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Abstract

Event extraction (EE) is a crucial information
extraction task that aims to extract event in-
formation in texts. Most existing methods as-
sume that events appear in sentences without
overlaps, which are not applicable to the com-
plicated overlapping event extraction. This
work systematically studies the realistic event
overlapping problem, where a word may serve
as triggers with several types or arguments
with different roles. To tackle the above prob-
lem, we propose a novel joint learning frame-
work with cascade decoding for overlapping
event extraction, termed as CasEE. Particu-
larly, CasEE sequentially performs type de-
tection, trigger extraction and argument ex-
traction, where the overlapped targets are ex-
tracted separately conditioned on the specific
former prediction. All the subtasks are jointly
learned in a framework to capture dependen-
cies among the subtasks. The evaluation on
a public event extraction benchmark FewFC
demonstrates that CasEE1 achieves significant
improvements on overlapping event extraction
over previous competitive methods.

1 Introduction

Event Extraction (EE) is an important yet chal-
lenging task in natural language understanding.
Given a sentence, an event extraction system ought
to identify event types, triggers and arguments
appearing in the sentence. As an example, Fig-
ure 1(b) presents an event mention of type Share

Reduction, triggered by “reduced”. There are sev-
eral arguments, such as “Fuda Industry” playing
the subject role in the event.

However, events often appear in sentences com-
plicatedly, where the triggers and arguments may
have overlaps in a sentence. This paper focuses

1The source code is available at https://github.
com/JiaweiSheng/CasEE.
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Figure 1: Examples of event overlapping problem: (a)
Events with overlapped triggers and arguments; (b) An
event with an overlapped argument in several roles.

on a challenging and realistic problem in EE: over-
lapping event extraction. Generally, we categorize
all the overlapping cases into three patterns: 1) A
word may serve as triggers with different event
types across several events. Figure 1(a) shows the
token “acquired” triggers an Investment event and
a Share Transfer event at the same time. 2) A
word may serve as arguments with different roles
across several events. Figure 1(a) shows “Shengyue
Network” plays an object role in the Investment

event and a subject role in the Share Transfer

event. 3) A word may serve as arguments play-
ing different roles in one event. Figure 1(b) shows
that “Fuda Industry” plays a subject role and a
target role in an event. For simplicity, we call
pattern 1) as overlapped trigger problem, and both
pattern 2) and 3) as overlapped argument prob-
lem in the following sections. There are about
13.5% / 21.7% sentences having overlapped trig-
ger/argument problems in the Chinese financial
event extraction dataset, FewFC (Zhou et al., 2021).

Most existing EE studies assume that events ap-
pear in sentences without overlaps, which are not
applicable to the complicated overlapping scenar-
ios. Typically, current EE studies can be roughly

https://github.com/JiaweiSheng/CasEE
https://github.com/JiaweiSheng/CasEE
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categorized into two groups: 1) Traditional joint
methods (Nguyen et al., 2016; Liu et al., 2018;
Nguyen and Nguyen, 2019), which simultaneously
extract triggers and arguments by a unified decoder
labeling the sentence only once. However, they fail
in extracting overlapped targets due to label con-
flicts, where a token may have several typed labels
but only one label can be assigned. 2) Pipeline
methods (Chen et al., 2015; Yang et al., 2019;
Du and Cardie, 2020b), which sequentially extract
triggers and arguments in separate stages. Yang
et al. (2019) attempts to tackle the overlapped argu-
ment problem in the pipeline manner, but overlooks
the overlapped trigger problem. Nevertheless, the
pipeline methods neglect the feature-level depen-
dencies between the trigger and arguments, and
suffer from error propagation. In our knowledge,
existing researches in EE neglect overlapping prob-
lems or only focus on one overlapping problem.
Few researches simultaneously solve all the three
mentioned overlapping patterns.

