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Abstract

Recent multilingual pre-trained models, like
XLM-RoBERTa (XLM-R), have been demon-
strated effective in many cross-lingual tasks.
However, there are still gaps between the con-
textualized representations of similar words in
different languages. To solve this problem, we
propose a novel framework named Multi-View
Mixed Language Training (MVMLT), which
leverages code-switched data with multi-view
learning to fine-tune XLM-R. MVMLT uses
gradient-based saliency to extract keywords
which are the most relevant to downstream
tasks and replaces them with the correspond-
ing words in the target language dynami-
cally. Furthermore, MVMLT utilizes multi-
view learning to encourage contextualized
embeddings to align into a more refined
language-invariant space. Extensive exper-
iments with four languages show that our
model achieves state-of-the-art results on zero-
shot cross-lingual sentiment classification and
dialogue state tracking tasks, demonstrating
the effectiveness of our proposed model1.

1 Introduction

Due to the availability of large labeled datasets
and parallel corpus, neural network models have
achieved remarkable performance on a variety of
natural language processing (NLP) tasks. How-
ever, generally large-scale training data with high
quality is only available in a few languages. Ar-
tificially collecting or translating training data for
different languages could be time-consuming and
expensive, which will inevitably create a massive
performance gap between high-resource language
models (e.g., English and French) and low-resource
language models (e.g., Swahili and Urdu).

Cross-lingual transfer learning (CLTL) aims at
bridging this gap by transferring the learned knowl-

∗Yufeng Chen is the corresponding author.
1The code is publicly available at https://github.

com/lisasiyu/MVMLT

edge from a resource-rich language (source) to a
resource-lean language (target) (David Yarowsky
and Wicentowski, 2001). The main idea of CLTL is
to learn a shared language-invariant feature space
for both languages, so that a model trained on
the source language could be applied to the tar-
get language directly. Recently, Cross-Lingual
Contextualized Embedding methods such as mul-
tilingual BERT (mBERT) (Devlin et al., 2018),
XLM (Conneau and Lample, 2019), and XLM-
RoBERTa (XLM-R) (Conneau et al., 2019) have
achieved state-of-the-art results on a variety of zero-
shot cross-lingual tasks. However, those BERT-
style transformer (Vaswani et al., 2017) architec-
tures, training cross-lingual embeddings from self-
supervised masked language modelling with mono-
lingual corpus, may not well capture the semantic
similarity of subwords across different languages.

In order to alleviate inconsistent contextualized
representations within different languages, some
supervised cross-lingual signals have been intro-
duced in prior work (Kulshreshtha et al., 2020a),
e.g., bilingual dictionaries and parallel corpora.
Qin et al. (2020) propose a data augmentation
framework called Code-Switching or Mix Lan-
guage Training, which chooses a set of words ran-
domly and replaces them with the corresponding
words in a different language. For example, “I喜欢
this电影 so much”2 is a code-switched sentence.
They only use a bilingual dictionary to generate
code-switched data to fine-tune mBERT, which en-
courage model to align representations between
different languages. Nevertheless, there are two
main problems in this method: (1) the importance
of different words in a document is ignored, since
they just replace words with the same probabil-
ity randomly. Replacing some unimportant words
will increase the burden of translation and even in-
troduce noise that impairs the sentence semantic

2English: I love this movie so much!

https://github.com/lisasiyu/MVMLT
https://github.com/lisasiyu/MVMLT
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coherence; (2) they only use code-switched corpus
to fine-tune mBERT, while the relation between
original sentences and code-switched sentences is
ignored completely, which may leads to the loss of
some interactive information and hinder contextu-
alized embeddings from further alignment.

