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Abstract

The task of verifying the truthfulness of
claims in textual documents, or fact-checking,
has received significant attention in recent
years. Many existing evidence-based fact-
checking datasets contain synthetic claims and
the models trained on these data might not
be able to verify real-world claims. Partic-
ularly few studies addressed evidence-based
fact-checking of health-related claims that re-
quire medical expertise or evidence from the
scientific literature. In this paper, we intro-
duce HEALTHVER, a new dataset for evidence-
based fact-checking of health-related claims
that allows to study the validity of real-world
claims by evaluating their truthfulness against
scientific articles. Using a three-step data
creation method, we first retrieved real-world
claims from snippets returned by a search en-
gine for questions about COVID-19. Then we
automatically retrieved and re-ranked relevant
scientific papers using a T5 relevance-based
model. Finally, the relations between each evi-
dence statement and the associated claim were
manually annotated as SUPPORT, REFUTE and
NEUTRAL. To validate the created dataset
of 14,330 evidence-claim pairs, we developed
baseline models based on pretrained language
models. Our experiments showed that train-
ing deep learning models on real-world medi-
cal claims greatly improves performance com-
pared to models trained on synthetic and open-
domain claims. Our results and manual analy-
sis suggest that HEALTHVER provides a real-
istic and challenging dataset for future efforts
on evidence-based fact-checking of health-
related claims. The dataset, source code,
and a leaderboard are available at https://
github.com/sarrouti/healthver.

1 Introduction

The exponential growth of textual information
in the form of news, forums, and stories on the
web has resulted in the explosion of misinforma-
tion (Zhang et al., 2019; Da San Martino et al.,

Figure 1: Overview of our evidence-based fact-
checking approach with examples of COVID-19
claims, supported and refuted by evidence extracted
from a scientific article.

2020). While false information could be dangerous
in general, medical misinformation, in particular,
presents a challenge to human health and could be
detrimental when search engines or social media
are used to guide health-related decisions (Barua
et al., 2020). For instance, the COVID-19 pan-
demic has caused the spread of false claims about
the origin, prevention, diagnosis, and treatment of
the disease (Naeem et al., 2020). COVID-19 re-
lated misinformation caused people to turn to fake
and unproven cures (Pennycook et al., 2020).

Recently, retrieving and debunking misinforma-
tion has received significant attention, especially
from fact-checking organizations (e.g. Snopes) that
debunk false information. False claims and fake
news stories, however, are still spreading on the
web (Pennycook et al., 2020). While most fact-
checking organizations use human validation of in-
formation, the ever-increasing amount of new infor-
mation on the Internet makes manual verification
challenging, time-consuming, and costly (Rashkin
et al., 2017; Thorne and Vlachos, 2018; Fan et al.,

https://github.com/sarrouti/healthver
https://github.com/sarrouti/healthver
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2020). Moreover, in contrast to the open domain,
fact-checking medical information requires deep
medical knowledge about the topic of the claims
(Kotonya and Toni, 2020). As a result, automated
fact-checking tools for verifying the veracity of a
given health-related claim or news story are needed
to assist the information seekers in evaluating the
retrieved information from uncontrolled data col-
lections such as the web.

Automated fact-checking systems based on deep
learning to identify misinformation distributed on
the Internet is a promising approach to counter
its spread. Evaluating the veracity of a given
claim against textual sources (e.g. scientific ar-
ticles, Wikipedia) that can support, refute or relate
to the claim has been explored to fight the spread
of misinformation (Thorne et al., 2018; Wadden
et al., 2020). The claims on which the existing
fact-checking systems rely for training are syn-
thetic, since they were manually created from the
sentences or citations retrieved from a corpus of
documents. For instance, claims in the FEVER
dataset (Thorne et al., 2018) were manually created
by mutating sentences from Wikipedia documents.
Whereas the scientific claims in (Wadden et al.,
2020) were created from citation sentences by an-
notators. “Natural” claims, or real-world claims,
expressed by Internet users differ from the man-
ually created claims for several reasons. Recent
events such as the COVID-19 pandemic showed
that real-world claims could include multiple facts
(e.g. “Vitamins C and D may help your immune
system fight COVID-19”) which makes the verifi-
cation process more complicated as the evidence
(i.e. a scientific article) may support the claim
about one fact and refute another one that is stated
in the same claim. Moreover, most of the claims
that spread on the web use speculative and vague
language (e.g. “social distancing measures could
be effective in stopping the spread of the virus”).
Therefore, the deep learning models trained on the
manually created claims are unlikely to be able to
validate claims found on the web. Furthermore,
verifying claims in domains such as the medical
domain, where medical expertise is needed, makes
the task more challenging. The adaptation of fact-
checking models trained on open-domain claims to
health-related claims might not necessarily work
well.

