
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 34–40
June 6–11, 2021. ©2021 Association for Computational Linguistics

34

Pretrain-Finetune Based Training of Task-Oriented Dialogue Systems in a
Real-World Setting

Manisha Srivastava
Amazon Inc.
Seattle, USA

mansri@amazon

Yichao Lu
Amazon Inc.
Seattle, USA

yichaolu@amazon

Riley Peschon
Amazon Inc.
Seattle, USA

peschon@amazon

Chenyang Li
Amazon Inc.
Seattle, USA
cli@amazon

Abstract

One main challenge in building task-oriented
dialogue systems is the limited amount of su-
pervised training data available. In this work,
we present a method for training retrieval-
based dialogue systems using a small amount
of high-quality, annotated data and a larger,
unlabeled dataset. We show that pretraining
using unlabeled data can bring better model
performance with a 31% boost in Recall@1
compared with no pretraining. The proposed
finetuning technique based on a small amount
of high-quality, annotated data resulted in
26% offline and 33% online performance im-
provement in Recall@1 over the pretrained
model. The model is deployed in an agent-
support application and evaluated on live cus-
tomer service contacts, providing additional
insights into the real-world implications com-
pared with most other publications in the do-
main often using asynchronous transcripts (e.g.
Reddit data). The high performance of 74%
Recall@1 shown in the customer service ex-
ample demonstrates the effectiveness of this
pretrain-finetune approach in dealing with the
limited supervised data challenge.

1 Introduction

Retrieval-based dialogue systems are popular in
task-oriented domains. A typical retrieval-based
system encodes the dialogue context and a large set
of candidate responses (templates) in a joint seman-
tic space, and then scores how appropriate each can-
didate is given the dialogue context; the template
with the highest score is selected as the response.
These systems can use a sequence-to-sequence
model (Kannan et al., 2016) or a dual-encoder style
architecture (Lu et al., 2017; Lowe et al., 2015) to
encode and score the context-response pair.

One major challenge for any task-oriented dia-
logue system is the scarcity of training data. High-
quality data with all the required annotations are
needed to train an accurate model. Such datasets

are not readily available, and collecting them is a
costly and labor-intensive process. A few synthetic
datasets (Weston et al., 2015; Asri et al., 2017;
Budzianowski et al., 2018) have been proposed
but they do not capture the real-world variations
and subtleties of the task-oriented dialogues. The
limited amount of supervised training data avail-
able makes it difficult to train these models from
scratch.

To overcome the issue of limited training data,
the idea of finetuning a pretrained model has be-
come a popular approach in other domains like
computer vision and is recently gaining popularity
in the natural language processing (NLP) domain.
Pretrained models in NLP such as ELMo (Peters
et al., 2018), OpenAI GPT (Radford et al., 2018),
and BERT (Devlin et al., 2018) have attracted a lot
of attention and achieved state-of-the-art accuracy
in multiple natural language understanding tasks.
In this paper, we present a methodology for train-
ing retrieval-based dialogue systems using a small
amount of supervised data and a large, low-quality,
unannotated dataset.

1. We demonstrate that finetuning a model (Lu
et al., 2019) pretrained using the unannotated
dataset performs better than directly finetun-
ing on the clean, annotated data.

2. We experiment with different finetuning loss
functions and show that a ranking based loss
function performs better than classification
loss for template-retrieval based dialogue sys-
tems.

3. We deploy the finetuned model in an agent
assistance application for customer service,
and present real-world results on live customer
contacts.

In the sections that follow, we describe the data
from the customer service domain that is used for
pretraining and finetuning the model in section 2.
In section 3, we explain how we pretrain the model

35

Raw text:
Customer: I want to cancel the shoes I ordered yesterday.
Agent: Welcome to Customer Service.
Agent: I am here to help you.
Agent: Give me a moment to look into this.

Training Sample:
Context: CUSTOMERSTART I want to cancel the
shoes I ordered yesterday. AGENTSTART Welcome to
Customer Service. AGENTSTART I am here to help
you. PROFILESTART cancellable, carrier, membership-
status. Response: Give me a moment to look into this.
Label: Positive

Figure 1: Training sample creation process. Given a
chat transcript and profile features, a training sample
is created by appending the dialogue turns and profile
features. True agent response is used to create positive
samples and random agent responses are used to create
negative samples.

using the next-turn prediction task along with the
results. Next, we present the proposed finetuning
strategy, and the associated experimental setup and
the results. In section 5, we present the real-world
results of the deployed model. Section 6 describes
the conclusion and direction for future work.

