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Abstract
Meta-learning has recently been proposed to
learn models and algorithms that can gener-
alize from a handful of examples. However,
applications to structured prediction and tex-
tual tasks pose challenges for meta-learning al-
gorithms. In this paper, we apply two meta-
learning algorithms, Prototypical Networks
and Reptile, to few-shot Named Entity Recog-
nition (NER), including a method for incorpo-
rating language model pre-training and Con-
ditional Random Fields (CRF). We propose a
task generation scheme for converting classi-
cal NER datasets into the few-shot setting, for
both training and evaluation. Using three pub-
lic datasets, we show these meta-learning al-
gorithms outperform a reasonable fine-tuned
BERT baseline. In addition, we propose a
novel combination of Prototypical Networks
and Reptile.

1 Introduction

The usage of Natural Language Understanding
(NLU) technologies has spread widely in the last
decade thanks to the recent jump in accuracy due to
Deep Neural Networks (DNN). In addition, DNN
libraries have made easier than ever the produc-
tization of NLU technologies. Applications have
spread in quality and quantity with the broadened
usage of chat bots by customer services, the devel-
opment of virtual assistants (e.g. Amazon Alexa,
Google Home, Apple’s Siri or Microsoft Cortana)
and the need of document parsing (e.g. medical
reports, receipts, tweets, news articles) for data ex-
traction. These applications often rely on NER to
locate and classify named entities in text. NER
aims at extracting named entities (e.g. “artist”,
“city” or “restaurant type”) from a sequence of
words. This problem is often approached (Mc-
Callum and Li, 2003) as a sequence labeling task
that assigns to each word one of the different entity
types or the “other” label for words that do not
belong to any named entity.

The wide variety of applications has made the
need for domain specific data the main bottleneck
to train or fine-tune statistical models. This data
is often acquired by running the application itself
and collecting user inputs. Then, the annotation ef-
fort can be significantly reduced using active learn-
ing (Peshterliev et al., 2019) or semi-supervised
learning (Cho et al., 2019b). However, to reach
this bootstrapping stage, statistical models have to
perform reasonably before being exposed to users.
Indeed, low performing models can turn away users
or shift the input distribution as users lose engage-
ment with features that do not work.

Transfer learning (Do and Gaspers, 2019) is an
efficient way to cope with the data shortage by ex-
tracting task-agnostic high-level features. In partic-
ular, for NER, fine-tuning language models (Peters
et al., 2018; Devlin et al., 2018; Conneau and Lam-
ple, 2019) allows achieving state-of-the-art perfor-
mances (Wang et al., 2018a). However, fine tuning
to specific tasks still requires a reasonable amount
of data, especially for a task like NER with large
structured label spaces. In certain cases, for exam-
ple to learn personalized models or for products
with restricted budgets, only a handful “reference”
examples are available. As we will show, in such
scenarios where very few training examples are
available, transfer learning has its limitations.

Few-Shot Learning (FSL) is a rapidly growing
field of research, reviewed in Section 2, that aims at
building models that can generalize from very few
examples as detailed in (Miller et al., 2000; Koch
et al., 2015). This area of research is motivated by
the ability of humans and animals to learn object
categories from few examples, and at a rapid pace.
In particular, inductive bias (Mitchell, 1980) has
been identified for a long time as a key component
to fast generalization to new inputs. Previous work
has suggested that meta-learning (Schmidhuber,
1987) can help quickly acquire knowledge from
few examples by learning an inductive bias from
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a distribution of similar tasks but with different
categories.

In this paper, we leverage recent progress made
in transfer learning and meta-learning to address
few-shot NER. First, we provide a novel definition
of few-shot NER in Section 3.1 where few-shot
NER aims at building models to solve NER tasks
given only a handful of labeled utterances per en-
tity type. Then, in Section 3.2, we define a transfer
learning baseline consisting in fine-tuning a pre-
trained language model (BERT Devlin et al., 2018)
using only few examples. In addition, we intro-
duce an extension of Prototypical Networks (Snell
et al., 2017), a metric-based model, capable of han-
dling structured prediction. In particular, we detail
how it can be combined with Conditional Random
Fields (CRF) (Lafferty et al., 2001). In Section 3.3,
we explain how such models can be trained us-
ing meta-learning. In addition, we introduce the
application of an optimization-based algorithm to
NER, Reptile (Nichol et al., 2018), capable of meta-
learning a better initialization model. We also pro-
pose a novel combination of Prototypical Networks
and Reptile that brings the best of both worlds,
performance and the ability to handle a different
number of classes between training and testing. Fi-
nally, in Section 3.4, we show how to generate
diverse and realistic FSL tasks, corresponding to
the bootstrapping phase of NER systems, from clas-
sical NER datasets either for meta-training or meta-
testing.

In Section 4, we conduct an extensive evaluation
on three public datasets: SNIPS (Coucke et al.,
2018), Task Oriented Parsing (TOP Gupta et al.,
2018) and Google Schema-Guided Dialogue State
Tracking (DSTC8 Rastogi et al., 2019) where we
compare our three meta-learning approaches to the
transfer learning baseline. Source code and datasets
will be made available online.