To address the issues mentioned above, we pro-
pose a new framework named Multi-View Mixed
Language Training (MVMLT), which leverages
code-switched data with multi-view learning for
zero-shot cross-lingual transfer. MVMLT first uses
gradient-based saliency method to find keywords
with high saliency scores in downstream tasks (Sec-
tion 3.1). For example, in cross-lingual sentiment
classification tasks, some words with sentiment
information (e.g., “excellent”, “interesting” and
“boring”) should have higher saliency scores than
background words (e.g., “the”, “a” and “what”).
Relying on a bilingual dictionary, we replace these
keywords with their corresponding words in the tar-
get language to generate code-switched data (Sec-
tion 3.2). These code-switched keywords are the
essential part for effective cross-lingual transfer,
because they intersect with different languages and
allow the shared encoder to learn some direct ty-
ing of meaning across different languages. There-
fore, selecting the most task-related keywords by
saliency detection facilitates cross-lingual perfor-
mance for providing a strong tie across different
languages.

Furthermore, MVMLT acquires comprehensive
cross-lingual information from different perspec-
tives and explores the consistency of multiple views
by means of multi-view learning (Xu et al., 2013).
Specifically, MVMLT constructs two views from
the multilingual pre-trained model, i.e., XLM-R:
(1) the encoded feature representation of the origi-
nal sentence; (2) the encoded feature representation
of the corresponding code-switched sentence. The
key of cross-lingual transfer is to learn a language-
invariant feature space, so these two feature repre-
sentations should be as similar as possible. There-
fore, we utilize multi-view learning to enforce a
consensus between two views, which encourages
similar words in different languages to align into a
shared latent space (Section 3.3).

In summary, our main contributions are as fol-
lows:

• We propose a saliency-based mixed language

training (MLT) framework, which utilizes
gradient-based saliency to select task-related
words for code-switching. Focusing on these
keywords allows model to transfer cross-lingual
signals more efficiently.

• We leverage multi-view (MV) learning to con-
strain the representation of original sentence and
code-switched sentence consistently, and build
a refined language-invariant space that is more
robust to language shift compared to previous
zero-shot cross-lingual transfer work (Liu et al.,
2020; Fei and Li, 2020; Qin et al., 2020).

• Our MVMLT model is extensively evaluated in
four languages on cross-lingual sentiment classi-
fication and dialogue state tracking tasks in zero-
shot setting, and achieves state-of-the-art results
in 10/11 tasks, demonstrating the effectiveness
of MVMLT.

2 Related Work

2.1 Cross-Lingual Transfer Learning

Cross-lingual transfer learning aims at leverag-
ing the learned knowledge of the source language
to cope with the related task of the target lan-
guage. Learning Cross-Lingual Word Embeddings
(CLWE) (Mikolov et al., 2013) is a successful
method for CLTL, which uses a bilingual dictio-
nary to project words that have the same meaning
close to each other. Recently, Cross-lingual Con-
textualized Embeddings use some form of language
modeling to pre-train multilingual representations,
which are then fine-tuned on the relevant tasks and
transferred to different languages directly. Multilin-
gual pre-trained models such as multilingual BERT
(Devlin et al., 2018), XLM (Conneau and Lample,
2019), and XLM-RoBERTa (Conneau et al., 2019)
have been successfully used for zero-shot cross-
lingual transfer on various tasks (Wu and Dredze,
2019; Pires et al., 2019), i.e., Document Classifica-
tion, Named Entity Recognition and Dependency
Parsing. In addition, these multilingual pre-trained
models can be further improved by different align-
ment methods (Kulshreshtha et al., 2020b; Cao
et al., 2020), like rotation-based alignment and fine-
tuning alignment. Our work is inspired by Qin et al.
(2020), which propose a data augmentation frame-
work and use task-related parallel word pairs to
generate code-switched sentences for fine-tuning
mBERT. The difference is that we use saliency
detection to choose keywords rather than select-
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ing words randomly. Moreover, we leverage code-
switched data with multi-view learning to further
align representations of multiple languages.

2.2 Multi-View Learning

Multi-view learning, aiming at learning from differ-
ent views which contains complementary informa-
tion and exploiting the consistency from multiple
views (Li et al., 2019), has been widely used in
many NLP tasks. Clark et al. (2018) proposed
Cross-View Training (CVT), a novel self-training
algorithm that works well for neural sequence mod-
els. Zhang et al. (2019) unified multiple views of
entities to learn better embedding representations
for entity alignment. Fei and Li (2020) proposed
multi-view encoder-classifier (MVEC) for senti-
ment classification, which enforced a consensus be-
tween multiple-views (i.e., the encoded sentences
in the source languages and the encoded back-
translations of the source sentences from the tar-
get language) generated by encoder-decoder frame-
work. Unlike MVEC, our model employs multi-
view training to restrain the encoded representation
of original sentence and code-switched sentence
consistent without using parallel corpus.