2 Data

In this work, we use data from the customer ser-
vice domain —customer service chats handled in
English. When customers contact customer service
regarding their issue (e.g., order tracking, payment
questions), the routing system connects the cus-
tomer to an agent based on the specific issue type.
Agents resolving customer issues have access to a
wide variety of profile information (e.g. customer
details, order status, and internal APIs) to execute
actions such as canceling or refunding an order.
For our experiments, we select a delivery-related
customer issue. In the following subsection, we ex-
plain how we collect the pretraining and finetuning
data.

2.1 Pretraining Data

The pretraining data include historical customer
service chat transcripts for a delivery-related issue.
It is important to note these transcripts only con-
tain the dialogue turns. Contextual information
(e.g. customer profile, order details, actions exe-
cuted by the agents) is either missing or inaccurate.
The pretraining dataset consists of a few hundred
thousand chats (see Table 1). The conversation in
these chat transcripts can exhibit high variability,
despite following the same customer issue, due to
policy changes, unconstrained conversations like

Table 1: Training data statistics.

DATASETS
PRETRAIN FINETUNE

TRAINING TEST TRAINING TEST

NUMBER OF
CHATS 382,688 2000 6366 400
NUMBER OF
AGENTS TURNS 8045059 4498 65908 3188

side talks, and agent locale variability.
Figure 1 shows part of a chat transcript and how

it is processed to create the training data. Each
agent turn in the transcript is converted into a train-
ing sample. To create the dialogue context, previ-
ous turns in the conversation history, prior to the
current agent turn, are prepended by a special to-
ken to indicate whether it is an agent or customer
turn. A separate token is used to distinguish pro-
file features (e.g. customer’s profile, order details)
from the dialogue turns. As explained in section 3,
pretraining is done using next sentence prediction
task and so it requires positive and negative context
response pairs. To create the pretraining dataset,
true agent responses create a positive pair, while
random agent responses create negative pairs. We
also use the incomplete and noisy profile informa-
tion that is available without any human annotation.
We call this pretrain training dataset.

2.2 Finetuning Data

The large pretraining dataset is not collected in a
standardized manner. As a result, said dataset is
noisy —there are inconsistencies in chat dialogues
and profile information (e.g. order details, cus-
tomer profile, and actions) is missing and inaccu-
rate. The finetuning dataset, in contrast, is collected
in a controlled manner using specialist agents to
ensure accurate and complete annotations.

The finetuning data consists of a few thousand
chats for the selected delivery issue, collected over
a period of 2 months, handled by a group of 20 spe-
cialist agents. These chats have all relevant annota-
tions (customer profile and order details) for each
dialogue turn. Agents are instructed to choose the
response from a template pool as much as possible,
free-typing only if the response does not exist in
the template pool. The pool consists of 85 template
responses. These responses are extracted from his-
torical chat transcripts and cover the most common
delivery-related use cases. The specialist agents
are trained to handle contacts in a constrained and
consistent manner without sacrificing the customer
experience. For example, they are trained to drive

36

Figure 2: Pretraining model architecture. Separate
transformer encoders are used to encode the dialogue
history (last turn, other turns), profile features, and re-
sponse. The encoded dialogue turns and profile are
passed through MLP to get the encoded context. The
encoded response and context are passed through bilin-
ear layer to get the final score of the pair.

the conversation towards the solution and avoid
side conversations. To ensure consistency, we insti-
tuted general rules to the agents on how and when
to greet, apologize, make policy exceptions, pro-
vide reassurance, etc. The agent training ensured
customers are not adversely affected in the process
of this constrained data collection.

The collected chats are processed in the same
way as shown in Figure 1 and explained in the
last section. The dataset, referred to as finetune
training dataset, is generated in the same way as
pretraining data with one caveat: for each conver-
sation context, negative samples are generated us-
ing templates scored high by the pretrained model,
as opposed to random sampling unrelated agent
responses. The number of negative samples is se-
lected using cross-validation.

2.3 Evaluation Data

We have two evaluation datasets – pretrain test
and finetune test. To create the pretrain test
dataset, we use historical chat transcripts from a
period that does not overlap with the pretrain train-
ing dataset. Each test sample includes conversation
context (previous turns and extracted profile fea-
tures) and random responses (including the true
agent’s response). During evaluation, the trained
model is used to rank the responses for each di-
alogue context. Similarly, to create the finetune
test dataset, we use the dataset collected from the
specialized agents. For each dialogue context, we
store the template response selected by the agent
as positive and all other template responses as neg-
ative.