To address the above issues, we propose CasEE,
a joint learning framework with Cascade decod-
ing for overlapping Event Extraction. Specifically,
CasEE realizes event extraction with a shared tex-
tual encoder and three decoders for type detection,
trigger extraction and argument extraction. To ex-
tract overlapped targets across events, CasEE se-
quentially decodes the three subtasks, conducting
trigger extraction and argument extraction accord-
ing to the former predictions. Such a cascade de-
coding strategy extracts event elements according
to the different conditions, so that the overlapped
targets can be extracted in separate phases. A condi-
tion fusion function is designed to explicitly model
the dependencies between adjacent subtasks. All
the subtask decoders are jointly learned to further
build connections among subtasks, which refines
the shared textual encoder with feature-level inter-
actions among downstream subtasks.

The contributions of this paper are three-fold:
(1) We systematically investigate the overlap-

ping problems in EE, and categorize them into three
patterns. To the best of our knowledge, this paper
is among the first to simultaneously tackle all the
three overlapping patterns.

(2) We propose CasEE, a novel joint learning
framework with cascade decoding, to simultane-
ously solve all the three overlapping patterns.

(3) We conduct experiments on a public Chi-
nese financial event extraction benchmark, FewFC.

Experimental results reveal that CasEE achieves
significant improvements on overlapping event ex-
traction over existing competitive methods.

2 Related Work

Current EE research can be roughly categorized
into two groups: 1) Traditional joint methods (Li
et al., 2013; Nguyen et al., 2016; Nguyen and
Nguyen, 2019; Liu et al., 2018; Sha et al., 2018)
that perform trigger extraction and argument ex-
traction simultaneously. They solve the task in
a sequence labeling manner, and extract triggers
and arguments by tagging the sentence only once.
However, these methods fail in solving overlap-
ping event extraction since the overlapping tokens
would cause label conflicts when forced to have
more than one label. 2) Pipeline methods (Chen
et al., 2015; Yang et al., 2019; Wadden et al., 2019;
Li et al., 2020; Du and Cardie, 2020b; Liu et al.,
2020; Chen et al., 2020) that perform trigger ex-
traction and argument extraction in separate stages.
Though pipeline methods have the potential ca-
pacity to solve overlapping EE, they usually lack
explicit dependencies between triggers and argu-
ments, and suffer from error propagation. Among
the researches, Yang et al. (2019) and Xu et al.
(2020) solve the overlapped argument problem, but
overlook the overlapped trigger problem, thus can
not discern correct triggers for argument extraction.
All the above methods can not simultaneously solve
all the overlapping patterns in event extraction.

The overlapping problem has also been explored
in other information extraction tasks outside event
extraction. Luo and Zhao (2020) tackles nested
named entity recognization with bipartite flat-graph
networks. Zeng et al. (2018) tackles overlapped
relational triple extraction by applying a sequence-
to-sequence paradigm with a copy mechanism. Wei
et al. (2020) and Yu et al. (2020) extract overlapped
relational triples with a novel cascade tagging strat-
egy, which inspire us to solve overlapping event
extraction in the cascade decoding paradigm. Wang
et al. (2020) further discusses the propagation error
in cascade decoding. All the above researches are
proposed for other tasks, which can not be directly
transferred for overlapping event extraction due to
the complicated event extraction definition.

3 Our Approach

Given an input sentence, the goal of EE is to iden-
tify triggers with their event types and arguments
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Figure 2: The overview of our proposed approach, CasEE, which contains a shared BERT encoder, a type detection
decoder, a trigger extraction decoder and an argument extraction decoder.

with their corresponding roles, where triggers and
arguments may overlap on some tokens. To tackle
this problem, we propose a training objective at the
event level. Formally, according to the pre-defined
event schema, we have an event type set C and an
argument role setR. The overall goal is to predict
all events in gold set Ex of the sentence x. We aim
to maximize the joint likelihood of training data D:

∏
x∈D

[ ∏
(c,t,ar)∈Ex

p((c, t, ar))|x)
]

=
∏
x∈D

[∏
c∈Cx

p(c|x)
∏
t∈Tx,c

p(t|x, c)
∏

ar∈Ax,c,t

p(ar|x, c, t)
]

(1)
where Cx denotes the set of types occurring in x,
Tx,c denotes the trigger set of type c, and Ax,c,t
denotes the argument set of type c and trigger t.
Note that each c is a type in C, each t is a trigger
word, and each ar ∈ Ax is an argument word cor-
responding to its own role r ∈ R. Eq. (1) exploits
the fact of dependencies among the type, trigger
and argument. Actually, it motivates us to learn a
type detection decoder p(c|x) to detect event types
occurring in the sentence, a trigger extraction de-
coder p(t|x, c) to extract triggers of type c, and an
argument extraction decoder p(ar|x, c, t) to extract
role-specific arguments with type c and trigger t.

