prior work has explored
joint inference models where multiple tasks of IE
are performed simultaneously for all task instances
in a sentence, using both feature-based models
(Roth and Yih, 2004; Li et al., 2013; Miwa and
Sasaki, 2014; Yang and Mitchell, 2016) and recent
deep learning models (Miwa and Bansal, 2016;
Zhang et al., 2019). However, such prior work
has mostly considered joint models for a subset of
the four IE tasks (e.g., EME+RE or ETD+EAE),
thus still suffering from the error propagation issue
(with the missing tasks) and failing to fully exploit
potential inter-dependencies between the four tasks.
To this end, this work aims to design a single model
to simultaneously solve the four IE tasks for each
input sentence (joint four-task IE) to address the
aforementioned issues of prior joint IE work.

Few recent work has considered joint four-task
IE, using deep learning to produce state-of-the-art
(SOTA) performance for the tasks (Wadden et al.,
2019; Lin et al., 2020). However, there are still
two problems that hinder further improvement of
such models. First, at the instance level, an impor-
tant component of deep learning models for joint
IE involves the representation vectors of the in-
stances that are used to perform the corresponding
prediction tasks for IE in an input sentence (called

predictive instance representations). For joint four-
task IE, we argue that there are inter-dependencies
between predictive representation vectors of related
instances for the four tasks that should be modeled
to improve the performance for IE. For instance,
the entity type information encoded in the predic-
tive representation vector for an entity mention can
constrain the argument role that the representation
vector for a related EAE instance (e.g., involving
the same entity mention and some event trigger in
the same sentence) should capture and vice versa.
As such, prior work for joint four-task IE has only
computed predictive representation vectors for in-
stances of the tasks independently using shared hid-
den vectors from some deep learning layer (Wad-
den et al., 2019; Lin et al., 2020). Although this
shared mechanism helps capture the interaction of
predictive representation vectors to some extent, it
fails to explicitly present the connections between
related instances of different tasks and encode them
into the representation learning process. Conse-
quently, to overcome this issue, we propose a novel
deep learning model for joint four-task IE (called
FourIE) that creates a graph structure to explicitly
capture the interactions between related instances
of the four IE tasks in a sentence. This graph will
then be consumed by a graph convolutional net-
work (GCN) (Kipf and Welling, 2017; Nguyen and
Grishman, 2018) to enrich the representation vector
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for an instance with those from the related (neigh-
boring) instances for IE.

Second, at the task level, existing joint four-task
models for IE have only exploited the cross-task
type dependencies in the decoding step to constrain
predictions for the input sentence (by manually
converting the type dependency graphs of the in-
put sentence into global feature vectors for scoring
the predictions in the beam search-based decoding)
(Lin et al., 2020). The knowledge from cross-task
type dependencies thus cannot contribute to the
training process of the IE models. This is unfor-
tunate as we expect that deeper integration of this
knowledge into the training process could provide
useful information to enhance representation learn-
ing for IE tasks. To this end, we propose to use
the knowledge from cross-task type dependencies
to obtain an additional training signal for each sen-
tence to directly supervise our joint four-task IE
model. In particular, our motivation is that the types
expressed in a sentence for the four IE tasks can
be organized into a dependency graph between the
types (global type dependencies for the sentence).
As such, in order for a joint model to perform well,
the type dependency graph generated by its predic-
tions for a sentence should be similar to the depen-
dency graph obtained from the golden types (i.e.,
a global type constraint on the predictions in the
training step). A novel regularization term is thus
introduced into the training loss of our joint model
to encode this constraint, employing another GCN
to learn representation vectors for the predicted and
golden dependency graphs to facilitate the graph
similarity promotion. To our knowledge, this is the
first work that employs global type dependencies
to regularize joint models for IE.

Finally, our extensive experiments demonstrate
the effectiveness of the proposed model on bench-
mark datasets in three different languages (e.g.,
English, Chinese, and Spanish), leading to state-of-
the-art performance on different settings.

2 Problem Statement and Background

Problem Statement: The joint four-task IE prob-
lem in this work takes a sentence as the input and
aims to jointly solve four tasks EAE, ETD, RE,
and EAE using an unified model. As such, the goal
of EME is to detect and classify entity mentions
(names, nominals, pronouns) according to a set of
predefined (semantic) entity types (e.g., Person).
Similarly, ETD seeks to identify and classify event