To tackle the aforementioned issues, we
introduce a new fact-checking dataset called

HEALTHVER, a new dataset for evidence-based
fact-checking of health-related claims based on sci-
entific articles. Compared to the existing efforts,
we use naturally-occurring claims from the web
and scientific articles for verification. As shown in
Figure 2, given a claim and a relevant scientific arti-
cle retrieved from a corpus of scientific articles, our
verification system predicts three types of relations
between the claim and the evidence extracted from
an article: SUPPORTS, REFUTES, and NEUTRAL.
In summary, this paper makes the following main
contributions:
1. We introduce HEALTHVER, a new manually an-
notated dataset consisting of 14,330 evidence-claim
pairs with their veracity label (i.e. SUPPORTS, RE-
FUTES, and NEUTRAL). To the best of our knowl-
edge, this is the first evidence-based fact-checking
study that investigates the veracity of real-world
claims against scientific articles.
2. We analyze the complexity of the claims in the
HEALTHVER dataset and compare it with the com-
plexity of existing datasets using an ensemble of
relation extraction approaches. We also compare
the generalization potential of HEALTHVER with
existing datasets using pairwise zero-shot accuracy
deltas and a new measure that takes into account
training set sizes.
3. Our experiments show that training deep
learning-based fact-checking models on real-world
and in-domain claims substantially improves the
performance compared to training on synthetic and
open-domain claims. Our results also show that
HEALTHVER is a challenging testbed for devel-
oping new evidence-based fact-checking systems
designed to validate real-world and health-related
claims against a corpus of textual documents.
4. We present a detailed error analysis of
state-of-the-art models trained and evaluated on
HEALTHVER to identify the challenges in real-
world claim verification against scientific articles.

2 Related Work

In recent years, there have been growing concerns
about the rampant spread of fake news, false claims,
and fabricated stories (Derczynski et al., 2017;
Poddar et al., 2018; Mishra et al., 2020). Due
to the proliferation of misinformation, several ef-
forts have been made to construct fact-checking
datasets to advance automated fact-checking sys-
tems (Hanselowski et al., 2019; Thorne et al., 2021;
Schuster et al., 2021). Vlachos and Riedel (2014)
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collected a claim-verification dataset from fact-
checking websites (e.g. PolitiFact) that contains a
limited number of claims (106 claims).

Wang (2017) constructed a large dataset of 12.8k
claims from the PolitiFact website. Nakov et al.
(2018) introduced a dataset for the CLEF-2018
CheckThat! shared task on political debates in En-
glish and Arabic. A common feature for all the
aforecited datasets is that they only contain claims
without evidence to support or refute them. For
evidence-based fact-checking, Thorne et al. (2018)
constructed the FEVER dataset of 185.4k claims
generated by mutating sentences extracted from
Wikipedia. However, the claims are synthetic since
they are created by altering the evidence sentences.
Augenstein et al. (2019) introduced MULTIFC, the
claim verification dataset of natural claims. It con-
sists of 34,918 claims, collected from 26 fact check-
ing websites in English, the evidence pages to ver-
ify the claims, and other metadata information.

In the medical domain, a new dataset was intro-
duced for the TREC 2020 Health Misinformation
Track. Documents related to COVID-19 from the
CommonCrawl News dataset1 have been used. In
this dataset, the evidence for claim validation was
missing. Kotonya and Toni (2020) built a dataset
called PUBHEALTH which includes 11.8K claims
accompanied by journalists’ explanations from fact-
checking websites (e.g. Snopes, Politifact). PUB-
HEALTH is designed to evaluate veracity prediction
and explanation generation tasks. The majority of
the claims in this dataset are false. Wadden et al.
(2020) created SCIFACT, a corpus of 1.4k scientific
claims accompanied by abstracts that support or
refute each claim. This dataset, however, contains
synthetic claims.

The existing datasets for evidence-based fact-
checking systems are either based on mutated sen-
tences (e.g. creating claims from Wikipedia and
citations sentences), that are not real-world and nat-
ural claims, or use journalists’ explanations from
fact-checking websites. Claims found on the Inter-
net are arguably more complicated and challenging
to verify than synthetic claims.

Therefore, to mitigate the above discrepancies
between the real-world claims and the training data,
we introduce a new dataset of real-world claims
related to COVID-19 with associated evidence ex-
tracted from scientific articles, manually annotated
with three types of relations: SUPPORTS, REFUTES,

1From January 1st, 2020 to April 30, 2020.

and NEUTRAL.

3 The HEALTHVER Dataset

This section describes our proposed approach to
create the HEALTHVER dataset, which consists of
three main stages:
1. Claim retrieval: retrieving, extracting, and se-
lecting real-world health-related claims from snip-
pets returned by a search engine for given questions
that are asked online.
2. Evidence retrieval: automatically retrieving
scientific articles relevant to these claims and then
manually extracting evidence from their abstracts.
3. Claim verification: manually verifying
whether the real-world claim is supported or re-
futed by the extracted evidence, or deciding that
the information is insufficient to make a decision
(i.e. neutral or irrelevant to the claim).

3.1 Claim retrieval
The claim retrieval stage aims to retrieve naturally-
occurring claims from the Internet. To do so, we
first used a set of most popular questions about
COVID-19 asked by information seekers online,
e.g., those captured in the TREC-COVID topics2.
We targeted natural claims related to COVID-19
as the recent COVID-19 pandemic represents a
good example of uncontrolled proliferation of false
claims and stories which can cause serious conse-
quences for consumer health (Barua et al., 2020).
In addition to the questions that we collected, we
used questions released by the TREC Health Misin-
formation Track3, TREC-COVID and related ques-
tions (i.e. "what people also ask") generated by the
Bing search engine. We have collected 80 ques-
tions, listed in Appendix B. We used this set of
questions that ask about the origin, spread, preven-
tion, diagnosis, and treatment of COVID-19 since
most of the misinformation is related to these topics.
For each of these selected questions, we retrieved
the associated text snippets from the top-40 Bing
search results using the Bing Web Search API4 (a
subscription key is needed to use this service). We
did not set any restrictions regarding the source of
the snippets, but most claims were found in news
articles, blog posts, and social media.