Such a task decomposition solves all the event
overlapping patterns claimed in the Introduction.
Specifically, we first detect event types occurring
in the sentence. When extracting triggers, we only

predict the triggers with a specific type, thus the
triggers overlapped across several events will be
predicted in separate phases. Similarly, when ex-
tracting arguments, we predict the arguments with
a specific type and trigger, thus the arguments over-
lapped across several events will also be predicted
in separate phases. Since we adopt role-specific
taggers in argument extraction, the overlapped ar-
guments having several roles in an event can be
predicted separately with specific taggers. All the
predictions in type detection, trigger extraction and
argument extraction form the final prediction.

Figure 2 demonstrates the details of CasEE.
CasEE adopts a shared BERT encoder to capture
textual features, and three decoders for type de-
tection, trigger extraction and argument extraction.
Since all subtasks are jointly learned in contrast to
previous pipeline methods (Yang et al., 2019; Li
et al., 2020), CasEE could capture feature-level de-
pendencies among subtasks. For prediction, CasEE
sequentially predicts event types, triggers and argu-
ments in the cascade decoding process.

3.1 BERT Encoder

To capture the feature-level dependencies among
subtasks, we share the textual representations of
each sentence. As BERT has shown performance
improvements across multiple NLP tasks, we adopt
BERT (Devlin et al., 2019) as our textual encoder.
BERT is a bi-directional language representation
model based on transformer architecture (Vaswani
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et al., 2017), which generates textual representa-
tions conditioned on token context and remains rich
textual information. Formally, the sentence with N
tokens is denoted as x = w1, w2, ..., wN . We input
the tokens into BERT, and then obtain the hidden
states H = h1,h2, ...,hN as the token representa-
tions for the following downstream subtasks.

3.2 Type Detection Decoder
Since we tackle the overlapped trigger problem by
extracting triggers conditioned on the type predic-
tions, we devise a type detection decoder to predict
event types. Inspired by event detection without
triggers (Liu et al., 2019), we adopt attention mech-
anism to detect event types, capturing the most rela-
tive context for each possible type. Specifically, we
randomly initialize embedding matrix C ∈ R|C|×d
as the type embeddings. We define a similarity
function δ to measure the relevance between the
candidate type c ∈ C and each token representa-
tion hi. To fully capture the similarity information
in different aspects, we achieve δ with an expres-
sive learnable function. According to the relevance
scores, we obtain the sentence representation sc
adaptive to the type. The details are as follows:

δ(c,hi)=vᵀtanh(W[c;hi; |c− hi|; c� hi])

sc =

N∑
i=1

exp(δ(c,hi))∑N
j=1 exp(δ(c,hj))

hi

(2)
where W ∈ R4d×4d and v ∈ R4d×1 are learnable
parameters, | · | is an absolute value operator, � is
the element-wise production, and [·; ·] denotes the
concatenation of representations.

Finally, we predict event types by measuring the
similarity of the adaptive sentence representation sc
and the type embedding c with the same similarity
function δ. Then, the predicted probability of each
event type c occurring in the sentence is:

ĉ = p(c|x) = σ(δ(c, sc)) (3)

where σ denotes sigmoid function. We select the
event type with ĉ > ξ1 as results, where ξ1 ∈ [0, 1]
is a scalar threshold. All predicted types in sentence
x form event type set Cx. The decoder learnable
parameter θtd , {W,v,C}.

3.3 Trigger Extraction Decoder
To discern overlapped triggers with several types,
we extract triggers conditioned on a specific type

c ∈ Cx. This decoder contains a condition fusion
function, a self-attention layer, and a pair of binary
taggers for triggers.