triggers (verbs or normalization) that clearly evoke
an event in some predefined set of event types (e.g.,
Attack). Note that event triggers can involve multi-
ple words. For RE, its concern is to predict the se-
mantic relationship between two entity mentions in
the sentence. Here, the set of relations of interest is
also predefined and includes a special type of None
to indicate no-relation. Finally, in EAE, given an
event trigger, the systems need to predict the roles
(also in a predefined set with a special type None)
that each entity mention plays in the corresponding
event. Entity mentions are thus also called event ar-
gument candidates in this work. Figure 1 presents
a sentence example where the expected outputs for
each IE task are illustrated.
Graph Convolutional Networks (GCN): As
GCNs are used extensively in our model, we
present their computation process in this section to
facilitate the discussion. Given a graph G = (V,E)
where V = {v1, . . . , vu} is the node set (with u
nodes) and E is the edge set. In GCN, the edges
in G are often captured via the adjacency matrix
A ∈ Ru×u. Also, each node vi ∈ V is associated
with an initial hidden vector v0i . As such, a GCN
model involves multiple layers of abstraction in
which the hidden vector vli for the node vi ∈ V at
the l-th layer is computed by (l ≥ 1):

vli = ReLU(

∑u
j=1 AijWlvl−1j + bl∑u

j=1 Aij
)

where Wl and bl are trainable weight and bias at
the l-th layer. Assuming N GCN layers, the hid-
den vectors for the nodes in V at the last layer
vN1 , . . . , vNu would capture richer and more abstract
information for the nodes, serving as the outputs
of the GCN model. This process is denoted by:
vN1 , . . . , vNu = GCN(A; v01, . . . , v0u;N).

3 Model

Given an input sentence w = [w1, w2, . . . , wn]
(with n words), our model for joint four-task IE
on w involves three major components: (i) Span
Detection, (ii) Instance Interaction, and (iii) Type
Dependency-based Regularization.

3.1 Span Detection
This component aims to identify spans of entity
mentions and event triggers in w that would be
used to form the nodes in the interaction graph
between different instances of our four IE tasks
for w. As such, we formulate the span detection
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problems as sequence labeling tasks where each
word wi in w is associated with two BIO tags to
capture the span information for entity mentions
and event triggers in w. Note that we do not predict
entity types and event types at this step, leading to
only three possible values (i.e., B, I, and O) for the
tags of the words.

In particular, following (Lin et al., 2020), we first
feed w into the pre-trained BERT encoder (Devlin
et al., 2019) to obtain a sequence of vectors X =
[x1, x2, . . . , xn] to represent w. Here, each vector
xi serves as the representation vector for the word
wi ∈ w that is obtained by averaging the hidden
vectors of the word-pieces of wi returned by BERT.
Afterward, X is fed into two conditional random
field (CRF) layers to determine the best BIO tag
sequences for event mentions and event triggers
for w, following (Chiu and Nichols, 2016). As
such, the Viterbi algorithm is used to decode the
input sentence while the negative log-likelihood
losses are employed as the training objectives for
the span detection component of the model. For
convenience, let Lent

span and Ltrg
span be the negative

log-likelihoods of the gold tag sequences for entity
mentions and event triggers (respectively) for w.
These terms will be included in the overall loss
function of the model later.

3.2 Instance Interaction
Based on the tag sequences for w from the previ-
ous component, we can obtain two separate span
sets for the entity mentions and event triggers in
w (the golden spans are used in the training phase
to avoid noise). For the next computation, we first
compute a representation vector for each span (i, j)
(1 ≤ i ≤ j ≤ n) in these two sets by averaging the
BERT-based representation vectors for the words
in this span (i.e., xi, . . . , xj). For convenience, let
Rent = {e1, e2, . . . , enent} (nent = |Rent|) and
Rtrg = {t1, t2, . . . , tntrg} (ntrg = |Rtrg|) be the
sets of span representation vectors for the entity
mentions and event triggers in w1. The goal of
this component is to leverage such span represen-
tation vectors to form instance representations and
enrich them with instance interactions to perform
necessary predictions in IE.
Instance Representation. Prediction instances
in our model amount to the specific objects that
we need to predict a type for one of the four IE

1We will also refer to entity mentions and event triggers
interchangeably with their span representations ei and ti in
this work.