Real-world claims were extracted from the re-
turned snippets and validated manually by the an-

2ir.nist.gov/covidSubmit/data.html
3trec-health-misinfo.github.io
4api.cognitive.microsoft.com/bing/v7.

0/search

ir.nist.gov/covidSubmit/data.html
trec-health-misinfo.github.io
api.cognitive.microsoft.com/bing/v7.0/search
api.cognitive.microsoft.com/bing/v7.0/search
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notators (three authors of this paper who have ex-
pertise in biomedical NLP). The annotators were
tasked with manually extracting claims related to
the original questions. The extracted claims consist
of general information about COVID-19 and do
not contain any private information (e.g. "Coron-
avirus may have originated in bats."). We define
real-world claims as assertions that express facts
without providing evidence. The claims could con-
tain a single or multiple pieces of information from
the text snippets. The claims could be either true,
false, neutral, or irrelevant to the question. The
average length of the collected claims is 19 words.

Figure 2 presents some examples of real-world
claims related to the question “What is the origin
of COVID-19?”.

Question: What is the origin of COVID-19
Snippets:
- Coronavirus may have originated in bats or pangolins. The
first known cases of COVID-19 were in Wuhan, China...
- February 18 A group of 27 prominent scientists outside
China publishes a statement in The Lancet to condemn con-
spiracy theories suggesting that COVID-19 does not have a
natural origin and ...
Claims:
- Coronavirus may have originated in bats or pangolins.
- The first known cases of COVID-19 were in Wuhan, China.
- COVID-19 does not have a natural origin.

Figure 2: Examples of health-related claims extracted
from snippets returned by the Bing search engine.

3.2 Evidence retrieval
The evidence retrieval task aims to retrieve sci-
entific evidence that could support or refute the
health-related claims. To this end, we used the
COVID-19 Open Research Dataset (CORD-19) as
a source of scientific articles on COVID-19 (Wang
et al., 2020), where the majority of papers are from
PubMed Central. We used the CORD-19 2020-07-
16 version to create this dataset. For each ques-
tion, we first retrieved the relevant scientific arti-
cles from the CORD-19 collection using the BM25
model and the Terrier5 search engine. We then
re-ranked the top-1000 documents with the Text-to-
Text Transfer Transformer (T5) (Raffel et al., 2020)
relevance-based re-ranking model and selected the
top-10 relevant articles. T5 was shown to be ef-
fective on newswire retrieval and MS MARCO
(Nogueira et al., 2020). We fine-tuned the model
on MS MARCO passage ranking dataset (Bajaj
et al., 2018) by maximizing the log probability of

5http://terrier.org/

generating the output token “true” when the doc-
ument is relevant, and the token “false” when the
document is not relevant to the query (Nogueira
et al., 2020). Once fine-tuned, we first apply a
softmax only on the logits of the “true” and “false”
generated tokens, and then re-rank the documents
using the probabilities of the “true” token. Table 1
presents the article retrieval performance, in terms
of precision, recall, and NDCG, of the BM25 and
T5 models on the TREC-COVID test set.

Models P@10 R@10 NDCG@10
BM25 0.674 0.016 0.594
T5 0.796 0.018 0.742

Table 1: Article/evidence retrieval: Performance of the
BM25 and T5 models on the TREC-COVID test set.

Re-ranking the search results considerably
helped human annotators in finding the best evi-
dence statements to verify the claims. In fact, in
our preliminary analysis of the search results, we
found that NEUTRAL examples were more frequent
than REFUTES or SUPPORTS when using BM25
without re-ranking.

3.3 Claim verification

The annotators were given the collected claims
and the associated top-10 abstracts from relevant
documents and were asked to extract the evidence
statements and label each evidence-claim pair as:
SUPPORTS, REFUTES, or NEUTRAL. The label
NEUTRAL was used if the evidence was neutral
or irrelevant to the claim. The evidence statement
could be complete or incomplete. It also could
be a sentence, part of the sentence, or a passage.
The annotators were asked to extract up to four
evidence statements from each abstract for each
claim. The title of the document could also be used
as evidence. A single claim could be supported and
refuted by different evidence statements. Figure 3
shows an example of a claim that is supported and
refuted with different evidence statements.

For the claims that include multiple pieces of
information, the SUPPORTS label was considered
if the evidence supports one of them and the other
pieces of information were neutral. Similarly, the
REFUTES label was considered if the evidence re-
futes one of the multiple pieces of information. For
NEUTRAL examples, we encouraged the annotators
to select sentences that are relevant but do not con-
tain enough information to make a decision. We did

http://terrier.org/
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Claim: Vitamin D Lowers Your Risk of COVID-19
Evidence 1: ecological investigation on 51 countries
including 408,748 participants, analyses indicated no
correlation between vitamin D levels and recovery rate
(r= 0.041) as well as mortality rate (r=-0.073) globally
(Ghasemian et al., 2021). [REFUTES]
Evidence 2: testing positive for COVID-19 was as-
sociated with increasing age (RR(age<50)=1.05,
p<0.021; RR(age[]50)=1.02, p<0.064)), non-white
race(RR=2.54,p<0.01) and being likely vitamin D deficient
(deficient/treatment-not-increased: RR=1.77,p<0.02)
as compared to likely vitamin D sufficient(not-
deficient/treatment-not-decreased), with predicted
COVID-19 rates in the vitamin D deficient group of
21.6]%(95%CI[14.0%-29.2%] ) versus 12.2%(95%CI[8.9%-
15.4%]) in the vitamin D sufficient group (Meltzer et al.,
2020). [SUPPORTS]

