
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 163–169
June 6–11, 2021. ©2021 Association for Computational Linguistics

163

An Architecture for Accelerated Large-Scale Inference of
Transformer-Based Language Models

Amir Ganiev∗ and Colt Chapin and Anderson de Andrade and Chen Liu∗

Wattpad
Toronto, ON, Canada

amir.ganiev@mail.utoronto.ca, {colt, anderson}@wattpad.com,
ceciliachen.liu@mail.utoronto.ca

Abstract

This work demonstrates the development pro-
cess of a machine learning architecture for in-
ference that can scale to a large volume of re-
quests. In our experiments, we used a BERT
model that was fine-tuned for emotion analysis,
returning a probability distribution of emotions
given a paragraph. The model was deployed as
a gRPC service on Kubernetes. Apache Spark
was used to perform inference in batches by
calling the service. We encountered some per-
formance and concurrency challenges and cre-
ated solutions to achieve faster running time.
Starting with 3.3 successful inference requests
per second, we were able to achieve as high
as 300 successful requests per second with the
same batch job resource allocation. As a result,
we successfully stored emotion probabilities
for 95 million paragraphs within 96 hours.

1 Introduction

As data in organizations becomes more available
for analysis, it is crucial to develop efficient ma-
chine learning pipelines. Previous work (Al-Jarrah
et al., 2015) has highlighted the growing number
of data centers and their energy and pollution reper-
cussions. Machine learning models that require less
computational resources to generate accurate re-
sults reduce these externalities. On the other hand,
many machine learning applications also require
results in nearly real-time in order to be viable and
may also require results from as many data samples
as possible in order to produce accurate insights.
Hence, there are also opportunity costs associated
with missed service-level objectives.

Attention-based language models such as BERT
(Devlin et al., 2019) are often chosen for their
relative efficiency, and empirical power. Com-
pared to recurrent neural networks (Hochreiter and
Schmidhuber, 1997), each step in a transformer
layer (Vaswani et al., 2017) has direct access to all

∗Work done while the author was working at Wattpad.

other steps and can be computed in parallel, which
can make both training and inference faster. BERT
also easily accommodates different applications by
allowing the fine-tuning of its parameters on dif-
ferent tasks. Despite these benefits, exposing these
models and communicating with them efficiently
possesses some challenges.

Machine learning frameworks are often used to
train, evaluate, and perform inference on predic-
tive models. TensorFlow (Abadi et al., 2016) has
been shown to be a reliable system that can operate
at a large scale. A sub-component called Tensor-
Flow Serving allows loading models as services
that handle inference requests concurrently.

System architectures for inference have changed
over time. Initial approaches favored offline set-
tings where batch jobs make use of distributed plat-
forms to load models and data within the same
process and perform inference. For example, Ijari,
2017 suggested an architecture that uses Apache
Hadoop (Hadoop, 2006) and Apache Pig for large-
scale data processing, where results are written
to a Hadoop Distributed File System (HDFS) for
later consumption. Newer distributed platforms
such as Apache Spark (Zaharia et al., 2016) have
gained prominence because of their memory opti-
mizations and more versatile APIs, compared to
Apache Hadoop (Zaharia et al., 2012).

As part of this architecture, inference services
would often be reserved for applications that
require faster responses. The batch-based and
service-based platforms have different use cases
and often run in isolation. Collocating data and
models in a batch job has some disadvantages.
Loading models in the same process as the data
forces them both to scale the same way. Moreover,
models are forced to be implemented using the pro-
gramming languages supported by the distributed
data platform. Their APIs often place some limita-
tions on what can be done.

With the evolution of machine learning frame-



164

works and container-orchestration systems such as
Kubernetes,1 it is now simpler to efficiently build,
deploy, and scale models as services. A scalable
architecture was presented in (Gómez et al., 2014)
that proposes the use of RESTful API calls exe-
cuted by batch jobs in Hadoop to reach online ser-
vices that provide real-time inference. Approaches
like this simplify the architecture and address the
issues discussed previously.