tasks. As such, the prediction instances for EME
and ETD, called entity and trigger instances, corre-
spond directly to the entity mentions and event trig-
gers in Rent and Rtrg respectively (as we need to
predict the entity types for ei ∈ Rent and the event
types for ti ∈ Rtrg in this step). Thus, we also use
Rent and Rtrg as the sets of initial representation
vectors for the entity/event instances for EME and
ETD in the following. Next, for RE, the prediction
instances (called relation instances) involve pairs
of entity mentions in Rent. To obtain the initial
representation vector for a relation instance, we
concatenate the representation vectors of the two
corresponding entity mentions, leading to the set of
representation vectors relij for relation instances:
Rrel = {relij = [ei, ej ] | ei, ej ∈ Rent, i < j}
(|Rrel| = nent(nent − 1)/2). Finally, for EAE, we
form the prediction instances (called argument in-
stances) by pairing each event trigger in Rtrg with
each entity mention in Rent (for the argument role
predictions of the entity mentions with respect to
the event triggers/mentions). By concatenating the
representation vectors of the paired entity mentions
and event triggers, we generate the initial repre-
sentation vectors argij for the corresponding argu-
ment instances: Rarg = {argij = [ti, ej ] | ti ∈
Rtrg, ej ∈ Rent} (|Rarg| = ntrgnent)2. We also
use the prediction instances and their representation
vectors interchangeably in this work.
Instance Interaction. The initial representation
vectors for the instances so far do not explicitly
consider beneficial interactions between related in-
stances. To address this issue, we explicitly cre-
ate an interaction graph between the prediction
instances for the four IE tasks to connect related
instances to each other. This graph will be con-
sumed by a GCN model to enrich instance repre-
sentations with interaction information afterward.
In particular, the node set Ninst in our instance
interaction graph Ginst = {Ninst,Einst} involves
all prediction instances for the four IE tasks, i.e.,
Ninst = Rent ∪ Rtrg ∪ Rrel ∪ Rarg. The edge set
Einst then captures instance interactions by con-
necting the instance nodes in Ninst that involve the
same entity mentions or event triggers (i.e., two
instances are related if they concern the same entity
mention or event trigger). As such, the edges in
Einst are created as follows:

2In our implementation, Rrel and Rarg are transformed
into vectors of the same size with those in Rent and Rtrg (us-
ing one-layer feed forward networks) for future computation.
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(i) An entity instance node ei is connected to all
relation instance nodes of the forms relij = [ei, ej ]
and relki = [ek, ei] (sharing entity mention ei).

(ii) An entity instance node ej is connected to
all argument instance nodes of the form argij =
[ti, ej ] (sharing entity mention ej).

(iii) A trigger node ti is connected to all argu-
ment instance nodes of the form argij = [ti, ej ]
(i.e., sharing event trigger ti).
GCN. To enrich the representation vector for an
instance in Ninst with the information from the
related (neighboring) nodes, we feed Ginst into a
GCN model (called GCNinst). For convenience, we
rename the initial representation vectors of all the
instance nodes in Ninst by: Ninst = {r1, . . . , rni}
(ni = |Ninst|). Also, let Ainst ∈ {0, 1}ni×ni

be the adjacency matrix of the interaction graph
Ginst where Ainst

ij = 1 if the instance nodes ri
and rj are connected in Ginst or i = j (for self-
connections). The interaction-enriched representa-
tion vectors for the instances in Ninst are then com-
puted by the GCNinst model: rinst1 , . . . , rinstni

=
GCNinst(Ainst; r1, . . . , rni ;Ni) where Ni is the
number of layers for the GCNinst model.
Type Embedding and Prediction. Finally,
the enriched instance representation vectors
rinst1 , . . . , rinstni

will be used to perform the pre-
dictions for the four IE tasks. In particular, let
tk ∈ {ent, trg, rel, arg} be the corresponding task
index and yk be the ground-truth type (of the task
tk) for the prediction instance rk in Ninst. Also, let
T = T ent ∪ T trg ∪ T rel ∪ T arg be the union of
the possible entity types (in T ent for EME), event
types (in T trg for ETD), relations (in T rel for RE),
and argument roles (in T arg for EAE) in our prob-
lem (yk ∈ T tk ). Note that T rel and T arg contain
the special types None. To prepare for the type pre-
dictions and the type dependency modeling in the
next steps, we associate each type in T with an em-
bedding vector (of the same size as ei and ti) that is
initialized randomly and updated during our train-
ing process. For convenience, let T = [̄t1, . . . , t̄nt ]
where t̄i is used interchangeably for both a type and
its embedding vector in T (nt is the total number
of types). As such, to perform the prediction for an
instance rk in Ninst, we compute the dot products
between rinstk and each type embedding vectors in
T tk ∩ T to estimate the possibilities that rk has a
type in T tk . Afterward, these scores are normal-
ized by the softmax function to obtain the prob-
ability distribution ŷk over the possible types in

T tk for rk: ŷk = softmax(rinstk t̄T |̄t ∈ T tk ∩ T ).
In the decoding phase, the predicted type ŷk for
rk is obtained via the argmax function (greedy
decoding): ŷk = argmax ŷk. The negative log-
likelihood over all the prediction instances is used
to train the model: Ltype = −

∑ni
k=1 log ŷk[yk].