2 Related Work

Few-shot learning has been addressed using
metric-learning, data augmentation and meta-
learning. Metric-learning relies on learning how to
compare pairs (Koch et al., 2015) or triplets (Ye and
Guo, 2018) of examples and use that distance func-
tion to classify new examples. Data augmentation
through deformation has been known to be effec-
tive in image recognition tasks. More advanced ap-
proaches rely on generative models (Gupta, 2019;
Hou et al., 2018; Zhao et al., 2019; Guu et al., 2018;

Yoo et al., 2018), paraphrasing (Cho et al., 2019a)
or machine translation (Johnson et al., 2019). All
the methods above rely somewhat on transfer learn-
ing with the hope that representations learned in
one domain can be applied to another one.

Meta-learning takes a different approach by
trying to learn an inductive bias on a distribu-
tion of similar tasks that can be utilized to build
models from very few examples. There are four
common approaches. Model-based meta-learning
relies on a meta-model to update or predict the
weights of a task specific model (Munkhdalai and
Yu, 2017). Generation-based meta-learning (Zhang
et al., 2018; Schwartz et al., 2018) produces gen-
erative models able to quickly learn how to gen-
erate task specific examples, often in the feature
space (Kumar et al., 2019). The other two ap-
proaches are explained in detail below.

Metric-based meta-learning is similar to nearest
neighbors algorithms. In particular, several metric-
based meta-learning methods (Vinyals et al., 2016;
Snell et al., 2017; Rippel et al., 2015) have been
proposed for few-shot classification where an em-
bedding space or a metric is meta-learned and used
at test time to embed the few support examples
of new categories and the queries. Prediction is
performed by comparing embedded queries and
support examples. In many cases, the loss func-
tion is based on a distance between the supports
and the queries. More advanced losses have been
proposed in (Triantafillou et al., 2017; Wang et al.,
2018b; Sung et al., 2018) for example based on
triplet, ranking and max-margin losses. One of
the issues with approaches listed above is that the
distance is the same for all categories. Thus, Fort
(2017); Hilliard et al. (2018) have explored scaling
the distance for new categories.

Optimization-based meta-learning explicitly
meta-learns an update rule or weight initializa-
tion that enables fast learning during meta-testing.
In Ravi and Larochelle (2017), they use an LSTM
meta-learner trained to be an optimization algo-
rithm. However, this approach incurs a high com-
plexity. In Finn et al. (2017), the authors explored
with success using ordinary gradient descent in the
learner and meta-learning the initialization weights.
However, this algorithm named MAML, requires
to back propagate through gradient updates and
so rely on second order derivatives which are ex-
pensive to compute. They also proposed an algo-
rithm, FOMAML, relying only on first order deriva-
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tives. This idea has been extended by Nichol et al.
(2018) to propose an algorithm, Reptile, that does
not need a training-test split for each task as ex-
plained in Section 3.3. Note that, Triantafillou et al.
(2019) gives an overview of many meta-learning
algorithms and propose a set of benchmarks to eval-
uate them. Finally, instead of just learning a model
initialization, Li et al. (2017) propose to learn a
full-stack Stochastic Gradient Descent (SGD), in-
cluding update direction, and learning rate.

Few-Shot Learning on textual data has been
explored recently, mostly for text classification
tasks. Yu et al. (2018) propose to meta-learn a
set of distances and learn a task-specific weighted
combination of those. Jiang et al. (2018) build on
top of MAML and attention mechanisms to pro-
pose an algorithm for text classification. Geng et al.
(2019) focuses on sentiment and intent classifica-
tion. Cheng et al. (2019) propose to use metric-
based meta-learning to learn task-specific metrics
that can handle imbalanced datasets. Recently,
Bansal et al. (2019) proposed a new optimization-
based meta-learning algorithm, LEOPARD, that
outperforms strong baselines on several text classi-
fication problems (entity typing, natural language
inference, sentiment analysis). Few-shot relation
classification has also attracted some attention in
the past two years, thanks to Han et al. (2018)
who proposed a new dataset and using Prototypi-
cal Networks. Several works built on top of this
to combine Prototypical Networks with attention
models (Sun et al., 2019; Ye and Ling, 2019).

NER has been addressed in several works.
In (Fritzler et al., 2019; Yang and Katiyar, 2020)
the task of interest consists of recognizing one class
of named entities, for tag set extension or domain
transfer. In our work, we extend the N-way K-shot
setting to structured prediction. (Hou et al., 2020)
propose a CRF with coarse-grained transitions be-
tween abstract classes. In (Krone et al., 2020) the
authors propose a task sampling algorithm based on
intents which can result in leakage between meta-
training and meta-testing sets. In (Hofer et al.,
2018) the authors don’t use pre-trained language
models. As we will show subsequently our work
differs significantly from those. First, our task sam-
pling method, that can generate a very large amount
of tasks, is key to learn efficiently an inductive
bias. Second, we utilize pre-trained language mod-
els. Third, using a fine-grained CRF, amenable to
meta-learning, our model can learn sequential de-

pendencies between labels. Fourth, we fine-tune
our meta-learned Prototypical Network per task
and even utilize optimization-based meta-learning
to improve the fine-tuning. Those contributions
are central in achieving the best performance on
few-shot NER as shown in Section 4.