In this work, we present an architecture for batch
inference where a data processing task relies on ex-
ternal services to perform the computation. The
components of the architecture will be discussed in
detail along with the technical challenges and solu-
tions we developed to accelerate this process. Our
application is a model for emotion analysis that
produces a probability distribution over a closed
set of emotions given a paragraph of text (Liu et al.,
2019). We present benchmarks to justify our ar-
chitecture decisions and settings. The proposed
architecture is able to generate results for 95 mil-
lion paragraphs within 96 hours.

2 Architecture design

We deployed our model as a TensorFlow service
in a Kubernetes cluster. A sidecar service prepro-
cessed and vectorized paragraphs and forwarded
requests to this service. We used gRPC to commu-
nicate with the services,2 which is an efficient com-
munication protocol on HTTP/2. Both nearly real-
time and offline use cases made calls to these ser-
vices. We used Apache Spark for batch processing,
which we ran on Amazon’s AWS EMR service.3

Our batch job was developed using Apache Spark’s
Python API (PySpark). The batch job fetched a
dataset of relevant paragraphs, called the inference
service, and stored the results. The job had two
modes: a backfill mode and a daily mode, which
ran on a subset of mutated and new paragraphs.
This batch job was part of a data pipeline, sched-
uled using Apache AirFlow4 and Luigi.5 Figure 1
shows the main components of this architecture.

2.1 Kubernetes vs. Apache Spark
One of the key issues we faced in scaling up our
inference services was the growing size of the mem-
ory footprint of an instance. A standard practice

1https://kubernetes.io
2https://grpc.github.io
3https://aws.amazon.com/emr
4https://airflow.apache.org
5https://github.com/spotify/luigi

when conducting model inference at scale in a
MapReduce program such as Apache Spark is to
broadcast an instance of the model to each dis-
tributed worker process to allow for parallel pro-
cessing. However, when the footprint of these in-
stances becomes too large, they begin to compete
with the dataset being processed for the limited
memory resources of the underlying cluster and, in
many cases, exceeding the capacity of the underly-
ing hardware.

While this issue does not preclude the use of
Apache Spark for running inferences on large mod-
els at scale, it does complicate the process of im-
plementing the job in a cost-efficient manner. It
is possible to allocate more resources, but because
the clusters are static in size, a lot of work has to
go into properly calculating resource allocation to
avoid over or under-provisioning. This is where the
idea of offloading the model to Kubernetes comes
into play.

While our MapReduce clusters struggled to scale
and accommodate the larger models being broad-
casted, by leveraging Kubernetes we were able to
monitor and optimize resource usage as well as
define autoscaling behaviors independently of this
cluster. That said, while there are clear benefits to
isolating your model from your MapReduce job
we must now consider the added overhead of the
network calls and the effort to build and maintain
containerized services.

2.2 Kubernetes node pool
To ensure optimal resource usage, we provisioned
a segregated node pool dedicated to hosting in-
stances of our models. A node pool is a collec-
tion of similar resources with predefined autoscal-
ing behaviors. We leveraged Kubernetes’ built-
in taint/toleration functionality to establish the re-
quired behavior. In Kubernetes, Taints designate
resources as non-viable for allocation, unless de-
ployments are specifically annotated as having a
Toleration for said Taint. For this node pool, we
selected instance types that offer faster CPUs, but
provide an adequate amount of memory to load our
models.

2.3 REST vs. gRPC
Once we made the decision to deploy our model
as a service, we had to determine which network
protocol to use. While representational state trans-
fer (REST) (Pautasso et al., 2013) is a well-known
standard, there were two aspects of our use case

https://kubernetes.io
https://grpc.github.io
https://aws.amazon.com/emr
https://airflow.apache.org
https://github.com/spotify/luigi


165

Figure 1: Architecture overview.

that made us consider alternatives. The first is that
architecturally, our use case was far more func-
tional in nature than REST. Second, the nature of
our data means that request messages can be large.
It was for this reason that we found the efficiency
offered by the Protobuf protocol a natural fit for
our use case.6

Having decided to use gRPC and Protobuf, we
encountered two issues. First, gRPC uses the
HTTP/2 protocol which multiplexes requests over
a single persistent TCP connection. Because of this
persistent connection, Layer-4 load balancers that
can only route connections are not able to recog-
nize requests within them that could be balanced
across multiple replicas of a service. To enable
this, we rely on a Layer-7 load balancer which is
able to maintain persistent connections with all de-
vices, and identify and route requests within these
channels accordingly.