3.3 Type Dependency-based Regularization

In this section, we aim to obtain the type depen-
dencies across tasks and use them to supervise the
model in the training process (to improve the rep-
resentation vectors for IE). As presented in the
introduction, our motivation is to generate global
dependency graphs between types of different IE
tasks for each input sentence whose representa-
tions are leveraged to regularize the model during
training. In particular, starting with the golden
types y = y1, y2, . . . , yni and the predicted types
ŷ = ŷ1, ŷ2, . . . , ŷni for the instance nodes in Ninst,
we build two dependency graphs Ggold and Gpred

to capture the global type dependencies for the
tasks (called the golden and predicted dependency
graphs respectively). Afterward, to supervise the
training process, we seek to constrain the model so
the predicted dependency graph Gpred is similar to
the golden graph Ggold (i.e., using the dependency
graphs as the bridges to inject the global type de-
pendency knowledge in Ggold into the model).
Dependency Graph Construction. Both Ggold

and Gpred involve the types of all the four IE tasks
in T as the nodes. To encode the type dependencies,
the connections/edges in Ggold are computed based
on the golden types y = y1, y2, . . . , yni for the
instance nodes in Ninst as follows:

(i) For each relation instance node rk =
[ei, ej ] ∈ Ninst that has the golden type yk 6=
None, the relation type node yk is connected to
the nodes of the golden entity types for the cor-
responding entity mentions ei and ej (called en-
tity_relation type edges).

(ii) For each argument instance node rk =
[ti, ej ] that has the role type yk 6= None, the role
type node yk is connected to both the node for the
golden event type of ti (called event_argument
type edges) and the node for the golden entity type
of ej (called entity_argument type edges).

The same procedure can be applied to build the
predicted dependency graph Gpred based on the
predicted types ŷ = ŷ1, ŷ2, . . . , ŷni . Also, for con-
venience, let Agold and Apred (of size nt × nt) be
the binary adjacency matrices of Ggold and Gpred
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(including the self-loops) respectively.
Regularization. In the next step, we obtain
the representation vectors for the dependency
graphs Ggold and Gpred by feeding them
into a GCN model (called GCNtype). This
GCN model has Nt layers and uses the ini-
tial type embeddings T = [̄t1, . . . , t̄nt ] as the
inputs. In particular, the outputs of GCNtype

for the two graphs involve t̄gold1 , . . . , t̄goldnt
=

GCNtype(Agold; t̄1, . . . , t̄nt ;Nt) and
t̄pred1 , . . . , t̄prednt

= GCNtype(Apred; t̄1, . . . , t̄nt ;Nt)
that encode the underlying information for the
type dependencies presented in Ggold and Gpred.
Finally, to promote the similarity of the type depen-
dencies in Ggold and Gpred, we introduce the mean
square difference between their GCNtype-induced
representation vectors into the overall loss function
for minimization: Ldep =

∑nt
i=1 ||̄t

gold
i − t̄predi ||22.

Our final training loss is thus: L = Lent
span +

Ltrg
span +Ltype +λLdep (λ is a trade-off parameter).

Approximating Apred. We distinguish two types
of parameters in our model so far, i.e., the parame-
ters used to compute instance representations, e.g.,
those in BERT and Ginst (called θinst), and the
parameters for type dependency regularization, i.e.,
those for the type embeddings t̄1, . . . , t̄nt and Gtype

(called θdep). As such, the current implementa-
tion only enables the training signal from Ldep to
back-propagate to the parameters θdep and disal-
lows Ldep to influence the instance representation-
related parameters θinst. To enrich the instance rep-
resentation vectors with type dependency informa-
tion, we expectLdep to be deeper integrated into the
model by also contributing to θinst. To achieve this
goal, we note that the block of back-propagation
between Ldep and θinst is due to their only connec-
tion in the model via the adjacency matrix Apred,
whose values are either one or zero. As such, the
values in Apred are not directly dependent on any
parameter in θinst, making it impossible for the
back-propagation to flow. To this end, we propose
to approximate Apred with a new matrix Â

pred
that

directly involves θinst in its values. In particular, let
Iinst be the index set of the non-zero cells in Apred:
Iinst = {(i, j)|Apred

ij = 1}. As the elements in
Iinst are determined by the indexes i1, . . . , ini in T
of the predicted types ŷ1, ŷ2, . . . , ŷni (respectively),
we also seek to compute the values for the approxi-
mated matrix Â

pred
based on such indexes. Accord-

ingly, we first define the matrix B = {bij}i,j=1..nt

where the element bij at the i-th row and j-th col-

umn is set to bij = i ∗ nt + j. The approximated

matrix Â
pred

is then obtained by:

Â
pred

=
∑

(i,j)∈Iinst

exp(−β(B− int − j)2) (1)

Here, β > 0 is a large constant. For each ele-
ment (i, j) ∈ Iinst, all the elements in the matrix
(B− int − j)2 are strictly positive, except for the
element at (i, j), which is zero. Thus, with a large
value for β, the matrix exp(−β(B− int− j)2) has
the value of one at cell (i, j) and nearly zero at

other cells. Consequently, the values of Â
pred

at
the positions in Iinst are close to one while those
at other positions are close to zero, thus approxi-
mating our expected matrix Apred and still directly
depending on the indexes i1, . . . , int .
Addressing the Discreteness of Indexes.
Even with the approximation Â

pred
, the back-

propagation still cannot flow from Ldep to θinst due
to the block of the discrete and non-differentiable
index variables i1, . . . , int . To address this
issue, we propose to apply the Gumbel-Softmax
distribution (Jang et al., 2017) that enables the
optimization of models with discrete random
variables, by providing a method to approximate
one-hot vectors sampled from a categorical
distribution with continuous ones.