Figure 3: Example of a claim that is supported and re-
futed by different evidence statements.

not set time restrictions for labeling the evidence-
claim pairs, but the annotators spent on average
less than 1 minute per evidence-claim pair. The
average length of evidence statements is 38 words.
Compared to the SCIFACT and FEVER datasets
which do not include evidence for the NOINFO

claims, we provide evidence statements for NEU-
TRAL/NOINFO examples in HEALTHVER. We pro-
vide such annotation since the results of veracity
prediction change when using different selection
strategies for claims labeled NOINFO (Thorne et al.,
2018). NOINFO is used when there is not enough
information to make a decision. In (Wadden et al.,
2020), the authors observed that the evidence is
found in abstracts for the majority of claims. There-
fore, in this study, we decided to use the abstracts
rather than full articles to verify the truthfulness
of real-world claims. Figure 4 shows examples of
supported and refuted claims and the associated
evidence extracted from the abstracts of CORD-19
articles.

Abstract: https://www.biorxiv.org/content/
10.1101/2020.05.12.091397v1
Evidence: Recent research results suggest that bats or pan-
golins might be the original hosts for the virus based on
comparative studies using its genomic sequences.
Claims with labels:
- Coronavirus may have originated in bats or pangolins.
[SUPPORTS]
- The first known cases of COVID-19 were in Wuhan, China.
[NEUTRAL]
- COVID-19 does not have a natural origin. [REFUTES]

Figure 4: Examples of supported and refuted health-
related claims and associated evidence extracted from
relevant scientific articles.

4 Dataset Analysis

4.1 Inter-annotator agreement
Due to the complexity of labeling the claim-
evidence pairs and following previous efforts
(Thorne et al., 2018; Wadden et al., 2020), we only
evaluated the agreement between annotators on
label assignment. We randomly selected 603 claim-
evidence pairs for re-annotation. We obtained a
Cohen’s Kappa of k = 0.76 (Cohen, 1968), which
indicates that the inter-annotator reliability is satis-
factory, as the obtained k of 0.76 is above the com-
monly applied criteria of .70; it is also comparable
to the 0.75 Cohen’s Kappa reported in Wadden et al.
(2020).

4.2 Dataset statistics
Table 2 presents the main statistics with: (i) number
and distribution of the claims are shown in Table 2a
and (ii) number of questions, claims, and evidence
statements are shown in Table 2b. We observed that
a single evidence statement can support or refute
different real-world claims for a given topic. Also,
a single claim can be supported or refuted by differ-
ent evidence statements. As shown in Table 2b, we
identified 738 evidence statements for the 1,855 re-
trieved claims, which yields 14,330 evidence-claim
pairs, presented in Table 2a. To split the dataset
into training/validation/test sets and to guarantee all
claims in the test and validation sets do not appear
in the training set, we randomly selected 230 claims
and their evidence statements for the test set, 230
claims and their associated evidence statements for
the validation set, and the rest for the training set.
We split the training/validation/test sets by claims
rather than questions to have a balanced dataset
class-wise. We selected approximately the same
number of SUPPORTS, REFUTES, and NEUTRAL

examples in the validation and test sets.
The size of the HEALTHVER dataset is large

compared to SCIFACT, and approximately the same
as the size of PUBHEALTH.

4.3 Claim complexity analysis
One of the characteristics of the dataset is the com-
plexity of the claims. Complex claims are state-
ments that include multiple pieces of information
(facts). For instance, the claim “Dogs and cats can
get covid, but cats are more susceptible to infec-
tion.” contains three facts that need to be checked.

Our basic assumption is that a claim with more
relations is a more complex claim To study the

https://www.biorxiv.org/content/10.1101/2020.05.12.091397v1
https://www.biorxiv.org/content/10.1101/2020.05.12.091397v1
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complexity of the claims we rely on automatic
relation extraction methods We use an ensemble
method that computes the average number of
relations extracted using three distinct methods:
1. Dependency-based open relation extraction in
the form of (subject, relation, object) triples with
OpenIE (Angeli et al., 2015).
2. A supervised BERT model (Soares et al., 2019)
trained on abstract relation categories from the
SemEval dataset (Hendrickx et al., 2010).
3. A count of all verbal phrases detected by the
Stanford CoreNLP parser (Manning et al., 2014).

Each method has different characteristics and led
to substantially different ranges in the number of
extracted relations. For instance, the BERT model
often recognizes multiple relation classes between
the same subject and object entities, while OpenIE
rarely does so.

To evaluate the relevance and reliability of the
averaging ensemble, we annotated manually a sub-
set of the top 370 claims ranked according to the
average number of relations by assigning a (1) sin-
gle fact, or (2) multiple facts label to each claim.

Figure 5 presents the results of this evaluation.
We find that the relation averaging ensemble has a
high precision in detecting complex claims, rang-
ing between 75.07% for claims with an average
of 4 detected relations to 100% for claims with a
detected average of more than 10.67.

Figure 5: Evaluation of the relation averaging ensem-
ble potential in detecting complex claims. Recall is
computed according to the number of reference com-
plex claims. Coverage is the total ratio of all claims
that has a relation number greater than x.