Table 1 shows the statistics for each of the pre-
train and finetune datasets. During the evaluation,
the model ranks all responses for a given dialogue
context. We use Recall@1 as our evaluation met-
ric, which measures how many times the correct
response was ranked at the top by the model. We
also report MRR (mean reciprocal rank), which
is the harmonic mean of the rank of the correct
response.

3 Pretraining

In this section, we introduce the next sentence
prediction based pretraining used to pretrain the
model.

3.1 Model

Our binarized next sentence prediction pretrain-
ing is effectively a classification task, classifying a
pair of conversation context and agent response as
positive (appropriate) or negative (not appropriate).
The input to the pretraining model is the context (C)
response (R) pair where the conversation context
includes dialogue turns (last turn, other turns) and
profile features. The pretraining model is similar to
(Lu et al., 2019) as the response ranking model uses
multiple transformer-based (Vaswani et al., 2017)
encoders to encode different parts of the context
and the response.

The context is encoded using three transformer
encoders (Figure 2) that separately encode the pro-
file features, last-turn, and all other turns in the con-
text; see equation 1, 2, 3. Dot Product Attention
(Luong et al., 2015) is applied to the transformer
outputs. The transformer outputs are the key and
value, while separate query vectors are learned for
each output. Each query vector is randomly ini-
tialized and trained like other model parameters.
The encoded last turn, profile features, and other
turns are passed through a Multi-Layer Perceptron
to get the encoded context (EncC). The response
encoding (EmbR) is also obtained using equation
2 and 3.

EncC =MLP (Embother_turns

|Emblast_turn|Embprofile)
(1)

Embx = Attention(Tx, qx) (2)

Tx = Transformer(embx) (3)

where | is the concatenation, embx is a vector of
size e× n : e is the embedding dimension, n is the
number of words; Tx is a vector of size h×n : h is

37

Table 2: We present MRR and Recall@1 of the fine-
tuned models on the finetune test dataset. The base-
line ‘No pretraining’is a model without any pretrain-
ing, ‘Pretrained mode’is pretrained on pretrain training
dataset.

MODELS MRR (%) RECALL@1(%)

NO PRETRAINING(Mbaseline) 32.8 23.2
PRETRAINED MODEL(Mtuned) 60.6 54.6

the hidden size; qx is a query vector of dimension
h which is initialized randomly and trained along
with other parameters. Embx and EncC are both
vectors of dimension h. EncC and EmbR are then
passed through a bilinear layer that outputs a prob-
ability score grading how appropriate the candidate
response is given the context; see 4 and 5.

P [(yt = +1)|(C,R)] = Sigmoid(S) (4)

S = EncC · EmbR (5)

where yt ∈ {0, 1} is the label of context response
pair; P [(yt = +1)|(C,R)] is the probability that
the context response pair is positive; · is the dot
product operator. Since we treat this as a classifica-
tion problem, we use binary cross-entropy loss for
training.

3.2 Training Setup

We train the pretrained model (M) using the pre-
train training dataset as described in Section 2. We
use the transformer implementation provided by
MXNet Gluon NLP 1. We use 4 encoder layers,
4 heads in multi-head attention, hidden size of
512 and vocabulary size of 10K. The maximum
sequence length of the context is 180 tokens, last
turn is 35 tokens, profile feature is 6 tokens, and
response is 35 tokens. We train the model using
binary cross-entropy loss and stop when the valida-
tion MRR and Recall@1 start dropping.

We finetune the pretrained model on the finetune
training dataset and evaluate it on the finetune test
dataset. To finetune the model, we initialize the
model M with the pretrained model parameters and
run a few epochs on the finetune training dataset,
stopping when the validation performance begins
dropping. Let’s call this finetuned model Mtuned.
We also train a baseline model (Mbaseline) that is
another model like M but trained directly on the
small finetune training dataset.

1https://gluon-nlp.mxnet.io/

3.3 Results

Table 2 shows the MRR and Recall@1 on the fine-
tune test dataset. Mtuned demonstrates an average
improvement of 31.4% on Recall@1 and 28% on
MRR compared to Mbaseline. These results show
that pretraining on a large, unannotated dataset can
give significant performance boost over a model
with no pretraining.

4 Finetuning

Simple finetuning using the small finetune training
dataset can lead to overfitting. In this section, we
describe our finetuning approach, which incorpo-
rates regularization to avoid overfitting and the loss
function that better caters to the task of template
ranking.

4.1 Model

Due to the limited amount of finetune training data
available, simple finetuning M can lead to overfit-
ting —forgetting knowledge acquired during pre-
training. As shown in Table 3, simple finetuning
M on the finetune training dataset degrades the per-
formance of the model on the pretrain test data
significantly. In order to prevent the model from
forgetting, both M and Mtuned should have similar
performance on the pretrain test data.