In particular, we first rewrite each index ik by:
ik = hkcTk , where ck is a vector whose each di-
mension contains the index of a type in T tk in
the joint type set T , and hk is the binary one-
hot vector whose dimensions correspond to the
types in T tk . hk is only turned on at the po-
sition corresponding to the predicted type ŷk ∈
T tk (indexed at ik in T ). In our current imple-
mentation, ŷk (thus the index ik and the one-hot
vector hk) is obtained via the argmax function:
ŷk = argmax ŷk, which causes the discreteness.
As such, the Gumbel-Softmax distribution method
helps to relax argmax by approximating hk with
a sample ĥk = ĥk,1, . . . , ĥk,|T tk | from the Gumbel-
Softmax distribution:

ĥk,j =
exp((log(πk,j) + gj)/τ)∑|T tk |

j′=1 exp((log(πk,j′) + gj′)/τ)
(2)

where πk,j = ŷk,j = softmaxj(rinstk t̄T |̄t ∈
T tk∩T ), g1, . . . , g|T tk | are the i.i.d samples drawn
from Gumbel(0,1) distribution (Gumbel, 1948):
gj = −log(−log(uj)) (uj ∼ Uniform(0, 1)), and
τ is the temperature parameter. As τ → 0, the
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sample ĥk would become close to our expected
one-hot vector hk. Finally, we replace hk with
the approximation ĥk in the computation for ik:
ik = ĥkcTk that directly depends on rinstk and is

applied in Â
pred

. This allows the gradients to flow
from Ldep to the parameters θinst and completes
the description of our model.

4 Experiments

Datasets. Following the prior work on joint four-
task IE (Wadden et al., 2019; Lin et al., 2020), we
evaluate our joint IE model (FourIE) on the ACE
2005 (Walker et al., 2006) and ERE datasets that
provide annotation for entity mentions, event trig-
gers, relations, and argument roles. In particular,
we use three different versions of the ACE 2005
dataset that focus on three major joint inference
settings for IE: (i) ACE05-R for joint inference of
EME and RE, (ii) ACE05-E for joint inference of
EME, ETD and EAE, and (iii) ACE05-E+ for joint
inference of the four tasks EME, ETD, RE, and
EAE. ACE05-E+ is our main evaluation setting as
it fits to our model design with the four IE tasks of
interest.

Datasets Split sents ents rels events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ACE05-CN
Train 6,841 29,657 7,934 2,926
Dev 526 2,250 596 217
Test 547 2,388 672 190

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 1: Numbers of sentences (i.e., sents), entity men-
tions (i.e., ents), relations (i.e., rels), and events (i.e.,
events) in the datasets.

For ERE, following (Lin et al., 2020), we com-
bine the data from three datasets for English (i.e.,
LDC2015E29, LDC2015E68, and LDC2015E78)
that are created under the Deep Exploration and
Filtering of Test (DEFT) program (called ERE-
EN). Similar to ACE05-E+, ERE-EN is also used
to evaluate the joint models on four IE tasks.

To demonstrate the portability of our model to
other languages, we also apply FourIE to the joint

four-IE datasets on Chinese and Spanish. Follow-
ing (Lin et al., 2020), we use the ACE 2005 dataset
for the evaluation on Chinese (called ACE05-CN)
and the ERE dataset (LDC2015E107) for Spanish
(called ERE-ES).

To ensure a fair comparison, we adopt the same
data pre-processing and splits (train/dev/test) in
prior work (Lin et al., 2020) for all the datasets. As
such, ACE05-R, ACE05-E, ACE05-E+, and AC05-
CN involve 7 entity types, 6 relation types, 33 event
types, and 22 argument roles while ERE-ES and
ERE-EN include 7 entity types, 5 relation types, 38
event types, and 20 argument roles. The statistics
for the datasets are shown in Table 1.
Hyper-parameters and Evaluation Criteria. We
fine-tune the hyper-parameters for our model using
the development data. The suggested values are
shown in the appendix. To achieve a fair com-
parison with (Lin et al., 2020), we employ the
bert-large-cased model for the English datasets
and bert-multilingual-cased model for the Chinese
and Spanish datasets. Finally, we follow the same
evaluation script and correctness criteria for entity
mentions, event triggers, relations, and argument
as in prior work (Lin et al., 2020). The reported re-
sults are the average performance of 5 model runs
using different random seeds.
Performance Comparison. We compare the pro-
posed model FourIE with two prior models for
joint four-task IE: (i) DyGIE++ (Wadden et al.,
2019): a BERT-based model with span graph prop-
agation, and (ii) OneIE (Lin et al., 2020): the cur-
rent state-of-the-art (SOTA) model for joint four-
task IE based on BERT and type dependency con-
straint at the decoding step. Table 2 presents the
performance (F1 scores) of the models on the test
data of the English datasets. Note that in the ta-
bles, the prefixes “Ent”, “Trg”, “Rel”, and “Arg”
represent the extraction tasks for entity mentions,
event triggers, relations, and arguments respec-
tively while the suffixes “-I” and “-C” correspond to
the identification performance (only concerning the
offset correctness) and identification+classification
performance (evaluating both offsets and types).