2.3 Saliency Detection

Since attention mechanisms (Bahdanau et al., 2014)
boosted performance on many current NLP tasks,
using attention weight as explanation of model pre-
dictions is a general approach for many models
(Wang et al., 2016; Lin et al., 2017; Ghaeini et al.,
2018). However, some recent work (Serrano and
Smith, 2019; Jain and Wallace, 2019) casts doubt
on attention’s interpretability. Besides, Bastings
and Filippova (2020) claimed that saliency meth-
ods are more applicable for model explanations.
There are three saliency methods for NLP as alter-
natives to attention (Arras et al., 2019): gradient-
based (Denil et al., 2014), propagation-based (Bach
et al., 2015), and occlusion-based (Zeiler and Fer-
gus, 2014) methods. In our work, the gradient-
based saliency method is adopted for selecting im-
portant words to be code-switched.

3 Methodology

Suppose we have two monolingual datasets {Dsrc

Dtgt}, where Dsrc = {(xSi , yi)}Ni=1 is the labeled
data only available in the source language LS , and
Dtgt = {(xTi )}Mi=1 is the unlabeled data in the tar-
get language LT . We aim at using Dsrc to train

an universal classification model and predicting
the corresponding label when given an unseen lan-
guage data Dtgt.

The architecture of our model is illustrated
in Figure1, which consists of three components:
(1) Gradient-based keyword selection: selecting
keywords in the training set and building a code-
switched dictionary; (2) Dynamic code-switching:
code-switching the input sentence dynamically; (3)
Multi-view training: training the encoder based
on multi-view learning. We will elaborate each part
in this section.

3.1 Gradient-based Keyword Selection
Intuitively, the influence of each word in a sen-
tence is different when training a classification
model. We call those words that have a greater
impact on model as keywords. Different tasks or
domains usually have different keywords, e.g., for
News Classification task, keywords set should in-
clude words like “military”, “salary” and “sport”,
and for Sentiment Classification task, keywords set
should include words like “interesting”, “fascinat-
ing” and “unworthy”. Suppose we have a vocabu-
lary set V contains v words in a dataset, we need to
find a salient subset of keywords K ⊆ V for code-
switching, which would improve downstream tasks
greatly. So we utilize saliency scores for selecting
keywords. Gradient-based saliency computes the
gradient of the loss L with respect to each token
in the input text, and the magnitude of the gradient
serves as a feature importance score (Arras et al.,
2019).

Formally, let xSi = (w1
i , w

2
i , · · · , wn

i ) denotes
the i-th sentence with n words fromDsrc, Lŷ is the
loss between model’s prediction ŷi and the ground
truth yi. For each token wi ∈ xSi , we define the
saliency score as:

Sx(wi) = −∇e(wi)Lŷ · e(wi), (1)

where e(wi) is the embedding of wi. Thus, the
saliency value is a dot product between predic-
tion function gradient and word embedding, which
is referred as Gradient × Input (Shrikumar et al.,
2017). The Gradient shows how much one word
embedding contributes to the final decision, and
the Input leverages the sign and magnitude of the
input. Note that multi-lingual pre-trained models
tokenize words into subwords, so we average the
subword saliency scores of each word as the final
result.
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nice picture book  ,   it  can  be   a  good source of inspiration .

Local Gradient-based Saliency Score

nice 1.58
boring 1.53
great 1.49
good 1.48

…

Global Saliency Score

nice hübsche
boring bohren
great große
good gutes

…

Top k

Code-Switched Dictionary

id 1: this book is a hit! i am returning to . . .
id 2: a great, exciting book, it put me in touch with 
what my dad must have gone . . .

. . .
id 202: nice picture book, it can be a good source of
inspiration.

. . .