Following these observations on the reliability of
the averaging ensemble as a complexity indicator
(for values exceeding 4.0), we use it to compare
HEALTHVER with three existing misinformation
datasets in figure 6. We find that HEALTHVER has

consistently more complex claims in proportion
than FEVER, PUBHEALTH, and SCIFACT, at all
complexity levels.

Figure 6: Distribution of Complex Claims in
HEALTHVER, FEVER, PUBHEALTH, and SCIFACT ac-
cording to the average relation number indicator.

N.B. There are three caveats to consider when per-
forming automatic relation extraction to analyze
claim complexity. First, some relations are periph-
eral information and do not actually add complexity
to the claim. Second, automatic relation extraction
methods are not able to differentiate between im-
portant/main relations and peripheral ones as that
was not their objective. Third, these methods have
both recall and precision errors when it comes to
extracting relations from the main facts. Therefore,
the aim of our relation extraction ensemble method
was not to compute an absolute value of complexity
for a given dataset, but rather to provide relative
comparisons between dataset pairs.

5 Dataset validation

We validate HEALTHVER and its ability to support
the fact-checking task compared to the existing
datasets.

5.1 Baseline models
Given a pair (c, e), where c is the health-related
claim accompanied by a scientific evidence e, fact-
verification models are tasked with predicting a la-
bel ŷ(c, e) ∈ {SUPPORTS,REFUTES,NEUTRAL}.

We examined pretrained BERT (Devlin et al.,
2019) as well as two variants trained on scientific
and biomedical articles: SciBERT (Beltagy et al.,
2019) and BioBERT (Lee et al., 2019). In addition
to BERT models, we examined T5 (Raffel et al.,
2020) for its state-of-the-art effectiveness. We train
the models on claim-evidence pairs. Claims and
evidence are concatenated and passed to the models
to make the labeling decision. We minimize the
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Set Supports Refutes Neutral Total
Training 3,782 2,411 4,397 10,590
Validation 533 391 993 1,917
Test 671 425 727 1,823
Total 4,986 3,227 6,117 14,330

(a) Claim labels distribution

#Questions #Claims #Evidence
80 1,855 738

(b) Evidence and claim counts.

Table 2: Statistics of the new HEALTHVER dataset.

cross-entropy loss between ŷ(c, e) and the gold
label y(c, e).

For BERT-based models, we concatenate the
claim c and its associated evidence e with [SEP ],
add [CLS] to the sequence [c, SEP, e], and feed
the input to BERT. The [CLS] representation is fed
into a softmax layer for a three-way classification.

For the T5-based model, the input sequence for
the task is "Claim: [c] Evidence: [e] Target:".
We fine-tuned T5 to generate the target tokens SUP-
PORTS, REFUTES, or NEUTRAL which are the
ground truth labels. T5 is a sequence-to-sequence
model that uses traditional transformer architecture
and BERT’s masked language modeling.

In our experiments, we used the BERT (base-
uncased), SciBERT (scivocab-uncased), BioBERT
(v1.0-pubmed-pmc), and T5-base implementations
provided in HuggingFace’s Transformers package
version 2.10 (Wolf et al., 2020). All models were
trained with a batch size of 16 and maximum se-
quence length of 512 tokens for 20 epochs using
single P100 GPUs (16 GB VRAM) on a shared
cluster. Adam optimiser with a learning rate of
1e-5 was used.

5.2 Evaluation metrics

Claim verification can be seen as a Natural Lan-
guage Inference (NLI) task. Therefore, we consider
the fact-checking task as a multi-class classifica-
tion problem, as in previous efforts (Thorne et al.,
2018; Wadden et al., 2020). For a given claim and
its associated evidence, the models assign one of
the following labels: SUPPORTS, REFUTES, and
NEUTRAL. Macro precision, macro recall, macro
F1-score, and accuracy have been used to evaluate
the effectiveness of the models.

In addition, to compare the datasets with each
other, we evaluate their pairwise zero-shot perfor-
mance, Zi,j(m), according to an evaluation mea-
sure m, when a BERT-base model is fine-tuned on
the training set of dataset i, and tested on the test

set of dataset j, and the pairwise zero-shot delta as:

∆i,j(m) = Zi,j(m)− Zj,i(m) (1)

To adjust for the discrepancies in training set
sizes, noted si and sj , we also compute a size-
adjusted delta as:

∆a
i,j(m) = ∆i,j(m)× eδi,j(m)

sj−si
si+sj (2)

with δi,j(m) = sign(∆i,j(m)). The rationale of
∆a
i,j is that if a dataset i has a better pairwise zero-

shot performance than a dataset j, ∆i,j should be
highlighted further if the training set of i is smaller
than the training set of j, and highlighted less oth-
erwise.

5.3 Results and discussion
In our experiments, we (1) examine the effect of dif-
ferent training datasets, (2) study the the generality
of HEALTHVER, (3) present the results of baseline
models, and (4) examine the effect of the model
input on the performance of veracity prediction.