To model the conditional dependency between
type detection and trigger extraction, we devise a
condition fusion function φ to integrate condition
information into textual representation. Specifi-
cally, we obtain the conditional token representa-
tion gci by integrating the type embedding c into
the token representation hi as:

gci = φ(c,hi) (4)

Actually, φ can be achieved by concatenation, addi-
tion operator or gate mechanism. To fully generate
conditional representations in the statistical aspect,
we introduce an effective and general mechanism,
conditional layer normalization (CLN) (Su, 2019;
Yu et al., 2021), to achieve φ. CLN is mostly based
on the well-known layer normalization (Ba et al.,
2016), but can dynamically generate gain γ and
bias β based on the condition information. Given a
condition embedding c and a token representation
hi, CLN is formulated as:

CLN(c,hi) = γc � (
hi − µ
σ

) + βc,

γc = Wγc + bγ , βc = Wβc + bβ

(5)

where µ ∈ R and σ ∈ R are the mean and stan-
dard variance taken across the elements of hi, and
γc ∈ Rd and βc ∈ Rd are the conditional gain and
bias, respectively. In this way, the given condition
representation is encoded into the gain and bias,
and then integrated into contextual representations.

To further refine representations for trigger ex-
traction, we adopt a self-attention layer over the
conditional token representations. Formally, the
refined token representations are derived as:

Zc = SelfAttention(Gc) (6)

where Gc is the representation matrix composed
of gci . For details of the self-attention layer, please
refer to Vaswani et al. (2017).

To predict triggers, we devise a pair of binary
taggers. For each token wi, we predict whether it
corresponds to a start or end position of a trigger
as:

t̂sci = p(ts|wi, c) = σ(wᵀ
tsz

c
i + bts)

t̂eci = p(te|wi, c) = σ(wᵀ
tez

c
i + bte)

(7)

where σ denotes sigmoid function, and zci denotes
the i-th token representation in Zc. We select to-
kens with t̂sci > ξ2 as the start positions, and those
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with t̂eci > ξ3 as end positions, where ξ2, ξ3 ∈ [0, 1]
are scalar thresholds. To obtain the trigger word
t, we enumerate all the start positions and search
the nearest following end position in the sentence,
and the tokens between the start and end position
form an entire trigger. In this way, the overlapped
triggers can be extracted separately according to
the type in separate phases. All the predicted trig-
ger t of type c in sentence s forms the set Tc,s. The
decoder parameter θte includes all the parameters
in the condition fusion function, the self-attention
layer and the trigger taggers.

3.4 Argument Extraction Decoder

To tackle the overlapped argument problem, we
extract role-specific arguments conditioned on both
the specific event type c ∈ Cs and event trigger
t ∈ Tc,s. This decoder also contains a condition
fusion function, a self-attention layer, and a group
of role-specific binary tagger pairs for arguments.

We further integrate the trigger information into
the typed textual representation gci in Eq. (4) with
function φ achieved by CLN. Here we take the
average of the start and end position token repre-
sentations of t as the trigger embedding. We also
adopt a self-attention layer to derive the refined tex-
tual representations Zct

′
. To be aware of the trigger

position, we adopt the relative position embedding
as used in Chen et al. (2015), which indicates the
relative distance from current token to the trigger
boundary token. Finally, the token representations
Zct for argument extraction are derived as:

Zct = [Zct
′
;P] (8)

where P ∈ RN×dp is the relative position embed-
dings, dp is the dimension, and [·; ·] denotes the
concatenation of representations.

To predict arguments in roles, we devise a group
of role-specific tagger pairs. For each token wi,
we predict whether it corresponds to a start or end
position of an argument of the role r ∈ R as:

r̂scti = p(asr|wi, c, t) = I(r, c)σ(wᵀ
rsz

ct
i + brs)

r̂ecti = p(aer|wi, c, t) = I(r, c)σ(wᵀ
rez

ct
i + bre)

(9)
where σ denotes sigmoid function, and zcti denotes
the i-th token representation in Zct. Since not all
roles belonging to the specific type c, we adopt
an indicator function I(r, c) to indicate whether
the role r belongs to the type c according to the
pre-defined event scheme. To make the indicator

function derivable, we parameterize I(r, c) to learn
with the model parameters. Specifically, given the
type embedding c ∈ C, we build the connection
between the type and roles as:

I(r, c) = σ(wᵀ
rc + br) (10)

where σ denotes sigmoid function, wr, br are pa-
rameters associated with the role r. For each role
r, we select tokens with r̂scti > ξ4 as the start po-
sitions, and those with r̂ecti > ξ5 as end positions,
where ξ4, ξ5 ∈ [0, 1] are scalar thresholds. To ob-
tain the argument word awith role r, we enumerate
all the start positions and search the nearest follow-
ing end position in the sentence, and the tokens
between the start and end position form an entire ar-
gument. In this way, the overlapped arguments can
be extracted separately according to the different
types and triggers with role-specific taggers. All
the predicted argument ar with type c and trigger t
in sentence x forms the set At,c,x. The decoder pa-
rameter θae includes the type embedding matrix C,
and all parameters in the condition fusion function,
the self-attention layer and the argument taggers.

3.5 Model Training
To train the model, we take log of Eq (1), and the
overall objective J (Θ) is deployed as:∑
x∈D

[ ∑
c∈Cx

log pθ1(c|x)+

∑
t∈Tx,c

log pθ2(t|x, c)+
∑

ar∈Ax,c,t

log pθ3(ar|x, c, t)
]

(11)
where Θ , {θ1, θ2, θ3}; pθ1(c|x), pθ2(t|x, c), and
pθ3(ar|x, c, t) for the subtasks are defined as:

pθ1(c|x) = (ĉ)c̄(1− ĉ)(1−c̄)

pθ2(t|x, c) =
∏

z∈{s,e}

N∏
i=1

(t̂zci )t̄
zc
i (1− t̂zci )(1−t̄

zc
i )

pθ3(ar|x, c, t)=
∏
r∈R

∏
z∈{s,e}

N∏
i=1

(r̂zcti )r̄
zct
i (1− r̂zcti )(1−r̄

zct
i )

(12)
where ĉ, t̂sci , t̂eci , r̂scti , r̂ecti are the predicted prob-
abilities in Eq (3), Eq (7), Eq (9), and c̄, t̄sci , t̄eci ,
r̄scti , r̄ecti are the true 0/1 labels of the training data,
respectively. θ1 , {θbert, θtd}, θ2 , {θbert, θte},
θ3 , {θbert, θae}, where θbert, θtd, θte, θae denote
parameters in BERT, type detection, trigger extrac-
tion and argument extraction, respectively. We train
the model by maximizing J (Θ) through Adam
stochastic gradient descent (Kingma and Ba, 2015)
over the shuffled mini-batches.
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#Overlap #Normal #Sentence #Event

Training 1,560 5,625 7,185 10,277
Validation 205 694 899 1,281
Testing 210 688 898 1,332

All 1,975 7,007 8,982 12,890

Table 1: Statistics of the dataset. Each column denotes
the number of the sentences with overlapped elements,
the sentences without overlapped elements, all the sen-
tences and all the events.

4 Experiments

In this section, we conduct experiments to evaluate
the performance of CasEE.

4.1 Dataset and Evaluation Metric

We conduct experiments2 on a Chinese finan-
cial event extraction benchmark FewFC (Zhou
et al., 2021). We split data with 8:1:1 for train-
ing/validation/testing. Table 1 shows more details.

For evaluation, we follow the traditional evalu-
ation metrics (Chen et al., 2015; Du and Cardie,
2020b): 1) Trigger Identification (TI): A trigger
is correctly identified if the predicted trigger span
matches with a golden span; 2) Trigger Classifica-
tion (TC): A trigger is correctly classified if it is
correctly identified and assigned to the correct type;
3) Argument Identification (AI): An argument is
correctly identified if its event type is correctly rec-
ognized and the predicted argument span matches
with a golden span; 4) Argument Classification
(AC): an argument is correctly classified if it is
correctly identified and the predicted role matches
with a golden role. We report Precision (P), Recall
(R) and F measure (F1) for each of the four metrics.