The second issue was organizational in nature.
REST is a widely accepted standard, but more im-
portantly, it is a protocol that developers are famil-
iar with. The introduction of a different API design
has led to significant friction of adoption.

2.4 AWS EMR cluster configuration

The AWS EMR cluster needed to be configured
to run a Apache Spark job that makes 95 million
inference calls to our micro-service. Due to the
unbounded nature of these paragraphs, which can
become quite large in our use case, these 95 million
records require a significant amount of disk space
(in the order of terabytes).

Taking into account the cost constraints of this
project, we chose an AWS r5.xlarge instance with
200 GiB of disk space as a master node, and 5 AWS
r5.4xlarge instances with 1,000 GiB of disk space
each, as worker nodes. This configuration ensures

6https://developers.google.com/
protocol-buffers

that there is enough disk capacity to process the
data and the number of cores is as high as possible
without exceeding the cost constraints. Addition-
aly, we selected these to be memory-optimized to
ensure we provide the job with enough RAM to
efficiently process our joins.

The EMR cluster configuration is kept constant
as a controlled variable throughout the project and
in all of our experiments. This ensures that only
the implementation changes affect the performance
of the inference job.

2.5 Monitoring

There were two different solutions that monitor dif-
ferent aspects of the proposed architecture: Apache
Spark console and DataDog. AWS EMR provided
access to the Apache Spark console for its running
tasks and a history server for completed tasks. The
console displays the execution plan, the running
stage, the number of partitions completed in that
stage, the number of stages left to execute, as well
as statistics and message logs of our inference job.
Success or failure of this job and its pipeline was re-
ported using DataDog.7 DataDog is a cloud based
monitoring service that provides helpful visualiza-
tion tools to monitor applications.

Additionally, our services were instrumented to
report the number, latency, and status code of all
calls received. We made use of DataDog to aggre-
gate and monitor these metrics. In our implementa-
tion, the instrumentation was handled by functional
wrappers around our endpoint handlers, as well as
a synchronous gRPC Interceptor for the client on
our sidecar service. Figure 2 shows an example of
our request count on our daily job.

7https://www.datadoghq.com

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.datadoghq.com


166

Figure 2: DataDog visualization of a daily job, con-
sisting of 600,000 paragraphs calls to the service. The
X-axis is the local time starting at 1 a.m. The Y-axis is
the total number of calls executed within 1 minute. The
highlighted vertical bar shows that 18,000 calls were
executed within 1 minute (300 per second) at 1:54 a.m.
The calls started at around 1 a.m. and reached a peak
speed at around 1:40 a.m.

3 Architecture optimization

Our initial approach, which used the configuration
in the previous section, was resilient to failures but
performed slowly at around 4 requests per second
during the inference step. With a backfill target
of 95 million paragraphs, running this job was in-
tractable. Our investigations concluded that the
issues were rooted in a low request pressure on
the backend services. Thus, the sections below de-
scribe the steps taken to address these issues and
speed up the inference process.

3.1 Scaling model service
Our autoscaling group consisted of instances with
Intel’s Xeon Platinum 8175M CPUs and 64 GB
of RAM. The use of GPUs is not cost-effective
without a proper batching mechanism, which is
considered to be outside of the scope of this work.
Each instance had 8 physical cores and 16 logical
cores. To reduce the memory footprint but also al-
low a fine-grained resource allocation, Kubernetes
pods had a limit of 2 physical cores. In our ex-
periments, pods did not consume more than 4 GB
of memory under heavy load. Network utilization
remained well under 10 Gb/s. We set up an au-
toscaling policy with a target CPU utilization of
70%.

With a maximum number of 100 pods (25 in-
stances), we achieved a maximum of 300 requests
per second, each request being a paragraph with at
least 15 characters. Our daily job usually finished
within 60 minutes.