English Training Set

Gradient-based Keyword Selection

Inverse Document Frequency

ORG: nice picture book, it can be a good source of inspiration.

Gradient-based Code-Switching

CS: hübsche picture buchen, it can be 
a gutes source of inspirieren.

ORG: nice picture book, it can be a 
good source of inspiration.

horg

shared
Encoder

LKL

LS

Multi-View Training

Dynamic Code-Switching

hcs

Porg Pcs

Positive

Encoder

KL( Porg || Pcs )

Figure 1: The overview of MVMLT architecture. ORG denotes the original English sentence and CS denotes
the corresponding code-switched sentence. Left: the process of gradient-based keyword selection. Right: after
dynamic code-switching, multi-view training jointly optimize cross-entropy loss LS and KL loss LKL.

Equation 1 computes the local contribution of
a token in one sentence, but we aim to build a
global keyword set K in Dsrc. Following Yuan
et al. (2019), we add all saliency scores for token
w occurred in Dsrc and multiply them with the
inverse document frequency (IDF) of w:

S(w) = log
N

|{x ∈ X : w ∈ x}|
·

∑
x∈X:w∈x

Sx(w),

(2)
where N is the total number of words in Dsrc. The
IDF term balances word frequency and saliency
scores by assigning words with high document fre-
quency a lower weight and vice versa. It is neces-
sary because some irrelevant stop words (e.g., “of”
and “a”) have high total saliency scores, for they
appear in the document many times.

Top-k salient words are chosen to compose the
keyword set K, and a bilingual dictionary MUSE
(Conneau et al., 2017) is adopted to build a code-
switched dictionary D = ((s1, t1), · · · , (sk, tk)),
where s and t represent the source and target lan-
guage words, respectively. k is the number of key-
words, and the influence of k value on model per-
formance will be discussed in Section 5.3. The
process of constructing code-switched dictionary
is illustrated in the left part of Figure 1.

3.2 Dynamic Code-Switching

Given a source language sentence xorg =
(w1, w2, · · · , wn), we replace the words in xorg
with their corresponding translation with a certain
probability if they appear in D. After this code-
switching process, we get a code-switched sentence
xcs = (w′1, w

′
2, · · · , w′n). Because the replaced

words in source language could have multiple trans-
lations in the target language, we randomly choose
one for replacement. In addition, we reset the re-
placement after each epoch, namely we replace
different words at different epochs, which could be
referred as a data augmentation method.

3.3 Multi-View Training

We train our MVMLT based on XLM-R architec-
ture with multi-view learning. We first feed original
sentence xorg and code-switched sentence xcs into
a shared XLM-R model separately:

horg = Encoder(xorg),

hcs = Encoder(xcs),
(3)

where horg and hcs are the aggregated sentence
representation for the original sentence and the
code-switched sentence, respectively.

For classification tasks, we input horg and hcs
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into a classification layer:

porg = Softmax(Whorg + b),

pcs = Softmax(Whcs + b),
(4)

where porg and pcs are the task-specific probability
for all candidates, W and b are learnable parame-
ters.

Our main learning objective is to train the classi-
fier to match predicted labels with the ground truth,
so we minimize the following cross-entropy loss
between porg and ground truth label p:

LS = CrossEntropy(porg,p). (5)

On the other hand, we hope the output produced
by the encoder is language-invariant. To achieve
this goal, we leverage multi-view learning to ex-
ploit a more comprehensive representation from
multiple views which usually contain complemen-
tary information. We take two views into consid-
eration: (1) the original sentence feature represen-
tation horg; (2) the code-switched sentence fea-
ture representation hcs. The central assumption of
MVMLT is that an ideal model for cross-lingual
transfer should learn feature representations that
perform well in the source language and are invari-
ant to the shift in the target language. Therefore,
we enforce a consensus between these two views,
that is to say, predicted distributions on the two
views should be as similar as possible:

LKL = KL(porg ‖ pcs), (6)

where KL is Kullback-Leibler (KL) (Kullback and
Leibler, 1951) divergence to measure the difference
between two distributions.