3 Few-Shot Named Entity Recognition

3.1 Task Definition

We define the few-shot NER problem by describ-
ing what is a task. A task is defined by a set of N
target entity types (examples of entity types could
be “song”, “city” or “date”), a small training set of
N ×K utterances (with their labels) called support
set and another disjoint set of labeled utterances
called query set. Similarly to Triantafillou et al.
(2019), we refer to this setting as N -way-K-shot
with the difference that we have a total of N ×K
support utterances rather than K examples for each
of the N entity types, which is not feasible as one
utterance might contain several entities. Thus, the
number of mentions per entity type can be imbal-
anced. In addition, the support set follows the same
distribution as the query set. Evaluation is per-
formed by sampling a set of tasks from the meta-
testing set. For each task, an NER model is learned
from the support set. This model is evaluated on
the query set. The performance is finally averaged
across tasks. During meta-training, an additional
set of meta-training tasks is available with disjoint
entity types from the meta-testing set. Queries are
used to train the meta-model. At meta-testing, this
meta-model is tailored to the task using the support
examples as mentioned above.

3.2 Prototypical Networks for NER

This paper builds on top of Prototypical Networks,
introduced by Snell et al. (2017). Their model
embeds support and query examples into a vector
space. Then, one prototype per category is com-
puted by taking the mean of its supports. Finally,
queries are compared to prototypes using the eu-
clidean distance. The distances are converted to
probabilities using a Gibbs distribution. The model
is meta-trained to predict the query labels using
only few examples. This Section details the ar-
chitecture of Prototypical Networks for sequence
labeling. The next Section explains how the em-
bedding function is meta-learned. Without meta-
learning the architecture of Prototypical Networks
does not bring any advantage over classical ones.
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For a sequence labeling task, like NER, the
difference is that to each word is assigned one
label. Let S = {(x1,y1), . . . , (xn,yn)} be a
small support set of n labeled sequences where
xi = (xi1, . . . , x

i
L) is an utterance of length L and

yi = (yi1, . . . , y
i
L) a sequence of entity labels. For

each entity type k, we compute a prototype ck
by embedding all words tagged as k using an em-
bedding function fθ where θ represents the meta-
learned parameters. The fundamental difference
with the common implementation of Prototypical
Networks is that the embedding function fθ utilizes
the context of the current word to compute its rep-
resentation in a vector space. Although, we should
formally note fθ(xij ;x

i) the representation of xij in
the embedding space, we will just write fθ(xij) in
the sequel to not overload equations. Thus, proto-
types are defined by

ck =
1

|Sk|
∑
x∈Sk

fθ(x), (1)

where Sk = {xij | yij = k, (xi,yi) ∈ S}, i.e. the
set of all tokens with a particular label k. Note that
we compute one prototype per entity type and also
one for “other”. As mentioned in Section 5, we
leave better handling of “other” for future work.

In this paper, we use BERT to generate embed-
dings for each word. More specifically, we used
the pre-trained English BERT Base uncased model
from (Wolf et al., 2019). This BERT model has
12 layers, 768 hidden states, and 12 heads. Then,
we followed recommendation from Souza et al.
(2019) to fine-tune BERT. Since BERT uses Word-
Piece sub-word units and NER labels are aligned to
words, we elected to pick the last sub-word repre-
sentation of a word as the final word representation.
Then, we sum the outputs of the last 4 layers to get
a word-level representation and then add dropout
and a linear layer. 1 For our baseline model, the lin-
ear layer output size is the number of entity types
plus “other”. When using Prototypical Networks,
the linear layer output size is 64. Then, distances
to prototypes are computed for every word, giving
the same output size than for the baseline model.

1In our experiments, we also tried an alternative architec-
ture consisting of a frozen BERT model topped with three
ELU-activation linear layers with dropout (Clevert et al.,
2016), motivated by the fact that fine-tuning a large capac-
ity model with very few examples might degrade the perfor-
mances. As the first architecture worked better by a significant
margin for the baseline, we did not pursue further this alterna-
tive.

Finally, in our experiments, we tried two differ-
ent decoders. For the first one, we simply feed the
distances into a SoftMax layer and use the negative
log-likelihood (NLL) summed over all positions
for the loss function, as follow,

p(yt = k | x) = e−‖fθ(xt)−ck‖
2∑

k′ e
−‖fθ(xt)−ck′‖2

, (2)

p(y | x) =
∏
t

p(yt | x, {ck}). (3)

For our second decoder, we use a CRF, as Lam-
ple et al. (2016) have shown they are effective for
NER when combined with neural networks. Using
a CRF instead of making independent tagging de-
cisions allows to model the dependencies between
labels by considering a transition score between
labels in addition to the standard emission scores
to obtain a probability distribution,

p(y | x) =
exp

(∑
t

[
U(xt, yt) + T (yt, yt+1)

])
Z(x)

,

(4)

Z(x) =
∑
y′

exp

∑
t

U(xt, y
′
t) + T (y′t, y

′
t+1)


(5)

where, T is a transition matrix, U the emission
network and Z the partition function - a normal-
ization factor used so that the probabilities sum
to 1, equal to the sum of the scores over all label
sequences. The loss function is the standard NLL.
The emission network is the same as the SoftMax
decoder.