Table 3a presents the results of the BERT-
base model fine-tuned on FEVER, SCIFACT, PUB-
HEALTH, and HEALTHVER, and evaluated on the
HEALTHVER test set. The NOINFO label in FEVER

and SCIFACT is equivalent to the NEUTRAL la-
bel in HEALTHVER. We considered the TRUE

label as SUPPORTS, the FALSE and MIXTURE la-
bels as REFUTES, and UNPROVEN as NEUTRAL

when experimenting with PUBHEALTH. Although
the FEVER dataset (145,449 training examples) is
much larger than SCIFACT (809 training examples)
and HEALTHVER, the F1-score shows that train-
ing on SCIFACT and HEALTHVER achieves better
results than training on FEVER that is based on
Wikipedia sentences. These results support our
hypothesis that domain-specific fact verification
benefits more from training on in-domain claims.
The results also confirm that training the models
on synthetic claims does not perform well on the
real-world claims. On the other hand, the results
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Training data P R F1 Acc.
FEVER 40.63 45.14 36.26 40.59
SCIFACT 37.40 41.50 36.62 39.33
PUBHEALTH 35.33 34.03 25.70 28.63
HEALTHVER 73.45 73.70 73.54 74.82

(a) Results of the BERT-base model fine-tuned on each train-
ing set and evaluated on the HEALTHVER test set.

Test set P R F1 Acc.
FEVER 65.71 65.80 60.97 65.77
SCIFACT 54.20 54.55 46.78 54.81
PUBHEALTH 36.85 32.87 29.37 38.57
HEALTHVER 73.45 73.70 73.54 74.82

(b) Results of the BERT-base model fine-tuned on the
HEALTHVER training set and tested on each test set.

Table 3: Comparison of zero-shot transfer performance.

Dataset HEALTHVER FEVER SCIFACT PUBHEALTH
∆i,j ∆a

i,j ∆i,j ∆a
i,j ∆i,j ∆a

i,j ∆i,j ∆a
i,j

HEALTHVER 0. 0. -25.18 -58.92 -15.48 -6.56 -9.94 -9.57
FEVER 25.18 58.92 0. 0. -18.43 -6.86 0.39 0.92
SCIFACT 15.48 6.56 18.43 6.86 0. 0. -0.29 -0.67
PUBHEALTH 9.94 9.57 -0.39 -0.92 0.29 0.67 0. 0.
Average 16.86 25.01 -2.38 -17.66 -11.20 -4.25 -3.28 -3.10

Table 4: Pairwise zero-shot accuracy deltas (∆i,j) and size-adjusted accuracy deltas (∆a
i,j) for all dataset pairs.

Best results are highlighted in bold row-wise.

showed that training on PUBHEALTH leads to poor
performance since it is an imbalanced dataset and
its main goal is to evaluate the explanations for
fact-checking prediction.

To evaluate the generalization potential of
HEALTHVER, we tested the BERT-based model
trained on HEALTHVER on the existing datasets, as
shown in Table 3b. From Table 3a and Table 3b, we
can observe that HEALTHVER generalizes better
than the existing datasets. For instance, the BERT-
based model trained on HEALTHVER and tested
on FEVER dev set achieves 60.97% in F1-score,
while the BERT-based model trained on FEVER and
tested on HEALTHVER test set achieves 36.26% in
terms of F1-score.

To investigate further this aspect, we com-
pute the pairwise zero-shot accuracy deltas
∆i,j(accuracy) and size-adjusted accuracy deltas
∆a
i,j(accuracy) between all dataset pairs (cf. ta-

ble 4). The results show that HEALTHVER gen-
eralizes substantially better out-of-the-box than
all other datasets, with an average accuracy delta
of +16.86, and +25.01 when adjusted for training
set size, while the average zero-shot deltas for all
other datasets was negative and ranged between
-17.66 and -2.38. The substantially higher perfor-
mance from HealthVER in pairwise generalization
deltas could be due in part to the higher complexity
of the claims. While a very high level of com-
plexity can likely hurt generalization performance,
we think that the moderately higher complexity in
HealthVER improved the fine-tuning of the BERT
transformer by a relevant broadening of the textual
context.

Models P R F1 Acc.
BERT-base 73.45 73.70 73.54 74.82
SciBERT 76.62 78.15 77.21 78.11
BioBERT 74.07 75.73 74.59 76.52
T5-base 80.82 79.00 79.60 80.69

Table 5: Claim verification: Results of baseline models
on the HEALTHVER test set.

Model input P R F1 Acc.
Claim-only 49.92 48.38 48.67 50.00

Table 6: The performance of the “claim-only” model
trained and evaluated on HEALTHVER, using T5.

We also explore and compare different baseline
models including BERT, SciBERT, BioBERT, and
T5 trained and evaluated on HEALTHVER (cf. table
5) and the impact of training the best model on the
claims only without the evidence (cf. table 6). The
results show (1) that T5 has the best performance,
(2) that performance could be improved by using
in-domain BERT-based language models such as
SciBERT and BioBERT, and (3) that performance
drops substantially without the evidence. This in-
dicates that there are no sufficient language cues
in the claim text alone for a correct classification,
and that the model needs access to the evidence
statements to verify the claims.
Error analysis. We performed a manual analysis
of the test set where the claim verification model
predicted an incorrect label. Table 7 in Appendix A
presents some examples. The error analysis has
shown that evidence-claim pairs are mostly classi-
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fied incorrectly if there is not a significant lexical
overlap between the claim and the evidence (exam-
ple #1). The model also misclassified the evidence-
claim pairs due to wrong lexical or semantic rela-
tions such as COVID-19 vs. Coronavirus (example
#3) and “Diabetes” vs. “Type 2 Diabetic” (exam-
ple #7). Using different abbreviations in claims
and evidence statements is also found to be a cause
of error. For instance, the model was not able to
interpret abbreviations such as ACEIs and ACE (ex-
ample #2). We also find that stating multiple facts
in a single claim was one of the challenges in veri-
fying real-world claims. For instance, in examples
#2, #5, and #6, the evidence verifies one fact of the
claim and neutrally states the other facts. To verify
such claims, the evidence should be extracted from
multiple articles.