As can be seen from the table, FourIE is con-
sistently better than the two baseline models (Dy-
GIE++ and OneIE) across different datasets and
tasks. The performance improvement is significant
for almost all the cases and clearly demonstrates
the effectiveness of the proposed model.

Finally, Table 3 reports the performance of



34

Datasets Task DyGIE++ OneIE FourIE ∆%

ACE05-R Ent-C 88.6 88.8 88.9 0.1
Rel-C 63.4 67.5 68.9† 1.4

ACE05-E

Ent-C 89.7 90.2 91.3† 1.1
Trg-I - 78.2 78.3 0.1
Trg-C 69.7 74.7 75.4† 0.7
Arg-I 53.0 59.2 60.7† 1.5
Arg-C 48.8 56.8 58.0† 1.2

ACE05-E+

Ent-C - 89.6 91.1† 1.5
Rel-C - 58.6 63.6† 5.0
Trg-I - 75.6 76.7† 1.1
Trg-C - 72.8 73.3† 0.5
Arg-I - 57.3 59.5† 2.2
Arg-C - 54.8 57.5† 2.7

ERE-EN

Ent-C - 87.0 87.4 0.4
Rel-C - 53.2 56.1† 2.9
Trg-I - 68.4 69.3† 0.9
Trg-C - 57.0 57.9† 0.9
Arg-I - 50.1 52.2† 2.1
Arg-C - 46.5 48.6† 2.1

Table 2: F1 scores of the models on the test data of
English datasets. ∆ indicates the performance differ-
ence between FourIE and OneIE. Rows with † desig-
nate the significant improvement (p < 0.01) of FourIE
over OneIE.

FourIE and OneIE on the Chinese and Spanish
datasets (i.e., ACE05-CN and ERE-ES). In addition
to the monolingual setting (i.e., trained and evalu-
ated on the same languages), following (Lin et al.,
2020), we also evaluate the models on the multilin-
gual training settings where ACE05-CN and ERE-
ES are combined with their corresponding English
datasets ACE05-E+ and EAE-EN (respectively) to
train the models (for the four IE tasks), and the
performance is then evaluated on the test sets of
the corresponding languages (i.e., ACE05-CN and
ERE-ES). It is clear from the table that FourIE also
significantly outperforms OneIE across nearly all
the different setting combinations for languages,
datasets and tasks. This further illustrates the porta-
bility of FourIE to different languages.

Test Data Train Data Task OneIE FourIE ∆%

ACE05-CN

ACE05-CN

Ent-C 88.5 88.7 0.2
Rel-C 62.4 65.1† 2.7
Trg-C 65.6 66.5† 0.9
Arg-C 52.0 54.9† 2.9

ACE05-CN
ACE05-E+

Ent-C 89.8 89.1 -0.7
Rel-C 62.9 65.9† 3.0
Trg-C 67.7 70.3† 2.6
Arg-C 53.2 56.1† 2.9

ERE-ES

ERE-ES

Ent-C 81.3 82.2† 0.9
Rel-C 48.1 57.9† 9.8
Trg-C 56.8 57.1 0.3
Arg-C 40.3 42.3† 2.0

ERE-ES
ERE-EN

Ent-C 81.8 82.7† 0.9
Rel-C 52.9 59.1† 6.2
Trg-C 59.1 61.3† 2.2
Arg-C 42.3 45.4† 3.1

Table 3: F1 scores on Chinese and Spanish test sets.
† marks the significant improvement (p < 0.01) of
FourIE over OneIE.

Effects of GCNinst and GCNtype. This section
evaluates the contributions of the two important
components in our proposed model FourIE, i.e.,
the instance interaction graph with GCNinst and
the type dependency graph with GCNtype. In par-
ticular, we examine the following ablated/varied
models for FourIE: (i) “FourIE-GCNinst”: this
model excludes the instance interaction graph and
the GCN model GCNinst from FourIE so the ini-
tial instance representations rk are directly used
to predict the types for the instances (replacing
the enriched vectors rinstk ), (ii) “FourIE-GCNtype”:
this model eliminates the type dependency graph
and the GCN model GCNtype (thus the loss term
Ldep as well) from FourIE, (iii) “FourIE-GCNinst-
GCNtype”: this model removes both the instance in-
teraction and type dependency graphs from FourIE,
(iv) “FourIE-GCNtype+TDDecode”: this model
also excludes GCNtype; however, it additionally ap-
plies the global type dependencies features to score
the joint predictions for the beam search in the
decoding step (the implementation for this beam
search is inherited from (Lin et al., 2020) for a
fair comparison), and (v) “FourIE-Â

pred
”: instead

of employing the approximation matrix Â
pred

in
FourIE, this model directly uses the adjacency ma-
trix Apred in the Ldep regularizer (Ldep thus does
not influence the instance representation-related pa-
rameters θinst). Table 4 shows the performance of
the models on the development dataset of ACE05-
E+ for four IE tasks.