4.1.1 Regularization
To prevent the forgetting issue, a fraction of the
pretrain training dataset is mixed with every batch
of the finetuning training dataset (He et al., 2019).
During each gradient descent step of finetuning,
one gradient step is taken on the finetune data
batch, with another gradient step on the pretrain
data batch.

4.1.2 Training loss
During pretraining, we use binary cross-entropy
loss (LBCE), classifying each context response pair
as positive or negative. Given context response
pairs and the corresponding labels, cross-entropy
loss can be calculated as follows:

LBCE =−
n∑

t=1

yt ∗ log(S(C,R))

+ (1− yt) ∗ log(1− S(C,R))

(6)

where yt ∈ 0, 1 is the label of the context response
pair (C,R); S(C,R) is calculated using equation
5. LBCE is limited by its inability to capture the
relative score of the templates —essentially the

38

Table 3: The performance of model M finetuned on the finetune training dataset with and without regularization.
We show that data-mix regularization is effective in maintaining the performance of the model on the pretrain test
dataset.

DATASETS
PRETRAIN TEST DATASET FINETUNE TEST DATASET

MRR(%) RECALL@1(%) MRR (%) RECALL@1 (%)

M(NO FINETUNING) 80.3 76.9 41.3 32.8
Mtuned WITH NO REGULARIZATION 33.7 22.5 60.6 54.6
Mtuned USING DATA-MIXING REGULARIZATION 78.7 75.1 60.7 54.5

base logic for ranking of templates. This is critical
for retrieval-based dialogue systems because, for
each context, all templates receive a ranking and
the top-ranked template from the pool is selected.

Hence, for finetuning, we chose a new loss func-
tion to incorporate relative scores of templates sim-
ilar to (Henderson et al., 2017). We directly min-
imize the negative log probability of the true re-
sponse given the context as shown below:

Lranking = −log(P (R/C)) ∝ eS(C,R)∑n
i=1 c

S(C,Ri

(7)

where C is the context; R is the true agent re-
sponse; P (R|C) is the probability of the true re-
sponse given the context; Ri is ith response; n is all
possible responses; S(C,R) is the score of a pair
of context and response calculated using equation
5. Instead of normalizing over all Ri, we sample
10 responses from the template pool (including the
correct response). This new loss function better
represents the ranking problem.

4.2 Experimental Setup

For finetuning the model, we initialize the model
with the pretrained model parameters and finetune
all layers using the finetune training dataset.

4.3 Results

In this section, we study the effect of regularization
and the different loss functions on finetuning.

4.3.1 Regularization

The effect of regularization during finetuning is
summarized in Table 3. We show the MRR and
Recall@1 metrics on both the pretrain test and fine-
tune test datasets. As a baseline, we don’t finetune
the model (M) at all, but directly evaluate the pre-
trained model on both the test datasets. From the
results, we see that data-mix regularization main-
tains the performance of the model on the pretrain
test dataset.

Table 4: The performance of the finetuned model on the
finetune test dataset, the model trained using ranking
loss outperforms the cross-entropy loss based finetuned
model.

MRR (%) RECALL@1(%)

CROSS-ENTROPY LOSS 60.7 54.5
RANKING LOSS 63.9 58.3

4.3.2 Ranking Loss
Table 4 shows the result of changing the loss func-
tion from LBCE to Lranking. The result shows the
effect of different loss functions on M finetuned
using mix data regularization; the same effect is
seen with other regularization strategies. Changing
the loss function to Lranking improves the perfor-
mance of the model by 3% on MRR and 4% on
Recall@1 on the finetune test dataset.

5 Online Evaluation

5.1 Setup

We deployed the proposed model in a customer
service agent-support application that agents use
to resolve live customer contacts. The model is
deployed as a service using Amazon Sagemaker
2. The agent-support application calls the Sage-
maker endpoint with the current context (previous
dialogue turns and profile information), and the
model returns the highest scored response from the
template pool. The proposed model is able to rec-
ommend responses without any significant latency
impact on the overall application.

The agent-support application presents the
agents with the standard chat interface, except it
replaces the text box with the top-suggested re-
sponse from the model. Every time the customer
or the agent enters text into their chat window, the
model refreshes the response recommendations for
the next agent utterance. The agents can accept or
reject the model’s response recommendation. If
they reject the model’s recommendation, they can
type on their own. Since the model is deployed in
a human-in-the-loop setup, we use it to evaluate
the performance of the pretrained and finetuned

2https://docs.aws.amazon.com/sagemaker/

39

Table 5: The Recall@1 and % contacts resolved of pretrained and two finetuned models using cross-entropy and
ranking loss respectively on live customers. M is the pretrained model; Mtuned is finetuned model.