6 Conclusion

In this paper, we explored evidence-based fact-
checking of real-world and health-related claims
found on the Internet. To this end, we introduced
HEALTHVER, a new evidence-based fact-checking
dataset, to verify the veracity of real-world claims
by evaluating their assertions against scientific ar-
ticles. We analyzed the complexity of the claims
in HEALTHVER using a relation extraction ensem-
ble and compared its generalization potential with
existing datasets using pairwise zero-shot accuracy
deltas and a new measure that takes into account
training set sizes. We found that the proportion
of complex claims in HEALTHVER is consistently
higher than in the existing datasets at all complexity
levels. Our experiments showed that training fact-
checking models on real-world claims improves
the accuracy of these models compared to training
on synthetic claims. The results also showed that
training models on in-domain data substantially im-
proves health-related claim verification accuracy
compared to training on open-domain data. We
believe that HEALTHVER will provide a realistic
and challenging testbed for new evidence-based
fact-checking systems for real-world claims.

Ethics Statement

Data collection process for the HEALTHVER
dataset: Questions about COVID-19 were
adapted from the TREC-COVID and TREC Health
Misinformation Track questions and augmented
with the related questions suggested by the Bing
search engine. The claims were abstracted from

the snippets returned by Bing in response to
the above questions submitted as queries. The
scientific evidence sentences were extracted from
PubMed abstracts.

Biases and limitations: For various reasons, the
collection could have some biases. For example, all
TREC Health Misinformation Track questions are
about natural remedies that might treat COVID-19.
We mitigated this bias by using the TREC-COVID
questions that were collected at different locations
and across several groups of clinicians, patients,
and researchers. There is also a bias due to the
time in the pandemic during which the questions
were collected. As the pandemic evolved, the fo-
cus of misinformation shifted from the origins and
treatments of COVID-19 towards the effects of vac-
cination. The snippets that served as the source
of the claims may be biased by the Bing search
algorithm. The few sentences extracted from the
PubMed abstracts were extracted and labeled man-
ually, which is an inherently subjective task. For
example, given the claim ID: 673,

• Claim: COVID-19 Cases Drop in Warm
Weather, But Not Much.

• Evidence: temperature is the most influential
parameter that reduces the growth at the rate
of 13-17 cases/day with a 1C rise in tempera-
ture.

one annotator could infer that the rise in the tem-
perature indicates the warm weather and label the
evidence as supporting the claim, whereas another
annotator might decide to label this evidence as
neutral, since it does not state which cases are drop-
ping, or refuting the claim, as the drop in the cases
might be considered insignificant.

HEALTHVER shares the above limitations with
other datasets that emulate average information
seekers who search the online sources to answer
their questions and take an additional step to
find scientific evidence to verify facts. Using
HEALTHVER in conjunction with the other datasets
presented in this work should further mitigate the
biases.
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Appendix

A Error analysis

Table 7 presents some examples where the claim
verification model predicted an incorrect label in
the test set.

B Questions

1. Is dexamethasone effective for treating
COVID-19?

2. Are Tylenol, Advil and Motrin effective and
safe to take for COVID-19 symptoms?

3. Can favipiravir help treat COVID-19?

4. Can animals spread COVID-19?

5. will SARS-CoV2 infected people develop im-
munity?

6. Do antibiotics work against the coronavirus?

7. what are the mortality rates overall and in
specific populations

8. Does a surgical mask help avoid COVID-19?

9. what kinds of complications related to
COVID-19 are associated with diabetes

10. does hydroxychloroquine treat COVID-19?

11. Is there a vaccine for the coronavirus disease?

12. Does heat prevent COVID-19?

13. Can I take any vitamins or supplements to
prevent COVID-19?

14. what is known about people that have COVID-
19 without any symptoms?

15. Which are the first symptoms of the coron-
avirus disease?

16. which tests indicate severe covid infection?

17. what is the origin of COVID-19

18. are there any clinical trials available for the
coronavirus

19. What does SARS-CoV-2 stand for?

20. What vaccine candidates are being tested for
Covid-19?

21. Can 5G technology cause COVID-19?

22. How can I reduce the risk of getting COVID-
19?

23. are there any drugs that work for SARS-CoV
or SARS-CoV-2 in animals?

24. Can acetaminophen (Tylenol) treat the coron-
avirus disease?

25. what are the best masks for preventing infec-
tion by Covid-19?

26. touching a contaminated surface will not make
you sick

27. Can drinking alcohol help in preventing
COVID-19?

28. Does garlic protect against covid-19

29. has social distancing had an impact on slow-
ing the spread of COVID-19?