Models Ent-C Rel-C Trg-C Arg-C
FourIE 89.6 64.3 71.0 59.0
FourIE-GCNinst 89.1 62.3 70.3 57.5
FourIE-GCNtype 88.5 61.8 69.9 56.6
FourIE-GCNinst-GCNtype 88.2 59.3 68.9 56.1
FourIE-GCNtype+TDDecode 88.8 59.6 70.8 56.8

FourIE-Â
pred

89.0 62.3 70.2 57.6

Table 4: F1 scores of the models on the ACE05-E+ dev
data.

The most important observation from the table
is that both GCNinst and GCNtype are necessary for
FourIE to achieve the highest performance for the
four IE tasks. Importantly, replacing GCNtype in
FourIE with the global type dependency features
for decoding (i.e., “FourIE-GCNtype+TDDecode”)
as in (Lin et al., 2020) or eliminating the approx-
imation Â

pred
for Ldep produces inferior perfor-

mance, especially for relation and argument ex-
traction. This clearly demonstrates the benefits for
deeply integrating knowledge from type dependen-
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cies to influence representation learning parameters
with Ldep for joint four-task IE.
Contributions of Type Dependency Edges. Our
type dependency graphs Ggold and Gpred involves
three categories of edges, i.e., entity_relation, en-
tity_argument, and event_argument type edges. Ta-
ble 5 presents the performance of FourIE (on the
development data of ACE05-E+) when each of
these edge categories is excluded from our type
dependency graph construction.

Models Ent-C Rel-C Trg-C Arg-C
FourIE 89.6 64.3 71.0 59.0
FourIE - entity_relation 88.7 61.9 71.0 57.5
FourIE - entity_argument 89.3 63.2 70.0 56.9
FourIE - event_argument 89.5 64.1 69.8 57.7

Table 5: F1 scores of the ablated models for type de-
pendency edges on the ACE05-E+ dev data.

The table clearly shows the importance of differ-
ent categories of type dependency edges for FourIE
as the elimination of any category would generally
hurt the performance of the model. In addition,
we see that the contribution level of the type de-
pendency edges intuitively varies according to the
tasks of consideration. For instance, entity_relation
type edges are helpful mainly for entity mention,
relation and argument extraction. Finally, an error
analysis is conducted in the appendix to provide
insights about the benefits of the type dependency
graphs Ggold and Gpred for FourIE (i.e., by compar-
ing the outputs of FourIE and “FourIE-GCNtype”).

5 Related Work

The early joint methods for IE have employed fea-
ture engineering to capture the dependencies be-
tween IE tasks, including Integer Linear Program-
ming for Global Constraints (Roth and Yih, 2004;
Li et al., 2011), Markov Logic Networks (Riedel
et al., 2009; Venugopal et al., 2014), Structured
Perceptron (Li et al., 2013, 2014; Miwa and Sasaki,
2014; Judea and Strube, 2016), and Graphical Mod-
els (Yu and Lam, 2010; Yang and Mitchell, 2016).

Recently, the application of deep learning has fa-
cilitated the joint modeling for IE via shared param-
eter mechanisms across tasks. These joint models
have focused on different subsets of the IE tasks,
including EME and RE (Zheng et al., 2017; Katiyar
and Cardie, 2017; Bekoulis et al., 2018; Fu et al.,
2019; Luan et al., 2019; Sun et al., 2019; Veyseh
et al., 2020b,a), event and temporal RE (Han et al.,
2019), and ETD and EAE (Nguyen et al., 2016;
Zhang et al., 2019; Nguyen and Nguyen, 2019).

However, none of these work has explored joint
inference for four IE tasks EME, ETD, RE, and
EAE as we do. The two most related works to ours
include (Wadden et al., 2019) that leverages the
BERT-based information propagation via dynamic
span graphs, and (Lin et al., 2020) that exploits
BERT and global type dependency features to con-
strain the decoding step. Our model is different
from these works in that we introduce a novel inter-
action graph for instance representations for four
IE tasks and a global type dependency graph to
directly inject the knowledge into the training pro-
cess.