3.2 Tuning TensorFlow Serving parameters
We evaluated the performance of TensorFlow Serv-
ing with multiple parameter configurations. The

MKL OpenMP Intra-Op Req/Sec
Yes 2 2 5.207
Yes 2 4 5.931
Yes 4 2 4.786
Yes 4 4 5.714
No - 2 5.464
No - 4 6.452

Table 1: Average requests per second of the service un-
der different TensorFlow Serving settings: MKL, num-
ber of OpenMP threads, and number of intra-operation
threads. OpenMP is only used by MKL. Other configu-
rations do not match the number of physical or logical
cores available.

only settings that tangibly impacted performance
included: enabling Intel’s Math Kernel Library
(MKL), the OpenMP number of threads for MKL,
and the thread pool size for TensorFlow intra-
operations. We used TensorFlow Serving version
2.3.0, which uses MKL-DNN version 0.21. Table
1 illustrates performance under different configu-
rations for pods with 2 CPU physical cores and 4
logical cores. In particular, we note that disabling
MKL and allocating a thread pool the size of the
number of logical cores gave us the best perfor-
mance for this model.

3.3 Spark job tuning
Configuring parameters of TensorFlow serving and
successfully scaling up BERT micro-service al-
lowed for a faster inference speed. However, adjust-
ing the service alone did not yield better results as
the speed remained relatively similar (3.3 complete
calls per second). Therefore, a PySpark job reached
its limits in the proposed configuration. The micro-
service was not receiving enough requests to trigger
its autoscaling condition and capped out at 7 pods
(far short of our max off 100). To address this, we
sought to introduce more load by increasing the
rate at which the client makes calls to the micro-
service.

Using synchronous calls, the number of requests
the batch job can make is bounded by the number
of cores assigned to it. Since the computation is
done by the service, these cores will be mostly
waiting for the service responses.

To address Python’s synchronous nature limit-
ing the rate at which a single core can make calls
to the service, we leveraged the AsyncIO library8

within a PySpark User Defined Function (UDF),
8https://www.python.org

https://www.python.org


167

which allowed a single core to implement quasi-
concurrent calls and leverage the idle thread await-
ing a response. Since AsyncIO was utilized, the
gRPC AsyncIO API9 was imported instead of de-
fault gRPC. The async gRPC is compatible with
AsyncIO and can create asynchronous channels.
Exceptions or errors returned by the call were ac-
cessed with grpc.aio.AioRpcError method.

Even with everything above implemented within
the PySpark UDF, it was not possible to take advan-
tage of AsyncIO yet. By default, a vanilla PySpark
UDF receives only one tabular row at a time con-
taining one paragraph. That means that the Asyn-
cIO loop within the UDF was not be able to execute
concurrent calls if only one paragraph was avail-
able. Apache Spark’s Vectorized UDFs (Pandas
UDFs) allows us to process partitions in batches
and achieve the desired level of concurrency. Each
batch is represented in memory using the Apache
Arrow format and accessible with the Pandas API.

Apache Arrow is an in-memory columnar data
format that facilitates the transference of data be-
tween the JVM (Java virtual machine), which runs
the Apache Spark job, and Python processes (i.e.
Pandas UDFs). It offers zero-copy reads between
processes for data access without serialization over-
head. In our work, a scalar Pandas UDF was de-
fined to receive paragraphs as a Pandas Series and
return a probability distribution of the emotion
classes for each paragraph, as a new Pandas Se-
ries.10

With Python AsyncIO, gRPC Async, and Pan-
das UDFs using Apache Arrow, the load created
by the client (PySpark job) substantially increased.
AsyncIO ensured that extra paragraphs were sent
to the server while waiting to receive emotion prob-
abilities for outstanding calls. However, as soon as
the first one thousand calls were sent to the server
(in a matter of seconds), the PySpark job failed.
The errors received by the client were canceled,
unavailable or the deadline was exceeded (more
about gRPC errors in section 3.4). That indicated
that the client actually created too much load on
the server causing it to respond with errors. The
Kubernetes Deployment was overwhelmed and did
not have enough time to scale up the micro-service.
This led to unavailable and deadline errors.

To limit the maximum number of concur-
9https://grpc.github.io/grpc/python/

grpc_asyncio.html
10https://spark.apache.org/docs/latest/

api/python/user_guide/arrow_pandas.html

Semaphore Value Responses Per Second
10 170
25 256.7
50 298.3
75 Service upscaling fails

Table 2: Achieved number of successful gRPC calls per
second vs Semaphore value. EMR configuration, table
partitions, and paragraphs are kept constant.

rent calls to the service we utilized Semaphore.
Semaphore is a class in the AsyncIO library11 that
implements an internal counter (set by user) to limit
the number of concurrent requests as described by
Dijkstra, 1968. Number of concurrent requests run-
ning in each core can never exceed the maximum
Semaphore counter value.

