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Abstract

In developing an online question-answering
system for the medical domains, natural lan-
guage inference (NLI) models play a central
role in question matching and intention de-
tection. However, which models are best for
our datasets? Manually selecting or tuning
a model is time-consuming. Thus we experi-
ment with automatically optimizing the model
architectures on the task at hand via neural
architecture search (NAS). First, we formu-
late a novel architecture search space based on
the previous NAS literature, supporting cross-
sentence attention (cross-attn) modeling. Sec-
ond, we propose to modify the ENAS method
to accelerate and stabilize the search results.
We conduct extensive experiments on our two
medical NLI tasks. Results show that our sys-
tem can easily outperform the classical base-
line models. We compare different NAS meth-
ods and demonstrate that our approach pro-
vides the best results.

1 Introduction

Nowadays, online medical question answering
(QA) systems are becoming more and more pop-
ular. Since the breakout of COVID-19, people
grapple with going to the hospital, and hospitals’
emergency rooms in some cities are even empty
during the daytime.1 Thus, medical QA systems
are of essential importance. NLI models play a
central role in such a QA system (Xie et al., 2020).
In our QA scenario, we usually use NLI models to
determine whether a query has the same intention
as some of our labeled questions. For in-domain
tasks like ours, modeling experiences are scarce,
so selecting a suitable model for our medical NLI
tasks becomes a time-consuming procedure. From
our experience, different datasets have different op-
timal models. Thus when a new dataset comes, our

∗Contact: 52205901018@stu.ecnu.edu.cn.
1https://www.cbc.ca/news/health/covid-19-emergency-

departments-canada-1.5510778

engineers usually devote 4 to 5 days experimenting
on model tuning and hyper-parameter search with
multiple GPU cards.

To speed up the development of our medical QA
system and free up the NLP engineers from labori-
ous work, we propose developing a neural architec-
ture search (NAS) framework. Neural architecture
search (NAS) has recently attracted intensive at-
tention, both in computer vision and NLP. New
RNN models are learned in NASNet (Zoph and Le,
2017), ENAS (Pham et al., 2018), DARTS (Liu
et al., 2018), improved DARTS(Jiang et al., 2019)
for language modeling. Evolved transformer (So
et al., 2019) use the evolution-based NAS algo-
rithm to search for better transformer architectures.
TextNAS (Wang et al., 2020) design a new search
space for NLU tasks. We will refer to our system
as NASQU, shorted for Neural Architecture Search
for Query Understanding.

NASQU consists of two parts. First, we design
a search space that is suited for NLI tasks. The
search space is an extension of the search spaces of
TextNAS (Wang et al., 2020). First, for sentence
pair modeling, cross-sentence attention plays a cen-
tral role in aligning the two sentences’ contexts and
providing a more in-depth understanding of the
semantic relations between two sentences (Chen
et al., 2016). We add cross-sentence attention op-
erations in the search space, enabling NASQU to
search for models with cross-sentence attention
mechanisms. Second, aggregating the encoder’s
outputs to a fixed vector is essential for an NLI
model’s performance. In this work, we use NAS to
decide which layers’ outputs are fed into the aggre-
gator and the specific operation in the aggregator
layer.

Second, for improving the search results, we
employ two modifications to the search method.
Our search method mainly follows ENAS (Pham
et al., 2018), a reinforcement learning (RL) based
search approach. An LSTM controller is employed
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Figure 1: The sentence vector-based framework for the NLI task.

to generate a novel child model, and it will receive
a reward based on the child model’s performance.
Then the controller can update its parameters to
improve its ability to generate better child mod-
els. A key ingredient for ENAS is weight sharing.
We propose further to enhance the weight shar-
ing strategies during architecture search. Besides,
we suggest that search warm-ups can stabilize the
search processes and provide better search results.

We conduct experiments on two medical NLI
datasets designated for intent identification in our
medical QA system. The experimental results show
that NASQU can learn novel models that perform
better than baseline models and meet efficiency re-
quirements. Also, a comparison among the search
methods shows that our NASQU obtains better re-
sults than other search methods. Besides, we show
that the search space design of NASQU is essential.

Our work contributes to the field by the follow-
ing aspects:

• We extend the search space for neural archi-
tecture search in NLP tasks by including cross-
sentence attention modules and many design
choices.