6 Conclusion

We present a novel deep learning framework to
jointly solve four IE tasks (EME, ETD, RE, and
EAE). Our model attempts to capture the inter-
dependencies between instances of the four tasks
and their types based on instance interaction and
type dependency graphs. GCN models are em-
ployed to induce representation vectors to perform
type predictions for task instances and regularize
the training process. The experiments demonstrate
the effectiveness of the proposed model, leading
to SOTA performance over multiple datasets on
English, Chinese, and Spanish. In the future, we
plan to extend the model to include more IE tasks
(e.g., coreference resolution).
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A Hyper-parameters

We fine-tune the hyper-parameters for our model
FourIE using the development data of the ACE05-
E+ dataset (our main and largest evaluation dataset).
The selection criteria is based on the average F1
scores of the four IE tasks of consideration (EME,
ETD, RE, and EAE). The following values are sug-
gested by the fine-tuning: 2e-5 for the learning rate
of BertAdam for the optimizer; 10 for the batch
size; Ni = 2 and Nt = 3 for the numbers of layers
in the GCN models Ginst and Gpred respectively;
300 hidden units for all the layers of the feed for-
ward networks GCN models, and type embeddings;
β = 100 for the constant in the approximation
Â
pred

; τ = 0.1 for the temperature parameter; and
λ = 0.5 for the trade-off parameter in the loss func-
tion. To achieve a consistency, we apply the same
hyper-parameters from this fine-tuning for other
datasets.

B Analysis

Analysis. To better understand the contribution of
the knowledge from the type dependency graphs
Ggold and Gpred for FourIE on EAE, we analyze
the set of all the argument instances on the ACE05-
E+ development set (calledA) that FourIE can suc-
cessfully predict the argument roles while “FourIE-
GCNtype” fails to do so. In particular, we find three
major categories of the instances inA that highlight
the benefits of the type dependency graphs:

(i) One-edge constraints (accounting for 28.9%
of A): The incorrect argument role predictions
of “FourIE-GCNtype” for these instances violate
the constraint on the possible argument roles of
event types. As FourIE does not have this issue, it
suggests that FourIE can learn and enforce those
constraints (i.e., from the event_argument edges of
Ggold) from the training. For instance, in the sen-
tence “... the United States upped its military pres-
ence, deploying more missile-firing warships to the
Red Sea”, both FourIE and “FourIE-GCNtype” can
recognize “deploying” as an event trigger of type
Transport. However, regarding the entity mention
“Red Sea”, FourIE correctly assigns the Destina-
tion role for the Transport event while “FourIE-
GCNtype” incorrectly considers it as the role Place
(an invalid role for the event type Transport).

(ii) Two-edge constraints (representing 36.5%
of A): The predictions from “FourIE-GCNtype” in
this category involve argument roles that are never
assigned to an entity mention of some entity type

in an event mention/trigger of some event type.
FourIE can avoid this issue as it can recognize
these constraints from the combinations of two
neighboring edges (i.e., an event_argument and
and entity_argument edge). For example, in the
sentence “... the tanks and Bradley fighting vehi-
cles ... backed by the Apache attack helicopters ...
punched through the Republican Guard defenses
...”, both FourIE and “FourIE-GCNtype” can detect
“helicopters” as an entity mention of type Vehicle
which is an argument for the “Attack” event trig-
gered by “punched through”. However, “FourIE-
GCNtype” incorrectly predicts the argument role of

“Attacker” for “helicopters” while FourIE can suc-
cessfully return the Instrument in this case. In fact,
we cannot find any Vehicle entity that plays the At-
tacker role in an Attack event in the training data,
providing an useful information for FourIE to learn
and fix the error.

(iii) Four-edge constraints (accounting for 19.2%
of A): The failure of “FourIE-GCNtype” for the in-
stances in this category can be fixed if the model
exploits the co-occurrence of event types and ar-
gument roles in the same sentences. In particular,
for two event mentions with related event types in
the same sentences, an entity mention that plays
some role in one event tends to also play some re-
lated role in the other event. These co-occurrence
can be captured via two event_argument edges and
two entity_argument edges (sharing the same entity
type) in the type dependency graphs of FourIE to
address the issue. Consider an example sentence:
“Two 13-year-old children were among those killed
in the Haifa bus bombing, Israeli public radio said
...”. Both FourIE and “FourIE-GCNtype” can iden-
tify the Person entity mention “those” as the ar-
gument of role Victim for the Die event triggered
by “killed”. However, regarding the Attack event
triggered by “bombing”, only FourIE can correctly
predict “those” as an argument of role Target”. This
success can be attributed to the ability of FourIE to
learn the co-occurrence that an entity mention has
a higher chance to play the role Target in an Attack
event if it also has a role of Victim for a Die event
mentioned in the same sentence.

Finally, the instances in the remaining 15.4%
of A tend to involve more complicated con-
straints/dependencies that cannot be associated
with any of the three categories above.