The final objective, combining the cross-entropy
loss (Equation 5) and the KL divergence loss (Equa-
tion 6), is written as follows:

LALL = LS + λkl × LKL, (7)

λkl is a hyper-parameter to trade-off cross-entropy
loss and KL divergence loss, preventing the latter
from drifting too far. The process of multi-view
learning is illustrated in the right part of Figure 1.

4 Experiments

We evaluate the effectiveness of our proposed
method on zero-shot cross-lingual dialog state
tracking and sentiment classification tasks in four
languages. In details, English is the source lan-
guage, and the target languages are German, Italian,
French and Japanese, respectively.

4.1 Datasets

Sentiment Classification (SC) For the sentiment
classification task, we use the multilingual multi-
domain Amazon review dataset (Prettenhofer and
Stein, 2010) which contains three domains: book,
DVD and music. Each domain contains the re-
views in four different languages: English, Ger-
man, French and Japanese, which provides us 9
tasks in total. There are 1000 positive and 1000
negative reviews for each domain in each language.
We use English as the source language, and the
others as the target language. Following Fei and Li
(2020), we combine the English training and test
sets and randomly sample 20% (800) documents
as the validation set for selecting model, and use
the rest 3200 samples for training.

Dialogue State Tracking (DST) The DST data we
use is Multilingual WOZ 2.0 (Mrkšić et al., 2017),
a restaurant domain dataset, which is expanded
from WOZ 2.0 by including two more languages
(German and Italian) besides English. Multilingual
WOZ 2.0 contains 1200 dialogues for each lan-
guage, where 600 dialogues are used for training,
200 for validation, and 400 for testing. The corpus
contains three goal-tracking slot types: food, price
range and area. It can be treated as a collection
of binary classification problems by predicting the
slot-value pair from a current utterance and the pre-
vious system acts. In the experiments, we do not
have access to any training or validation dataset for
German and Italian, we only use target language
for testing.

4.2 Training Details

We leverage the XLM-R-base as Encoder in Equa-
tion 3, with 12 Transformer blocks, 768 hidden
units, 12 self-attention heads. For DST task, we
use Adam (Kingma and Ba, 2014) optimizer and
set learning rate to 1e-5, λkl to 1, the number of
batch size to 8, word replacement ratio to 0.5 and
keyword ratio to 0.1. For SC task, the learning rate
is 1e-6, λkl is 5, batchsize is 12, replacement ratio
is 0.7, keywords ratio is 0.4 for German and French,
0.5 for Japanese. Our approach is implemented
with Pytorch3 and all experiments are conducted
on an NVIDIA Tesla P100. All experiment re-
sults are the average score over 5 runs with random
seeds.

3https://pytorch.org

https://pytorch.org
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Approach German French Japanese

books DVD music avg books DVD music avg books DVD music avg

BWE† 76.00 76.30 81.32 81.41 80.27 80.27 79.41 79.98 71.23 72.55 75.38 73.05
CLDFA 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.64 78.11

Transformer based
mBERT† 84.35 82.85 83.85 83.68 84.55 85.85 83.65 84.68 73.35 74.80 76.10 74.75
XLM† 86.85 84.20 85.90 85.65 88.10 86.95 86.20 87.08 80.95 79.20 78.02 79.39
XLM-R 88.10 86.60 87.95 87.55 88.55 88.30 87.00 87.95 81.15 83.95 83.50 82.87
CoSDA‡ 88.90 86.05 87.20 87.38 86.00 87.60 86.70 86.80 80.65 77.80 80.90 79.78
MVEC 88.41 87.32 89.97 88.61 89.08 88.28 88.50 88.62 79.15 77.15 79.70 78.67
MVMLT(Ours) 91.48 90.15 90.61 90.75 91.38 90.73 88.68 90.26 82.53 83.49 84.40 83.47

Table 1: Prediction accuracy of binary classification on the Amazon Reviews dataset, and the highest performance
is in bold. ‘‡’ denotes the cross-lingual version of CoSDA (Qin et al., 2020) fine-tuned on XLM-R. ‘†’ denotes
results from Fei and Li (2020).

4.3 Comparison Methods

We compare MVMLT with the following strong
baselines.