• We experiment on more in-depth parame-
ter sharing strategies than ENAS, which are
proven to provide better search results within
less time.

2 NASQU

In this section, we first describe the architecture
framework of NLI tasks. Then we extend the search
space of TextNAS to support cross-attn modeling
and aggregator search. And Finally, we elaborate
on the search algorithm in NASQU.

2.1 Architecture framework

We adopt the sentence vector-based frame-
work (Bowman et al., 2015) for NLI tasks. The

framework is illustrated in Figure 1. The two sen-
tences (i.e., hypothesis and premise) are encoded
and aggregated in siamese network architecture.
After obtaining the sentence embedding vector u
and v, the final feature vector is [u; v; |u−v|;u ·v],
where [] is concatenation operation.

Note that our framework is different from
TextNAS in two ways. First, we enable attention
to flow between the two sentences, which we will
elaborate on in the next subsection. Second, we add
the search space for aggregators, where TextNAS
(Wang et al., 2020) fixes the aggregator to the self-
attention aggregator.

2.2 Encoder Search space

To ensure efficiency, we do not stack blocks of the
same structure in the encoder. Thus the micro and
macro search space are the same. The search space
for the encoder is depicted as a fully connected
DAG. As is shown in Figure 2, the encoder has K
(= 5) layers. Node i in the DAG is a neural network
layer, and edge <i, j> means the output of layer i is
fed into layer j. If a layer has multiple inputs, then
the inputs will be summed.

For each node, the controller first decides
whether the node encodes the sentence itself (self-
encoding layer), or it encodes the attention from
one sentence to each other (cross-attention layer).

If layer i is a cross-sentence layer, it will make
its input attend to its counterpart’s input in the other
sentence’s encoder. For example, in Figure 2, layer
2 of the premise encoder is a cross-sentence atten-
tion layer. So its input will attend to the input of
layer 2 in the hypothesis encoder. In addition to
the dot product attention used in the multi-head
attention of Transformers (denote as dot), we in-
corporate the four attention functions in Tan et al.
(2018), referred to as p_dot2, concat, add, minus.

2Note that the dot attention in Tan et al. (2018) (denoted
as p_dot by us) is not the same as the dot product attention
in MHA, where the former is a pointwise product (‘A * B’ in
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Figure 2: The DAG for the encoder. The layers can be self-encoding layers or cross-attention layers. If layer i is a
cross-sentence layer, it will make its input attend to its counterpart’s input in the other sentence’s encoder.

Figure 3: The DAG for the aggregation layer.

For the self-encoding layer, we incorporate four
categories of candidate layers which are com-
monly used for text representation, namely con-
volutional layers with kernel size 1, 3, 5 (denoted
as conv1, conv3, conv5), recurrent layers such as
LSTM/GRU (lstm, gru), max pooling layers with
window size 3 and 5 (denoted as pool_3, pool_5),
and multi-head self-attention layers with number of
heads 4 and 8 (mha_4, mha_8). Skip connection
(skip) is also included to support residual layers.
Zero layer (zero), which is to output zero tensors, is
also included, so that the final model can be sparser
than is shown in Figure 2.

2.3 Aggregator search space

As depicted in Figure 3, the DAG for aggrega-
tor is much simpler. One has to decide whether
each layer’s output in the encoder DAG should
be fed into the aggregation layer. If multiple lay-
ers are selected, their outputs are summed. There
are several different aggregation operations. The
most common two are the max-pooling aggrega-
tor (max_agg) and the average-pooling aggregator

PyTorch), and the latter is (batch-wise) matrix multiplication
(‘torch.matmul(A, B)’).

(avg_agg). The self-attention (sa_agg) technique
is also used for aggregation (Gong et al., 2018;
Chen et al., 2018) . We also include dynamic rout-
ing (Gong et al., 2018) (henceforth dr_agg) into
our aggregator operation space.3

2.4 Architecture search algorithm
We adopt the ENAS (Pham et al., 2018) frame-
work for search since it is one of the most effective
and efficient among all state-of-the-art search al-
gorithms. ENAS searches for the best network ar-
chitecture via reinforcement learning with weight
sharing. ENAS leverages an LSTM as the con-
troller. In each step, the controller samples several
child networks from the search space. The child
networks share the same set of parameters with
the global super-graph to accelerate the evaluation
procedure. After child models’ performances are
obtained, they are fed back to the controller as re-
ward signals. The parameters of the controller are
updated through policy gradients based on REIN-
FORCE (Williams, 1992). We implement ENAS
via NNI4.