To identify the maximum Semaphore value that
successfully scales up the number of Kubernetes
pods without errors, we conducted tests. Results of
the experiments are shown in Table 2.

With the Semaphore value set to 50, PySpark ran
successfully and significantly increased the load set
by the client to the server. Table 3 summarizes all
libraries and tools used to increase the number of
calls per second.

3.4 Errors during gRPC calls

As gRPC async calls were made to the service,
errors were returned. The most common gRPC re-
sponse status code exceptions12 encountered were:
cancelled, unavailable, and deadline exceeded. We
expected to receive errors when the service was
scaling to process the received requests. When an
error was received by a running PySpark client, the
running job would terminate. Thus, we were un-
able to produce inference results without a solution
that handles errors and keeps running the Spark
job.

A Circuit Breaker (Nygard, 2018) was imple-
mented to prevent clients from overwhelming ser-
vices and a gRPC Interceptor was implemented to
wait for services to be available and retry failing
calls. Table 4 shows the total number of requests
made and the number of errors that were handled
by the circuit breaker.

11https://docs.python.org/3/library
12https://grpc.github.io/grpc/core/md_

doc_statuscodes.html

https://grpc.github.io/grpc/python/grpc_asyncio.html
https://grpc.github.io/grpc/python/grpc_asyncio.html
https://spark.apache.org/docs/latest/api/python/user_guide/arrow_pandas.html
https://spark.apache.org/docs/latest/api/python/user_guide/arrow_pandas.html
https://docs.python.org/3/library
https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html


168

Tool Definition Description
Async IO Python Library Write concurrent requests with coroutines
gRPC AsyncIO Python Library GRPC client that works asynchronously
PyArrow with Pandas Data Format and Python

Library
PySpark’s tabular data format to pass to
UDF as a Pandas table

Semaphore Class in Async IO Limits number of running requests
Async Circuit Breaker Asynchronous Design Pat-

tern
Resends client calls on failure

Table 3: All libraries, design patterns, and data formats imported to PySpark job to accelerate inference speed.

Code Status Notes Amount
0 OK Returned on success 97.84M
1 CANCELLED The operation was cancelled, typically by the caller 666
4 DEADLINE_EXCEEDED The time expired before the operation was complete 469.58K
14 UNAVAILABLE The service is currently unavailable 27.90K

Table 4: Number of status codes returned in gRPC responses for the entire batch job.

3.5 Asynchronous circuit breaker

A circuit breaker is a software design pattern that
was implemented to detect and act upon response
failures received by the PySpark client. As dis-
cussed in Nygard, 2018, in a closed state the circuit
passes through and all gRPC calls are being made.
If a number of consecutive failures are received,
the circuit opens and subsequent request attempts
return a failure immediately. After a time period,
the circuit switches to a half-open state to test if
the underlying problem still exists. If a call fails
in this half-open state, the breaker is once again
tripped. When a call finally succeeds, the circuit
breaker resets back to the default closed state.

The circuit breaker implementation was taken
from an open-source library.13 Modifications were
made to support AsyncIO, so calls running through
it are sent concurrently. The state of the circuit
breaker is shared across requests that use the the
same gRPC client. To open or close the circuit,
the circuit breaker only considers the deadline ex-
ceeded, unavailable, and cancelled gRPC status
codes. Other errors are directly returned to the
client.

Finally, a gRPC Interceptor uses this circuit
breaker to block requests until the circuit breaker
is closed again and retry each request up to 4 times,
after which the data point is skipped and the batch
job continues. The interceptor gets attached to
the gRPC channel on creation. This design pat-

13https://github.com/fabfuel/
circuitbreaker

tern allows clients to not overwhelm services with
requests and halts our batch job as the service de-
ployment scales up.

4 Results

All steps in Section 3 improve the batch job speed
and results in satisfactory performance. The data
pipeline is able to produce inference results for
more than 95 million paragraphs in around 96 hours
with an inference speed of around 300 requests per
second. The semaphore value is set to 50.