BWE: Zou et al. (2013) used Bilingual Word Em-
beddings (BWEs) to transfer source word embed-
dings to target word embeddings.

CLDFA: Xu and Yang (2017) utilized adversarial
feature adaptation technique to distill discrimina-
tive knowledge across languages on parallel corpus.

XL-NBT: Chen et al. (2018) distilled and trans-
ferred teacher’s knowledge in the source language
to student state tracker in the target languages.

MLT: Liu et al. (2020) used attention to generate
code-switched sentence, and the replacement is
static in each epoch.

Multilingual Pre-training Models: mBERT (De-
vlin et al., 2018), XLM (Conneau and Lample,
2019) and XLM-R (Conneau et al., 2019) directly
fine-tuned a single layer classifier based on pre-
training language model.

CoSDA: Qin et al. (2020) leveraged multi-lingual
code-switched data by replacing words randomly to
fine-tune mBERT, achieving the current best result
in multi-lingual transfer.

MVEC: Fei and Li (2020) leveraged an unsuper-
vised machine translation system to construct an
encoder-decoder framework with a language dis-
criminator.

Approach German Italian

slot acc. joint acc. slot acc. joint acc.

XL-NBT 55.00 30.80 71.00 41.20
MLT 69.50 32.20 69.50 31.40

Transformer based
mBERT 57.61 14.95 53.34 12.88
XLM† 58.04 16.34 - -
XLM-R 74.63 42.04 88.42 69.44
CoSDA 83.00 63.20 82.20 61.30
CoSDA(XLM-R)‡ 84.77 59.60 85.86 61.00
MVMLT(Ours) 88.88 70.84 93.44 81.41

Table 2: Results on Multilingual WOZ 2.0. The slot ac-
curacy individually compares each slot-value pair to its
ground truth label. The joint goal accuracy compares
the predicted dialogue states to the ground truth at each
dialogue turn. ‘†’ denotes results from (Liu et al., 2020).
‘‡’ denotes our re-implemented results for this method
based on XLM-R.

5 Results & Discussion

5.1 Overall Performance

Results of SC and DST are illustrated in Table 1
and Table 2, respectively. We can see that the fine-
tuned multilingual pre-trained models like mBERT,
XLM and XLM-R outperform all previous methods
by a large margin, which indicates multilingual pre-
trained models have a strong ability of cross-lingual
transfer in zero-shot setting. Besides, compared
with these strong baselines, our model MVMLT
leads to significant improvements and achieves
state-of-the art performance on 10/11 tasks. Par-
ticularly, in SC task, compared with CoSDA (Qin
et al., 2020), our method improves 3.37, 3.46 and
3.69 on average for de, fr and jp, respectively. For
DST task, MVMLT also achieves notable gains in
both languages, especially for joint goal accuracy.
All these results well demonstrate the effective-
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Approach German French Japanese

books DVD music avg books DVD music avg books DVD music avg

Full model 91.48 90.15 90.61 90.75 91.38 90.73 88.68 90.26 82.53 83.49 84.40 83.47
w/o saliency 90.90 89.55 87.90 89.45 90.95 89.85 86.16 88.99 81.90 82.85 84.30 83.02
w/o multi-view 88.30 88.05 85.25 87.20 88.70 88.50 83.70 86.90 81.20 81.80 81.85 81.62

Table 3: Ablation study on Amazon reviews dataset for three languages.

ness of the proposed MVMLT, which is mainly at-
tributed to leverage code-switched data with multi-
view learning for cross-lingual transfer.

We also find MVMLT greatly improves XLM-
R when the target language is more similar to the
source language. For example, MVMLT improves
a lot when transfer to German, French and Italian,
but has limited improvement in Japanese. We hy-
pothesize that English and Japanese belong to dif-
ferent language families and have completely dif-
ferent linguistic structures. In the process of code-
switching, word-to-word replacement will disrupt
the linguistic structure, especially for distant lan-
guages. Therefore, we can not simply map the
English and Japanese sentence representations into
the same space.