M Mtuned WITH LBCE Mtuned WITH Lranking

NUMBER OF CONTACTS 3094 3636 2212
RECALL@1 (%) 40.8 62.7 74.0
PERCENTAGE OF CONTACTS RESOLVED (%) 0.9 5.3 13.6

models on live customer contacts. We present the
results of the model on delivery related issue.

5.2 Results

Table 5 shows the online results for the three mod-
els on live customer contacts: pretrained model
(M) as explained in section 3, finetuned model
(MBCE) with BCE loss and data regularization;
and finetuned model (Mranking) with ranking loss
and data regularization. For each model, we cal-
culate Recall@1 as the fraction of total responses
that were accepted by the agents. We also report
the percentage of contacts resolved, which repre-
sents the percentage of contacts when the model’s
recommendations were accepted at every turn.

After finetuning using BCE, the Recall@1 of
the model showed an absolute increase of 22%
over the pretrained model. Finetuning using the
ranking loss outperformed the pretrained model
by 33%, and BCE finetuned model by 11%. For
the ranking loss based finetuning, the percentage
of contacts resolved completely using the model’s
recommendations went up by 13% compared to the
pretrained model.

5.3 Error Analysis

To better understand the model’s failure cases, we
manually read 100 turns where the agents rejected
the model’s recommended response and typed on
their own. For this study, we focus on the best
model - finetuned using ranking loss and data regu-
larization.

We found that 17% of the model’s errors were
caused because the conversation had gone off the
common path. The model is not able to recommend
the correct response in these cases because it has
not seen these types of conversations during the
training, leading to the template pool being unable
to cover many of said cases. Examples of why con-
versations may go long or off-track include, but are
not limited to, a customer being unhappy with the
solution, experiencing multiple issues within the
same chat, and/or participating in side conversa-
tions.

Another major reason for rejection was due to

missing and/or incomplete context data available
to the model. To contrast, this means agents had
access to a richer profile information than what was
available to the model. As a result, the model did
not have the relevant context to recommend the
right response. In 28% of the cases, there were
extra profile features available to the agents, such
as being able to check the carrier’s website, that
were not available to the model.

In dialogues, usually there is more than one cor-
rect response, giving room to agent’s subjectivity in
accepting/rejecting a model’s response. We found
that 15% of rejected turns occurred because the
agent decided to reject the model’s suggestion in
favor of a stylistically different but semantically
similar message. For example, some agents pre-
ferred closing the contact with ‘Thank you for con-
tacting ’while others preferred to directly say ‘Take
care and have a nice day ’.

6 Conclusion and Future Work

In this paper, we study a less explored approach of
finetuning a retrieval-based dialogue system based
on a small amount of high-quality, annotated data
that resulted in 26% offline and 33% online perfor-
mance improvement in Recall@1 over a pretrained
model.We deployed the model in an agent-support
application, and demonstarte that the proposed
model achieves 74% Recall@1, suggesting these
models are effective in assisting agents by recom-
mending text responses. The results demonstrate
the effectiveness of pretrain-finetune approach in
dealing with the limited supervised data challenge.
In this paper, we focus on a customer service deliv-
ery issue, but since this technique can scale to other
task-oriented dialog systems with a wide range of
applications.

We believe that additional investment in contex-
tual and profile features would help improve the
model performance. As discussed in the error anal-
ysis section, 28% of the model’s error is caused
due to missing context information. In addition,
manual study of the rejection reasons highlights
the issue of subjective evaluation. More investment
is needed in agent training and standardization of

40

annotation. We believe the model can significantly
benefit from better annotation and evaluation.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma,

Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing
Liu, James Glass, and Fuchun Peng. 2019. Mix-
review: Alleviate forgetting in the pretrain-finetune
framework for neural language generation models.
arXiv preprint arXiv:1910.07117.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, et al. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 955–
964.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Yichao Lu, Phillip Keung, Shaonan Zhang, Jason Sun,
and Vikas Bhardwaj. 2017. A practical approach
to dialogue response generation in closed domains.
arXiv preprint arXiv:1703.09439.

Yichao Lu, Manisha Srivastava, Jared Kramer, Heba El-
fardy, Andrea Kahn, Song Wang, and Vikas Bhard-
waj. 2019. Goal-oriented end-to-end conversational
models with profile features in a real-world setting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Industry Papers), pages 48–55.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