For our baseline, the transition matrix is just a
parameter of our network. However, estimating
transitions between labels in the FSL setting is
very prone to over-fitting as many transition pairs
are likely to be absent from the limited training
data. This intuition will be confirmed empirically
in Section 4. Hence, we make use of prototypes and
transfer learning to estimate the transition matrix.
More specifically,

U(xt, yt) = −‖fθ(xt)− cyt‖2 and (6)

T (yt, yt+1) = gψ(cyt , cyt+1), (7)

where the weights ψ of our neural network g are
learned across tasks during meta-training and even-
tually fine-tuned during meta-testing. In our exper-
iments, g is implemented as a feed-forward neural
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network on stacked prototype representation with
one hidden layer of size 64 and ELU activation
function. Looking only at the learning of the tran-
sition matrix during meta-training, this setting is
equivalent to a standard training procedure that
uses classes, represented by prototypes, as training
examples and tries to predict transitions between
them. Hence, we rely on the generalization capa-
bility of our transition DNN during meta-testing
to handle new classes. We will see in Section 4,
that using our Prototypical CRF decoder is very
beneficial compared to a standard CRF.

3.3 Meta-Learning

In this Section, we introduce meta-learning and
how it can be used to meta-learn initialization
weights for the baseline architecture using Reptile,
the embedding function in Prototypical Networks
or both. In most cases, meta-learning algorithms,
i.e. algorithms that learn how to learn, are typically
comprised of two processes. The inner process is
a traditional learning process capable of learning
quickly using only a small number of task-specific
examples. The outer loop, or meta-learning loop,
slowly learns the inductive bias across a set of tasks.
Thus, the objective of the outer loop is to improve
generalization during the inner learning process.
This is often achieved thanks to a meta-model. For
Prototypical Networks the meta-model is the em-
bedding function that defines the prototypes and
the distance. For Reptile, the meta-model are the
initialization weights that will be fine-tuned during
meta-testing. During meta-testing, task specific
models are derived from the meta-model and the
support examples, for example by building proto-
types or by gradient descent. Then, all queries are
used to evaluate the task-specific model.

Meta-training runs in episodes. For each episode,
a task or a batch of tasks is sampled. In our setting,
we are only considering one task at a time. Then,
from the current meta-model, a task specific model
is built using the inner process and the support
examples. The loss is computed using the queries
and back-propagated through the inner process to
update the meta-model. Good performance is often
achieved when the inner process at meta-training
and meta-testing are alike.

In the case of Prototypical Networks for se-
quence labeling, the meta-learner learns a repre-
sentation amenable to generalization where queries
can be compared to prototypes built from few sup-

port examples. Hence, the inner process just builds
one prototype per entity type k ∈ E , where E is the
set of entity types for this task (including “other”)
as described in Algorithm 1.

Algorithm 1 ProtoNet
INITIALIZE θ
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for all entity type k in E do
ck ← 1

|Sk|
∑

x∈Sk fθ(x) as in eq. (1)
end for
L← NLL(p,BATCH(Q)) where p is defined
in eq. (3) or eq. (4)
θ ← UPDATE(θ, ∂L∂θ )

end while

During meta-testing, we can simply compute
the prototypes from the support examples as in
eq. (1), in that case training is done without any
backpropagation. However, in our experiments,
see Section 4, we found that fine-tuning the meta-
model using the task-specific supports was im-
proving the performance. To fine-tune the model
we further split the supports into two subsets us-
ing 80% to build the prototypes and the remain-
ing to compute the loss and backpropagating it
to update the model. By introducing this addi-
tional fine-tuning step at test time, the inner pro-
cess now differs between meta-training and meta-
testing. Similarly, for our baseline, we fine-tune
our BERT-based model using the support utter-
ances at meta-test time. In both cases, to better
align meta-training and meta-testing, we turned to
optimization-based meta-learning. Optimization-
based meta-learning encompasses methods where
the inner process consists in fine-tuning the meta-
model. Back-propagating through the inner opti-
mization loop allows computing a meta-gradient to
update the meta-model as done in MAML. How-
ever doing so requires to compute second order
derivatives. Instead, Reptile builds a first order ap-
proximation as shown in Algorithm 2, where T is
the number of steps used to compute the first order
approximation.

In addition, for MAML, the inner-loop optimiza-
tion uses support examples, whereas the loss is
computed using the queries. This way MAML
optimizes for generalization. However, Reptile
does not require a query-support split to compute
the meta-gradient, which makes it a better candi-
date to be combined with Prototypical Networks.
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Algorithm 2 Reptile

INITIALIZE θ0
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for t ∈ 1..T do
L← NLL(p,BATCH(S ∪Q))
θt ← UPDATE(θt−1,

∂L
∂θt−1

)
end for
θ0 ← UPDATE(θ0, θT − θ0)

end while

To combine MAML and Prototypical Networks,
Triantafillou et al. (2019) use the same support
examples to compute prototypes and to compute
the loss for backpropagation in the MAML inner
loop. However, having two disjoints support sets
is preferable so as not to compare examples to pro-
totypes computed from the same examples. With
Reptile, this issue is alleviated altogether as shown
in Algorithm 3.