In this work, we try to improve the search results
by deeper parameter sharing and search warm-up.
First, the parameter sharing in ENAS is relatively
shallow. The parameters are shared only when
precisely the same operation is used in the same po-
sition of the DAG. We share the parameters across
related operations. For convolutional layers, we use
depthwise separable convolution networks since
they are more parameter efficient. And the point-

3Following Gong et al. (2018), we set the number of cap-
sules as 4 and the number of iterations as 3.

4https://github.com/microsoft/nni
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wise convolution inside each convolutional layer
is shared across conv1, conv3, and conv5. The
key, query and value matrices inside mha_4 and
mha_8 are shared for multi-head attention layers.
The key, query, and value matrices for cross-attn
modules of different attention functions are shared.

Second, we add a search warm-up phase before
the search begins, and the learning rate of the RL
controller is also gradually increased to the max-
imum value and follows a linear decay schedule.
The intuition is that when the shared parameters
are trained for pre-specified steps, the controller
can receive much more reliable reward signals.

To make the model efficient enough for online
deployment, we add efficiency constraints to the
generated child models, which will be specified
in the next section. Child models that fail these
requirements will be assigned a zero reward so that
the controller will learn how to generate models
that meet the requirements.

3 Experiments and Discussion

3.1 Datasets

We conduct experiments on two medical NLI
datasets we build for developing our medical di-
alogue system, whose statistics and metrics for
evaluation are shown in Table 1.

Chinese Medical Frequent Asked Queries
(CMFAQ). These datasets contain pairs of Chi-
nese medical frequently asked questions (FAQs),
and the model has to determine whether the two
queries contain the same meaning. The dataset is
collected from the logs of an online medical con-
sultation provider. The sentences in this dataset are
usually general health-related questions.5

Chinese Medical Query Patterns (CMQP).
This dataset is designated for semantic matching
of the query patterns. The model has to determine
whether two patterns have the same intention. We
collect queries that are related to medical entities
and annotate their NER tags. Then we replace the
named entities with special tokens that reflect the
entity types in the sentence and transform the query
into a query pattern.6

5For examples, "现在在居家隔离，我要怎么保持健
康？" (Now in isolation at home, how can I keep healthy?) is
a quite popular query during the breakout of COVID-19, and
it is matched to one of our collected FAQs, "居家隔离如何
养生？" (How to keep healthy when quarantined at home?)

6For example, a common question we received is "立普
妥是饭前吃吗？" (Is Lipitor taken before meals?). In this
sentence, "立普妥" (Lipitor) is a drug entity, so the query

The train/valid/test split is defined by randomly
splitting the whole annotated dataset with a ratio
7:1:2.

3.2 Experimental settings

To improve the performances of models that are not
pre-trained on a large corpus, we will distill knowl-
edge from a pre-trained large teacher model both
during search and model evaluation. The knowl-
edge distillation method follows Liu et al. (2019),
and the distillation temperature is set to be 10.
We select the Chinese BERT-wwm-ext (Cui et al.,
2019) as the teacher model. To make it more suit-
able for our domain applications (Gu et al., 2020),
we further pre-train it on our 2.3GB medical cor-
pus.

In our experiments, the encoder has five layers
at most. The 128d word embedding vectors are
initialized by a pre-trained Word2Vec (Mikolov
et al., 2013) model trained on our medical corpus
and are fine-tuned during training. The hidden
dimension is kept to 256 in the model. During
the architecture search, the batch size is 128, max
input length is 64 for both premise and hypothesis,
the dropout ratio is 0.2, and the weight decay is
2e-6. For both model weights and controller, we
utilize Adam optimizer and learning rate decay
with cosine annealing. The maximum learning rate
lmax is 3e-3, and the minimum learning rate lmin

is 1e-6, and the cosine cycle is 10. For model
weights, at the beginning of training, the learning
rate is linearly warmed up for 0.8 of one epoch to
lmax. For search warm-up, in the first 3 epochs, the
controller is not updated, and at the beginning of
the fourth epoch, the controller learning rate is also
linearly warmed up for 0.8 of one epoch to lmax.