4.1 Daily runs of the batch job
Once the backfill data is stored, the data pipeline
runs daily to find new and updated paragraphs from
our S3 datasets. Everyday, around 600,000 (varies
daily) paragraphs need to have their inference val-
ues stored. The graph in Figure 2 illustrates the typ-
ical daily run for the pipeline. It shows that it takes
about 40 minutes for the Kubernetes micro-service
pods to fully scale up. We limited the maximum
number of pods for daily jobs to 100.

4.2 Analytics platform
Inference results were stored in an AWS S3 bucket.
This dataset was registered in a AWS Glue Data
Catalog.14 Amazon Athena15 is a query service that
made it possible to run SQL queries on this dataset.
Redash16 is a cloud-based analytics dashboard that
we used to visualize insights from the inference

14https://aws.amazon.com/glue
15https://aws.amazon.com/athena
16https://redash.io

https://github.com/fabfuel/circuitbreaker
https://github.com/fabfuel/circuitbreaker
https://aws.amazon.com/glue
https://aws.amazon.com/athena
https://redash.io


169

results. In includes a SQL client that makes calls
to Amazon Athena and displays the query results.
Redash was connected to Amazon Athena as a data
source, which enabled us to perform queries to all
tables registered in AWS Glue.

5 Conclusion

This paper discussed a successful machine learning
architecture for both online and offline inference
that centralizes models as services. We present
solutions that use concurrency to increase the infer-
ence speed of offline batch jobs in Apache Spark.
Because of this, the majority of resources are still
assigned to these services, and the batch job re-
sources grow at a much smaller rate in comparison.

We used a resource-intensive language model
for emotion classification, where we demonstrated
how proper tuning of TensorFlow Serving and Ku-
bernetes can improve the service’s performance.
We also showed that by parallelizing the calls made
to the service in PySpark, we can significantly im-
prove inference speed.

Finally, results were presented that provide use-
ful insights into the inference performance. To-
gether, all these components resulted in a satisfac-
tory architecture, which resulted in the emotion
probabilities of 95 million paragraphs to be stored
within 96 hours. We hope the architecture can be
applied to other language tasks or machine learning
models.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283, Savannah, GA. USENIX Association.

Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat,
George K. Karagiannidis, and Kamal Taha. 2015.
Efficient machine learning for big data: A review.
Big Data Research, 2(3):87–93.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Edsger W Dijkstra. 1968. Cooperating sequential pro-
cesses. In The origin of concurrent programming,
pages 65–138. Springer.

A. Gómez, Esperanza Albacete, Y. Sáez, and P. I.
Viñuela. 2014. A scalable machine learning on-
line service for big data real-time analysis. 2014
IEEE Symposium on Computational Intelligence in
Big Data (CIBD), pages 1–8.

Apache Hadoop. 2006. Apache hadoop.
http://hadoop.apache.org.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Abhish Ijari. 2017. The study of the large scale twitter
on machine learning. International Research Journal
of Engineering and Technology (IRJET), 4:247–251.

Chen Liu, Muhammad Osama, and Anderson De An-
drade. 2019. Dens: a dataset for multi-class emotion
analysis. Proceedings of the EMNLP Conference.

Michael T Nygard. 2018. Release it!: design and deploy
production-ready software. Pragmatic Bookshelf.

Cesare Pautasso, Erik Wilde, and Rosa Alarcon. 2013.
REST: advanced research topics and practical appli-
cations. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy Mccauley,
M Franklin, Scott Shenker, and Ion Stoica. 2012.
Fast and interactive analytics over hadoop data with
spark. Usenix Login, 37(4):45–51.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xian-
grui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. 2016. Apache spark: a
unified engine for big data processing. Communica-
tions of the ACM, 59(11):56–65.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/https://doi.org/10.1016/j.bdr.2015.04.001
https://doi.org/http://dx.doi.org/10.1109/CIBD.2014.7011537
https://doi.org/http://dx.doi.org/10.1109/CIBD.2014.7011537
http://hadoop.apache.org
https://www.irjet.net/archives/V4/i10/IRJET-V4I1044.pdf
https://www.irjet.net/archives/V4/i10/IRJET-V4I1044.pdf