Algorithm 3 Proto-Reptile

INITIALIZE θ0
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for all entity type k in E do
ck ← 1

|Sk|
∑

x∈Sk fθ(x) as in eq. (1)
end for
for t ∈ 1..T do
L← NLL(p,BATCH(Q))
θt ← UPDATE(θt−1,

∂L
∂θt−1

)
end for
θ0 ← UPDATE(θ0, θT − θ0)

end while

In Algorithms 1 to 3, NLL stands for the nega-
tive log-likelihood function, BATCH for a function
that samples a batch. T is the training set, K the
number of shots, N the number of ways, S the
support set and Q the query set, T is the number
of steps in Reptile. In addition, UPDATE can be
any optimizer, such that SGD or Adam (Kingma
and Ba, 2015). In our experiments, we use Adam
in Algorithm 1, and in the inner loop of Algo-
rithm 3. For the outer loop of Algorithm 3, we use
the classical SGD update rule without any momen-
tum. Note that, each loop has its own learning rate.
In addition, we used different learning rates for the
BERT encoder and the rest of the network.

3.4 Generating Tasks for Training or Testing

To generate training and testing data from classical
NER datasets, we first randomly partition entity
types and utterances to either the train, the valida-
tion or the test split. Utterances are assigned based
on the majority split of its entity types, counted
per word. In other words, for a given utterance
we count the number of words for entity types that
are in each split and utterances are assigned to the
partition that was the most represented in that utter-
ance. In case of tie, priority is given to the test split,
then the valid split and finally to the train split. Any
entity contained in an utterance that is not in the
corresponding partition is replaced with “other” to
ensure, e.g., no test entities are seen during train-
ing. Finally, utterances with no entities are dropped.
This task sampling procedure can both simulate a
realistic few-shot NER testing setting and generate
a large number of training tasks. During meta-
training, having a diverse enough distribution of
training tasks is crucial to learn an inductive bias ef-
fectively, similarly to having many examples helps
generalization.

4 Experiments

4.1 Datasets and Pre-Processing

Experiments were conducted on the SNIPS
(Coucke et al., 2018), Task Oriented Parsing (TOP
Gupta et al., 2018) and Google Schema-Guided
Dialogue State Tracking (DSTC8 Rastogi et al.,
2019) datasets. For evaluation, we sampled 50
tasks from the meta-test set to average the Micro
F1 across tasks. We use the Micro F1 metric in-
troduced in (Tjong Kim Sang, 2002) that does not
give any credit to partial matches. For SNIPS, we
combine B and I labels from the BIO (Ramshaw
and Marcus, 1995) encoding into a single label.
For DSTC8, we used utterances from both the sys-
tem and user, we discarded utterances containing
more than 1 frame. For the TOP dataset, which
contains hierarchical labels for slot labels and in-
tents, we used the finest-grained entity types (the
leaf nodes) as labels and discarded intents. We did
not adhere to any pre-defined train, valid and test
partitions, but followed our own task-based pro-
cedure defined in Section 3.4. Additional details
about data preparation and datasets statistics are
given in the appendix.
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4.2 Hyper-Parameter Tuning

During meta-testing, only a few support examples
are available to fine-tune the task specific model
derived from the meta-model. As such, it is im-
practical to set aside some as a validation set for
early stopping. However, early stopping is really
important in the few-shot setting as the model can
easily overfit. Hence, we find the best number of
fine-tuning epochs on the validation split and then
use it during meta-testing. For the baseline, this is
the only purpose of meta-training.

For each algorithm (Baseline, ProtoNet, Rep-
tile, Proto-Reptile) and decoder (SoftMax or CRF),
we conducted an extensive hyper-parameter op-
timization (HPO) procedure using the built-in
Bayesian optimization of AWS SageMaker (Ama-
zon Web Services, 2017) on the SNIPS meta-
validation dataset. The search space, the best hyper-
parameters, the best performance and the training
times are given in the appendix. We used the same
hyper-parameters in all our experiments. However,
after HPO, we retrained all our models with a num-
ber of meta updates and updates manually tuned
per algorithm on each meta-validation dataset to
avoid (meta-)stopping too early. All results on the
meta-validation set and training times can be found
in the appendix.

4.3 Results

We conducted four types of experiments. First, we
compared all approaches on the three datasets using
N = 4 and K = 10 in Table 1. Fine-tuning pro-
duces the largest gains, especially on SNIPS and
TOP (less on DSTC8). Indeed, starting with the
baseline, fine-tuning a pre-trained BERT model
with aggressive dropout (0.9) is quite effective.
Chen et al. (2019); Tian et al. (2020) also observed
that transfer learning baselines are often competi-
tive and neglected in FSL works. We also evaluated
Prototypical Networks without fine-tuning at meta-
test time using the supports. We refer to those
algorithms by ProtoNet* and Proto-Reptile*. Com-
pared to previous work on image recognition (Chen
et al., 2019), fine-tuning the Prototypical Network
seems to be extremely beneficial for textual appli-
cation that builds on top of pre-trained language
models instead of solely building the prototypes.
Hence, combining optimization-based and metric-
based meta-learning sounds a natural idea.