5.2 Ablation Study

We conduct an ablation study to explore the effect
of saliency detection and multi-view learning on
the overall performance. The results are reported
in Table 3.

w/o saliency: selecting keywords randomly
rather than extracting keywords based on saliency
leads to approximately 1% degradation, which in-
dicates that saliency has a strong ability to pick out
the most important words in different downstream
task documents.

w/o multi-view: the performance is also sig-
nificantly degraded when the multi-view learning
is substituted by just mixing original and code-
switched sentences together, and feed them to the
encoder independently. Without multi-view learn-
ing, the interactive information between original
sentences and code-switched sentences is ignored
completely, so that the distribution of the latent
representations are discrepant between source and
target languages, which leads to a 2% performance
degradation.

87.9
89.5

91.48

89.1

82.55

87.9

90.9
89

88.7

65

70

75

80

85

90

95

1% 10% 40% 50% 100%
Number of keywords

Saliency RandomA
cc

ur
ac

y%
Figure 2: Test accuracy on German book domain as a
function of the replacement rate k

v . Random denotes
results from selecting keywords randomly. Saliency de-
notes results from selecting keywords by saliency de-
tection.

5.3 Effectiveness of Saliency Detection

Figure 2 shows the influence of different strategies
(i.e., selecting keywords by gradient-based saliency
and selecting keywords randomly) with respect to
different keyword sizes k

v .

The performance of selecting keywords ran-
domly significantly declines when k

v drops, while
saliency-based method performs still well even
with just 1% keywords (about 200 words). This
is because gradient-based saliency helps MVMLT
prioritize the most indicative keywords for code-
switching. These keywords serve as powerful an-
chor points (i.e,. identical strings that appear in
both languages in the training corpus) (Wu et al.,
2019) for cross-lingual transfer, and provide suffi-
cient cross-lingual information for aligning differ-
ent languages representations into a shared space.
As k

v increases, the additional keywords are less
indicative, so they have a minor or even negative
effect on model performance.

It demonstrates that MVMLT remains effective
under a minimal translation budget by leveraging
gradient-based saliency to detect the most task-
related keywords. Appendix A.1 shows the top 10
extracted keywords and their translations to Ger-
man, French and Japanese in SC corpus.



606

(a) (b) (c)

Figure 3: t-SNE visualization of sentence vector space from XLM-R (a), CoSDA based on XLM-R (b), and our
MVMLT method (c). Blue dots denote English sentence representations and pink dots denote German sentence
representations.

German French Japanese

KL 91.48 91.38 82.53
DIS 87.95 89.95 81.75
SIM 87.65 90.90 81.05

Table 4: Accuracy for three languages in book domain.
KL denotes multi-view learning by calculating KL di-
vergence. DIS denotes the distance-based alignment.
SIM denotes the similarity-based alignment.

5.4 Effectiveness of Multi-View Learning
5.4.1 Visualization
We visualize the encoder’s output of different meth-
ods for 2000 sampled parallel corpus in English
and German provided by Amazon Reviews dataset
with t-SNE (Van der Maaten and Hinton, 2008)

The XLM-R results in Figure 3(a) show that
there is almost no overlap between the two lan-
guage representations. CoSDA in Figure 3(b) fur-
ther reduces the distance of representations by in-
troducing code-switched sentences, but there are
still some mismatching parts in the space. By lever-
aging multi-view learning, MVMLT in Figure 3(c)
significantly decreases the distributional discrepan-
cies between English and German instances.

It demonstrates that MVMLT effectively learns
the language-invariant representations of different
languages by multi-view training.

5.4.2 Compared with other alignments
Furthermore, we also try two other strategies to
align multilingual embeddings directly.

Distance-based alignment minimizes the distance
between the two contextual representations:

LALL = LS + λdis× ‖ horg − hcs ‖ . (8)

Similarity-based alignment minimizes the simi-
larity between the two contextual representations,
and we use cosine similarity here:

LALL = LS + λsim × sim(horg,hcs). (9)

As results shown in Table 4, we can conclude
that minimizing the KL divergence between two
probability distributions by multi-view learning is
better than aligning contextual embeddings directly.
Due to the different semantic structures and trans-
lation biases across different languages, forcing the
encoded features to be exactly identical is harm-
ful for its representation ability. While multi-view
learning encourages two predicted distributions as
close as possible, which gives model a softer way
to learn language invariant representations.