After each epoch, ten candidate architectures are
generated by the controller and evaluated on the
validation set. The inference batch size is 1, which
mimic the scenario for online deployment. When
obtaining the validation performance, we also cal-
culate the inference speed and memory consump-
tion. The efficiency requirement is that the model’s
GPU memory consumption is less than 1 GB, and
the per-sample inference time is lower than 20ms.
If the efficiency requirements are not satisfied, the
child model’s reward is set to be zero. After train-

is transformed into a query pattern "<drug>是饭前吃吗?"
(<drug> should be taken before meals?), and it is matched to
one of our collected query patterns "<drug>应该饭前吃还
是饭后吃？" (<drug> should be taken before meals or after
meals?).
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Dataset avg seq_len Train # Dev # Test # Label # Metrics
CMFAQ 32.5 37676 5382 10764 2 F1
CMQP 19.6 32476 4639 9279 2 F1

Table 1: Overview of medical NLI datasets in experiments.

ing 150 epochs, the architecture with the highest
evaluation F1 is chosen as the final network. And
this model is retrained from scratch with optimal
hyper-parameters tuned using NNI’s implementa-
tion of Bayesian optimization. We mainly focus on
three hyper-parameters: (1) batch size, (2) learning
rate, (3) dropout rate.

We assign 2 CPU cores, 8G memory, and 1 Tesla
V100 GPU card for each search or evaluation in
our experiments. The search lasts 12 hours and 4
hours for CMFAQ and CMQP, respectively.

3.3 Baseline methods

The best learned architectures are evaluated
by training from scratch (with hyper-parameter
search). The baseline models include: (a) LSTM +
max_agg; (b) LSTM + sa_agg, which are evaluated
by Wang et al. (2018); (c) LSTM/Transformer +
dr_agg (Gong et al., 2018); (d) ESIM (Chen et al.,
2016); (e) Decomposable attention (DecompAttn)
model (Parikh et al., 2016). The number of en-
coder layers is treated as a hyper-parameter and
are tuned together with other parameters. We also
compare our search space with that in TextNAS.
We also compare different search algorithms that
have similar time complexities as ENAS, including
DARTS (Liu et al., 2018), One-Shot (Luo et al.,
2019), and Random Search with Weight Sharing
(RandomSA) (Li and Talwalkar, 2019). 7 The
BERT-wwm-ext teacher model’s performances are
also reported.

3.4 Search Results

As depicted in Figure 4(a) and 4(b), the learned
architectures consist of different layers categories.
For convenience, we will refer to the best model
learned on CMFAQ as NASQU-1 and the best
model learned on CMQP as NASQU-2. NASQU-
1’s encoder has 3 self-encoding encoders, 2 of
which are two convolutional layers, and the other
one is a MHA layer, and it has a cross-attn layer
with the add attention function. Note that NASQU-
1 discards the 4th layer in the DAG since it is zero

7Unless specified, the default settings of their open-source
codes are used.

MODEL CMFAQ CMQP
Baseline models

GRU + max_agg 81.8 83.6
LSTM + max_agg 82.3 84.6
LSTM + sa_agg 83.6 85.4
LSTM + dr_agg 85.3 87.7

Transformer + dr_agg 84.3 86.8
ESIM 85.8 87.6

DecompAttn 84.5 86.9
NAS models

DARTS 86.4 87.9
One-Shot 86.3 88.1

RandomSA 85.5 87.2
TextNAS 86.3 88.6

Our models
NASQU-1 87.1∗ 88.5
NASQU-2 86.2 89.5∗

BERT-wwm-ext 88.9 90.5

Table 2: Results of the two medical NLI dataset. For
each dataset, we conduct a significance test against the
best reproducible model, and * means that the improve-
ment is significant at the level of 0.05 significance level.

operation. The aggregator of NASQU-1 takes lay-
ers 2 and 4 as input, and the aggregator is sa_agg.
Meanwhile, NASQU-2 is more lightweight than
NASQU-1 since it discards the 3rd and 5th layer.
NASQU-2’s encoder has a GRU layer, a conv layer,
and a cross-attn layer with p_dot attention function.
The aggregator of NASQU-2 takes all valid layers
as input, and the aggregator is dr_agg.