Comparing ProtoNet and Reptile, we can see
that the Prototypical Network architecture helps

generalization in the low data regime thanks to
being instance-based. In addition, gains are even
larger when combined with a CRF, with or with-
out fine-tuning, in particular on DSTC8. Indeed,
the CRF can only be slightly beneficial compared
to using a simple SoftMax decoder for the Base-
line and for Reptile. On the other hand, using our
Prototypical CRF achieves a significant jump in
Micro F1, especially on DSTC8, demonstrating
that the transition network can generalize to new
classes unseen at meta-training. We believe that,
Reptile’s meta-learning approach is inefficient be-
cause the initialization weights of the transition
matrix do not have enough capacity to encode an
inductive bias. Maybe other optimization-based
meta-learning methods relying on external neural
networks with larger capacity, e.g. a network that
predicts the update direction as proposed by Li et al.
(2017), could be more efficient than relying solely
on the initialization weights to learn the inductive
bias.

Comparing Reptile to Baseline and Proto-
Reptile to ProtoNet, we see that optimization-
based meta-learning can help significantly with
fine-tuning. Although the gap is less impressive
between Proto-Reptile to ProtoNet, Proto-Reptile
obtains the best result in most cases. Comparing
results between datasets, DSTC8 high diversity
seems to be a real game changer for meta-learning.
Indeed, all meta-learning approaches achieve twice
or more the Baseline Micro F1. We argue that, the
richer the task distribution, the better the learned
inductive bias.

In our second experiment, we evaluated cross-
domain transfer learning of the inductive bias by
meta-training on TOP or DTSC8 and meta-testing
on SNIPS. Note that early stopping was calibrated
on the source meta-validation set, which gives
an unfair advantage to the baseline to avoid over-
fitting. On inductive bias transfer, Proto and Proto-
Reptile outperform the baseline by a small but sta-
tistically significant margin. As already observed,
DTCS8 diversity is better to learn an inductive bias
that can transfer across domain. Showing that task
diversity is key to meta-learning.

In the third experiment, we varied N and K on
the DSTC8 dataset to observe the performance gap
between Proto-Reptile and the baseline. Results
are plotted in the first row of Figure 1. As expected,
Micro F1 increases when there are fewer entity
types to discriminate (smallerN ) or more examples
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Meta-train dataset SNIPS TOP DSTC8 TOP DSTC8
Meta-test dataset SNIPS SNIPS SNIPS TOP DSTC8

CRF 76.84± 3.75 N/A N/A 51.09± 5.06 34.57± 4.70
Baseline

SoftMax 73.68± 3.41 N/A N/A 48.18± 4.78 35.18± 3.27
CRF 89.67± 0.63 78.78± 1.14 82.88± 0.99 64.99± 3.51 75.69± 2.53

ProtoNet
SoftMax 87.11± 1.26 78.49± 1.37 80.37± 1.51 62.08± 3.58 66.39± 2.73
CRF 58.56± 1.78 44.75± 1.92 52.97± 2.04 29.53± 4.40 71.49± 3.81

ProtoNet*
SoftMax 54.52± 1.82 43.23± 2.08 45.77± 1.26 28.34± 3.74 60.07± 2.62
CRF 80.08± 3.58 74.85± 3.47 75.06± 3.32 57.18± 6.02 70.50± 2.60

Reptile
SoftMax 80.00± 3.51 75.82± 3.48 75.14± 3.45 57.64± 5.96 71.06± 2.77

Proto- CRF 89.20± 0.89 80.50± 1.24 82.96± 1.19 67.34± 3.87 78.96± 1.60
Reptile SoftMax 88.09± 0.90 77.53± 1.30 79.83± 1.74 64.06± 3.75 62.56± 2.14
Proto- CRF 49.98± 2.02 48.09± 1.85 51.63± 1.37 33.78± 3.41 75.22± 2.44
Reptile* SoftMax 58.41± 1.63 44.14± 1.88 37.93± 1.23 24.63± 3.68 58.09± 2.55

Table 1: Micro F1 averaged over 50 tasks. Results are reported with a Gaussian 95% confidence interval. Asterisks
indicate that prototypes were not finetuned. The best result per column is in bold.
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Figure 1: Micro F1 averaged over 50 tasks on N -way-K-shot DTSC8 for different value of (K,N). Error bars
represent Gaussian 95% confidence intervals. In the first row of plots, (K,N) match between training and testing.
In the second row, models trained on different N -way-K-shot settings are tested on 4-way-10-shot.

for each entity type (larger K). Indeed, either the
problem becomes easier — fewer entity types to
discriminate — or we get more data per entity type.
Nevertheless, the Micro F1 increases faster with
K for the baseline. We expect that, in the high
data regime (very large K), the baseline would
catch up to our approach. However, comparing
those approaches in the high data regime would not
be very relevant and the meta-learning would not
scale.