30. Can smoking cannabis (weed) help in prevent-
ing COVID-19?

31. Where can I buy hand sanitizer and if I can’t
find it in the store, can I make my own?

32. Does having a weakened immune system in-
crease your risk of illness from COVID-19?

33. Can pets get the coronavirus disease?

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/D19-3038
https://doi.org/10.18653/v1/D19-3038
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Example

(1)
Claim: A report indicates that Acetaminophen (Tylenol) may be preferred over Ibuprofen (Advil) for coronavirus (fever).
Evidence: Preliminary evidence suggests potential benefit with chloroquine or hydroxychloroquine.
Gold label: NEUTRAL Predicted label: SUPPORTS

(2)

Claim: Evidence is currently lacking and it is too early to make robust conclusions on any link between use of
angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type-I receptor blockers with risk or severity of novel
coronavirus disease 2019 (COVID-19) infection.
Evidence: Patients who take ACEIs and ARBS may be at increased risk of severe disease outcomes due to SARS-CoV-2
infections.
Gold label: REFUTES Predicted label: SUPPORTS

(3)

Claim: coronavirus is man-made.
Evidence: This provides evidences strongly supporting scientific hypotheses that bats and pangolins are probable hosts
for the COVID-19 virus. At the whole genome analysis level, our findings also indicate that bats are more likely the
hosts for the COVID-19 virus than pangolins.
Gold label: REFUTES Predicted label: NEUTRAL

(4)

Claim: Surgical Masks Stop Transmission Of COVID-19 From Symptomatic People.
Evidence: Surgical mask partition for challenged index or nave hamsters significantly reduced transmission to 25%
(6/24, P=0.018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7%
(2/12, P=0.019) of exposed nave hamsters.
Gold label: REFUTES Predicted label: SUPPORTS

(5)

Claim: Ferrets can catch the coronavirus and might give it to other ferrets. But poultry and pigs don’t appear to be at
risk.
Evidence: Experimental data showed ferrets and cats are highly susceptible to SARS-CoV-2 as infected by virus
inoculation and can transmit the virus directly or indirectly by droplets or airborne route.
Gold label: SUPPORTS Predicted label: REFUTES

(6)

Claim: No experts are remotely advocating for people to take up smoking to prevent COVID-19, but some researchers
have theorized nicotine may be playing some role in keeping the virus at bay.
Evidence: Cannabis smoking is linked with poor respiratory health, immunosuppression and multiple contaminants.
Potential synergism between the two epidemics would represent a major public health convergence. Cigarettes were
implicated with disease severity in Wuhan, China.
Gold label: REFUTES Predicted label: SUPPORTS

(7)

Claim: People with Diabetes May Have Higher Risk for COVID-19.
Evidence: Type 2 diabetic patients were more susceptible to COVID-19 than overall population, which might be
associated with hyperglycemia and dyslipidemia.
Gold label: SUPPORTS Predicted label: NEUTRAL

Table 7: Examples of HEALTHVER claims that were incorrectly classified by the BERT-based system.

34. Which organs are most affected by COVID-
19?

35. Do COVID-19 and SARS-CoV-2 mean the
same thing?

36. What are the possible symptoms of COVID-
19 in children?

37. are patients taking Angiotensin-converting en-
zyme inhibitors (ACE) inhibitors at increased
risk for COVID-19?

38. what hand sanitizers kill COVID-19?

39. are heart complications likely in patients with
COVID-19?

40. Do antibodies make you immune to COVID-
19?

41. Does UV light help in preventing covid-19?

42. How does the coronavirus differ from seasonal
flu?

43. Can vitamin C treat COVID-19?

44. Can taking medication to lower fever, such
as paracetamol (tylenol) and ibuprofen (advil)
worsen COVID-19?

45. Can wearing masks help in preventing the
spread of the coronavirus disease?

46. Are there natural remedies that will prevent
me from getting infected with COVID-19?

47. What are some of the more severe symptoms
of COVID-19?

48. what evidence is there for dexamethasone as
a treatment for COVID-19?

49. what is a cytokine storm and how is it related
to COVID-19?

50. How dangerous is COVID-19?

51. how do people die from the coronavirus?
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52. how does the coronavirus respond to changes
in the weather

53. Can drinking hot green tea help in preventing
COVID-19?

54. Can coronaviruses spread from people to ani-
mals?

55. Can animals spread COVID-19 to people?

56. Can smoking help in preventing COVID-19?

57. What psychological effects could the COVID-
19 pandemic cause?

58. How has the COVID-19 pandemic impacted
violence in society, including violent crimes?

59. Are you immune to COVID-19 after recover-
ing from it?

60. is remdesivir an effective treatment for
COVID-19?

61. Is it safe to go outside during COVID-19 pan-
demic?

62. Are there any antiviral drugs to treat the coro-
navirus disease?

63. what are the early symptoms of COVID-19?

64. Can children get COVID-19?

65. can bcg vaccine cure covid-19

66. Can COVID-19 spread through food?

67. Is a headache sign of the coronavirus disease?

68. How has the COVID-19 pandemic impacted
mental health?

69. How to stay mentally healthy during COVID-
19 crisis?

70. what types of rapid testing for Covid-19 have
been developed?

71. Does drinking lots of water help flush out
COVID-19?

72. Does Vitamin D impact COVID-19 prevention
and treatment?

73. How much impact do masks have on prevent-
ing the spread of the COVID-19?

74. When was the COVID-19 pandemic declared?

75. Can people recover from COVID-19?

76. what kinds of complications related to
COVID-19 are associated with hypertension?

77. what are the health outcomes for children who
contract COVID-19?

78. Can face masks protect me from the coron-
avirus disease?

79. Does Vitamin C impact COVID-19 prevention
and treatment?

80. Can vinegar help in preventing COVID-19?