Although the learned model seems to be more
involved than manual architectures, we still find
that there are some design principles in line with
the commonsense and previously established ob-
servations:

• Convolution layers are combined with GRU
and multi-head self-attention layers, which
are similar to C-LSTM (Zhou et al., 2015)
and Transformer (Vaswani et al., 2017). In-
tuitively, convolution operations extract local
features similar to n-gram, which complement
long-term dependency features captured by
GRU/self-attention.
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(a) NASQU_1

(b) NASQU_2

Figure 4: Learned architectures on the two medical NLI datasets.

• We find that the best learned architectures
include cross-attn modules, which are in
line with observations in the previous liter-
ature (Parikh et al., 2016; Chen et al., 2016).
Cross sentence attention can align the seman-
tics of two text inputs and provide better fea-
ture extraction for NLI tasks.

• Different tasks result in quite different archi-
tectures, emphasizing the importance of task
specificity. Besides, a smaller dataset size
prefers a more light-weighted architecture,
since intuitively, a heavier architecture is more
prone to over-fitting on a small dataset.

The performance results are shown in Table 2.
The learned architecture discovered by NASQU
achieves higher average F1 scores than all the base-
line models. Also, it outperforms other network
architectures found automatically by other search
spaces and algorithms. Note that on CMQP, the
improvement over different baselines is statisti-
cally significant. We also evaluate the transferring
ability of the two best learned architectures. Al-
though NASQU-1 also performs well on CMQP
compared with baselines, it is significantly worse
than NASQU-2. This observation also stands for
NASQU-2 on the CMFAQ dataset. These observa-

Model GPU memory inference speed
BERT-wwm-ext 4.8 GB 66ms/it

NASQU-1 0.84 GB 14ms/it
NASQU-2 0.71 GB 11ms/it

LSTM + dr_agg 0.72GB 15ms/it
ESIM 1.12GB 21ms/it

Table 3: Comparison of GPU memory consumption
and inference speed between the teacher model BERT
Large and NASQU-1, and NASQU-2.

tions validate the importance of customizing differ-
ent architecture for different tasks.

Table 2 also shows that the performances of the
two learned models is close to the BERT teacher.
We now compare the inference speed and GPU
memory consumptions of BERT and the learned
models. The results are reported in Table 3. We
can see that the learned models achieve significant
speed-up over the BERT teacher models without
too much performance loss, and they are more ef-
ficient than ESIM. LSTM + dr_agg has compara-
ble efficiency, but the performance is significantly
worse.

3.5 Ablation studies

We now conduct extensive ablation studies to
demonstrate our search space design, and modi-
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strategies test F1
NASQU 87.1∗
- deeper weight sharing 85.9
- search warm-up 84.5

Table 4: Results for ablations studies on the strategies
we propose for search.

search space test F1
NASQU 87.1∗
- cross sentence attention 86.2
- aggregator search space 84.6

Table 5: Results for ablations studies on the search
space we construct for architecture search for NLI
tasks.

fications to the search algorithm are essential. The
ablation studies are performed on CMFAQ.

First, we conduct ablation on the proposed modi-
fications to the search method. As we can see from
Table 4, deeper weight sharing is beneficial. Intu-
itively, deeper parameter sharing reduces the num-
ber of shared parameters during the search phase,
making the reward signal more reliable. The results
also show that the search warm-up also contributes
to better search results.

We now conduct an ablation study on our entire
search space. The results are shown in Table 5.
Note that for our NLI tasks, when we drop the
cross attention mechanism from the search space,
the search results drop from 87.1 to 86.2. And we
can see that dropping the aggregator search space
(fixing the aggregator to be sa_agg) also results in
worse performances.

4 Conclusion and Future Work

In this work, we experiment on modeling NLI tasks
via NAS on our medical NLI tasks. Our search
space is an extension to TextNAS and ENAS, which
enable us to search for novel models with cross
sentence attention and suitable aggregators. To
improve the search results, we also propose a more
in-depth weight sharing strategy than ENAS and
search warm-up steps. Experiments on our NLI
tasks demonstrate that our search space is beneficial
for NLI tasks.
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