Finally, we looked at meta-training on N -way-
K-shot datasets but meta-testing on the 4-way-10-
shot dataset in the second row of Figure 1. Train-
ing with more shots or more ways does not seem
to improve or decrease performances significantly

for Proto-Reptile. This demonstrate our approach
is robust to variations in the meta-testing scheme,
compared to what is usually observed in the few-
shot literature. This is probably because we sample
imbalanced support sets. All results in Figure 1 are
reported numerically in the appendix.

5 Conclusions

In this paper, we have proposed a new definition
of few-shot learning for NER, not relying a coarse-
grain approach, like in (Fritzler et al., 2019), based
on the intent to generate tasks. We have shown
that, combining fine-tuning language models, CRF,
diverse task generation, optimization-based and
metric-based meta-learning, can significantly and
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consistently outperform transfer learning on three
datasets. Also, our combination of Prototypical
Network and Reptile is quite robust to mismatches
in the number of shots or ways between meta-
training and meta-testing. Thus, our approaches
are effective to bootstrap NLU systems.

For future works, one specificity of few-shot
NER has not been properly addressed yet. Al-
though different in every tasks, the definition of
the background class (“other”) is partially shared
between tasks. This assumption could be better
leveraged in our approaches to transfer some of
that knowledge across tasks instead of treating the
background class as a different entity type in ev-
ery tasks. Another interesting direction to explore
is few-shot integration, when we have to build a
model that performs well on tasks made of entity
types seen and unseen during meta-training.
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6 Appendix

6.1 Dataset preparation and statistics
This Section details how data was prepared. First,
utterances without any named entities and the ones
that are longer than 40 sub-word units (given by the
BERT tokenizer) were removed. For each dataset,
less than 1% of utterances were longer than 40 sub-
words. Removing long utterances allowed us to
increase the computation efficiency significantly
without impacting the results too much. datasets
statistics are given in Table 2. For SNIPS, we used
the data preprocessed in https://github.com/

MiuLab/SlotGated-SLU/.

6.2 Hyper-parameters Tuning
This section describes the search space for hyper-
parameters of each algorithm. The dropout param-
eter is the dropout of the additional layers on trop
of BERT. In all settings, we used 0.1 for the BERT
dropout and 64 for the batch size. During vali-
dation, we fine-tuned the current meta-model for
10 epochs, each epoch consisting of 64 batches,
for each tasks. Validation Micro F1 was averaged
over 5 sampled tasks with 128 queries each, using
the same tasks in-between epochs to reduce the
randomness. In the outer loop, we used early stop-
ping with a patience of 4 and a maximum of 12
meta-epochs. At every meta-epoch, we reported
the best epoch during the validation fine-tuning, to
be used for meta-testing. The number of task per
meta-epoch varies per algorithm and so is given
in Tables 3 to 6 along with all the other parame-
ters optimized. Bayesian optimization ran with 4

workers in parallel and a total of 30 training jobs,
optimizing for the validation Micro F1. For Reptile-
based algorithm, the number of steps stands for the
number of steps used to compute the first order ap-
proximation (T in algorithms 2 and 3 of the main
paper). Note that, Reptile was quite sensitive to
hyper-parameter tuning and less stable than other
approaches.

Training times are reported in Table 8. We used
p2.xlarge AWS instances to train our models. Most
of the training time actually is spent in validation
that requires fine-tuning the meta-model.

In Figure 2, we reported how the performance
of the best model increased overtime during hyper-
parameters tuning. Because, we used Bayesian
optimization instead of random search, it would
have been very computationally intensive to com-
pute the expected validation performance as sug-
gested by (Dodge et al., 2019). Indeed, because
random search produces i.i.d. trials, they can build
an estimator of the validation performance and its
variance at no cost. In our case, trials are depen-
dant from the previous ones. We believe, Figure 2
provides a decent estimation of the budget needed
for hyper-parameters tuning and how it affects the
performance.

The best hyper-parameters per algorithm and
per decoder is reported in Table 7 and the best
validation Micro F1 is reported in Table 8.

6.3 Number of parameters
All our models used almost the same number of pa-
rameters. The differences introduced by the CRFs
are negligible compared to BERT (110 millions
parameters). Putting aside BERT, without Proto-
typical Networks, the linear layer on top of BERT
adds 768×4×N parameters and the CRF transition
matrix adds N ×N parameters. With Prototypical
Networks, the linear layer on top of BERT adds
768 × 4 × 64 parameters and the CRF transition
network adds 64× 64 parameters.

6.4 Results on the meta-validation set
Table 9 list the validation Micro F1, the training
time, the best number of meta-epochs and the best
number of epochs that is reused to stop the training
during meta-testing. Note that most of the training
time of meta-training is spend during validation.

http://arxiv.org/abs/1809.02305
http://arxiv.org/abs/1809.02305
https://github.com/MiuLab/SlotGated-SLU/
https://github.com/MiuLab/SlotGated-SLU/
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SNIPS TOP DSTC8

Train Valid Test Train Valid Test Train Valid Test

Utterances 9166 3832 1486 12868 13316 11547 107763 26562 26851
Entity types 27 5 7 20 6 8 84 18 20

Table 2: Datasets statistics.