5.4.3 MVMLT with Translate-Train
In this section, we add the third view called
Translate-Train, which is the translation of the
source language sentences by a Machine Trans-
lation system4 trained on Europarl5 corpus. The
objective is written as follows:

LALL = LS + λkl1 ×KL(porg ‖ pcs)

+λkl2 ×KL(porg ‖ ptrans),
(10)

where ptrans is predicted probability of translate-
train, λkl1 and λkl2 are set to 1.

The results are shown in Table 5. We can see that
translate-train further improves the performance
of MVMLT by offering an additional view. On
the one hand, translate-train compensates for the
shortcomings of code-switching that sometimes

4https://github.com/facebookresearch/
fairseq

5https://statmt.org/europarl/

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq
https://statmt.org/europarl/
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Approach German Italian

slot acc. joint acc. slot acc. joint acc.

ORG 74.63 42.04 88.42 69.44
CS 84.77 59.60 85.86 61.00
TRANS 81.86 53.90 86.67 64.34

Multi-View training
ORG + CS (MVMLT) 88.88 70.84 93.44 81.41
ORG + TRANS 86.80 65.86 91.82 78.31
ORG + CS + TRANS 91.27 76.61 94.61 85.36

Table 5: Accuracy on DST. ORG denotes original sen-
tences. CS denotes code-switched sentences. TRANS
denotes translate-train sentences.

breaks the semantic coherence. On the other hand,
code-switching offers more target-related informa-
tion compared to translate-train. Therefore, model
could learn more robust cross-lingual representa-
tions from these complementary views.

However, it is an overkill to introduce a more
complex translation system because large parallel
data may not be available in every language. Over-
all, our MVMLT is still a simple yet efficient frame-
work that can achieve promising scores, which is
more suitable for rare-language and limited-budget
scenarios.

6 Conclusion

In this paper, we propose Multi-View Mixed
Language Training (MVMLT), a novel zero-shot
cross-lingual transfer framework. Our approach
utilizes gradient-based saliency to replace a few
task-related words with target language, which is
used for fine-tuning on downstream tasks. Be-
sides, we introduce multi-view learning to con-
struct a language-invariant feature space. Experi-
ments show that our model achieves state-of-the-
art results on cross-lingual sentiment classification
and dialogue state tracking tasks. In the future, we
will investigate the effectiveness of our approach in
multi-lingual setting and apply our model to more
tasks.
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A Appendix

A.1 Examples of Keywords

ENGLISH  —> GERMAN FRENCH JAPANESE

1. book buchen livre 書物

2. read lesen lecture 読み

3. informative informativen instructif 有益

4. great große génial グレート

5. good guten bien 良い

6. interesting interessanten intéressante 興味深い

7. disappointed enttäuschen déçu がっかり

8. novel novelle roman 小説

9. better besser meilleures ベター

10. witty witzige witzig ユーモア

(a) book

ENGLISH  —> GERMAN FRENCH JAPANESE

1. great große génial グレート

2. movie kino film 映画

3. good guten bien 良い

4. excellent ausgezeichnet excellent 優れた

5. bad böse méchant バッド

6. worst schlimmste pire 最悪

7. classic klassisch classique クラシック

8. poor schlecht pauvre かわいそう

9. love liebe amour ラヴ

10. funny lustige drôle 面白い

(b) DVD

ENGLISH  —> GERMAN FRENCH JAPANESE

1. great große génial グレート

2. good guten bien 良い

3. best beste meilleur 最高

4. disappointed enttäuschen déçu がっかり

5. bad böse méchant バッド

6. music musik musique 音楽

7. excellent ausgezeichnet excellent 優れた

8. awesome geil impressionnant すごい

9. terrible schrecklich horrible ひどい

10. like wie aimez ライク

(c) music

Figure 4: Top 10 selected keywords by gradient-based
saliency detection for the “book”, “DVD” and “music”
domain, and their translations to German, French and
Japanese by MUSE dictionary.