Hyper-parameter Range/Values Scaling

Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Dropout [0.1, 0.9] Linear

Table 3: Hyper-parameter search space for the baseline.

Hyper-parameter Range/Values Scaling

# tasks 2048 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [5× 10−5, 0.001] Logarithmic
Meta BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Dropout [0.1, 0.9] Linear

Table 4: Hyper-parameter search space for ProtoNet.

Hyper-parameter Range/Values Scaling

# task 1024 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [0.1, 1] Linear
Meta BERT learning rate [0.1, 1] Linear
Dropout [0.1, 0.9] Linear
# steps [1..10] Discrete

Table 5: Hyper-parameter search space for the Reptile.

Hyper-parameter Range/Values Scaling

# task 512 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [0.1, 1] Linear
Meta BERT learning rate [0.1, 1] Linear
Dropout [0.1, 0.9] Linear
# steps [1..10] Discrete

Table 6: Hyper-parameter search space for Proto-Reptile.
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Algorithm Decoder # steps Meta LR Meta BERT LR LR BERT LR Dropout

Baseline SoftMax N/A N/A N/A 4.35× 10−4 8.94× 10−5 0.9
CRF N/A N/A N/A 1× 10−3 3.94× 10−5 0.897

ProtoNet SoftMax N/A 8.2× 10−4 6.88× 10−5 9.53× 10−4 1.99× 10−5 0.393
CRF N/A 9.73× 10−4 6.21× 10−5 3.54× 10−4 2.24× 10−5 0.558

Reptile SoftMax 10 0.909 0.126 3.32× 10−4 7.91× 10−5 0.104
CRF 10 0.107 0.188 7.97× 10−4 4.45× 10−5 0.71

Proto-Reptile SoftMax 2 0.641 0.580 4× 10−4 1.05× 10−5 0.496
CRF 10 0.847 0.329 6.92× 10−4 1.15× 10−5 0.446

Table 7: Best hyper-parameters found using Bayesian optimization.

Algorithm Decoder Micro F1 Best # meta-epochs Best # epochs Training time

Baseline
SoftMax 61.04± 5.23 N/A 10 01:33:44
CRF 59.49± 3.12 N/A 9 01:43:42

ProtoNet
SoftMax 70.48± 3.83 5 10 11:19:57
CRF 73.65± 2.92 8 5 14:53:58

Reptile
SoftMax 71.88± 2.19 8 3 13:57:09
CRF 70.64± 2.30 4 2 16:56:16

Proto-Reptile
SoftMax 70.89± 2.98 10 5 10:57:57
CRF 76.18± 4.22 6 8 24:18:03

Table 8: Best validation run found using Bayesian optimization. Micro F1 is averaged over 5 tasks. Results are
reported with Gaussian 95% confidence interval. However, note that the same 5 validations tasks are used for every
algorithms and models, which introduces a beneficial dependency.
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Figure 2: Averaged Micro F1 over the same 5 tasks randomly drawn from the SNIPS validation split during
Bayesian optimization of the hyper-parameters. Each dot represents one meta-training. The lines indicate the best
model performance overtime.
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Dataset Algorithm Decoder Micro F1 # Tasks # Meta Epochs # Epochs Time

SNIPS

ProtoNet
CRF 63.60± 5.43 5 9 2 50:31:06
SoftMax 60.61± 5.04 5 11 3 54:30:54

Reptile
CRF 60.02± 5.30 5 20 12 11:55:21
SoftMax 58.18± 4.54 5 20 13 11:14:58

Proto-Reptile
CRF 67.13± 4.01 5 4 13 55:05:08
SoftMax 62.05± 3.38 5 7 13 33:50:06

Baseline
CRF 48.82± 4.37 8 N/A 14 5:16:26
SoftMax 45.01± 4.75 8 N/A 11 4:47:26

TOP

ProtoNet
CRF 71.16± 5.77 5 8 1 72:04:31
SoftMax 67.68± 5.05 5 4 4 65:59:54

Reptile
CRF 59.16± 6.38 5 10 10 8:51:06
SoftMax 60.87± 5.55 5 5 4 5:44:05

Proto-Reptile
CRF 72.29± 4.37 5 2 14 72:06:05
SoftMax 69.90± 4.55 5 12 12 72:06:16

Baseline
CRF 59.16± 4.26 8 N/A 14 10:38:27
SoftMax 55.85± 4.61 8 N/A 5 9:31:50

DSTC8

ProtoNet
CRF 82.29± 4.13 5 17 15 72:08:26
SoftMax 73.56± 6.46 5 5 8 35:56:08

Reptile
CRF 75.03± 5.62 5 18 2 16:36:53
SoftMax 75.01± 3.35 5 22 5 17:30:08

Proto-Reptile
CRF 83.83± 4.13 5 6 10 72:07:55
SoftMax 75.87± 4.80 5 12 10 33:42:35

Baseline
CRF 47.08± 7.02 8 N/A 14 10:42:08
SoftMax 42.17± 8.23 8 N/A 1 10:00:21

Table 9: Validation Micro F1 with Gaussian 95% confidence interval and training times.