4.2 Comparision Methods

Though various models have recently been devel-
oped for EE, few researches are investigated to
solve overlapping event extraction. We attempt
to develop the following baselines based on cur-
rent solutions. For the realistic consideration, no
candidate entities are previously known for EE.

Joint sequence labeling methods. This kind of
method formulates event extraction into a sequence
labeling task. BERT-softmax (Devlin et al., 2019)

2Though ACE 2005 dataset is usually used to evaluate tra-
ditional EE models, we observe that it contains a low propor-
tion of sentences with overlapped argument problem (nearly
10% reported in Yang et al. (2019)), and doesn’t exist sen-
tences with overlapped trigger problem.

adopts BERT to learn textual representations and
uses hidden states for classifying event triggers
and arguments. BERT-CRF adopts conditional
random field (CRF) to capture label dependen-
cies, which is adopted in (Du and Cardie, 2020a)
for document-level event extraction. BERT-CRF-
joint borrows idea from joint extraction of entity
and relation (Zheng et al., 2017), which adopts joint
labels of the type and role as B/I/O-type-role.
All the above methods can not solve the overlap-
ping problem due to label conflicts.

Pipelined event extraction methods. This kind
of method solves event extraction with a pipeline
manner. PLMEE (Yang et al., 2019) solves
overlapped argument problem by extracting role-
specific arguments according to the trigger. Moti-
vated by current Machine Reading Comprehension
(MRC) based EE studies (Li et al., 2020; Du and
Cardie, 2020b; Liu et al., 2020; Chen et al., 2020),
we train multiple MRC BERTs for overlapping
event extraction. We extend MQAEE (Li et al.,
2020) for multi-span extraction and re-assemble
the following methods3 to consider conditions in
EE: 1) The method first predicts types, and then
predicts overlapped triggers/arguments according
to the type, termed as MQAEE-1. 2) The method
first predicts overlapped triggers with types, and
then predicts overlapped arguments according to
the typed triggers, termed as MQAEE-2. 3) The
method sequentially predicts types, predicts over-
lapped triggers according to the type, and pre-
dicts overlapped arguments according to the type
and trigger, termed as MQAEE-3. All the above
pipeline methods could solve (or partly solve) over-
lapping event extraction.

4.3 Implementation Details

We adopt source code for PLMEE with its best
hyper-parameters reported in the original litera-
ture. To achieve other baselines, we implement
the code based on the Transformers library (Wolf
et al., 2020). For all the methods, we adopt Chinese
BERT-Base model4 as the textual encoder, which
has 12 layers, 768 hidden units and 12 attention
heads. We use the same value for the common
hyper-parameters among the methods, including
the optimizer, learning rate, batch size and epoch.
For all the hyper-parameters, we adopt grid search

3For more details, please refer to the Appendix B.
4https://huggingface.co/

bert-base-chinese

https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-chinese
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TI(%) TC(%) AI(%) AC(%)

P R F1 P R F1 P R F1 P R F1

BERT-softmax 89.8 79.0 84.0 80.2 61.8 69.8 74.6 62.8 68.2 72.5 60.2 65.8
BERT-CRF 90.8 80.8 85.5 81.7 63.6 71.5 75.1 64.3 69.3 72.9 61.8 66.9
BERT-CRF-joint 89.5 79.8 84.4 80.7 63.0 70.8 76.1 63.5 69.2 74.2 61.2 67.1

PLMEE 83.7 85.8 84.7 75.6 74.5 75.1 74.3 67.3 70.6 72.5 65.5 68.8
MQAEE-1 90.1 85.5 87.7 77.3 76.0 76.6 62.9 71.5 66.9 51.7 70.4 59.6
MQAEE-2 89.1 85.5 87.4 79.7 76.1 77.8 70.3 68.3 69.3 68.2 66.5 67.3
MQAEE-3 88.3 86.1 87.2 75.8 76.5 76.2 69.0 67.9 68.5 67.2 65.9 66.5

CasEE 89.4 87.7 88.6 77.9 78.5 78.2 72.8 73.1 72.9 71.3 71.5 71.4

Table 2: Results of event extraction on FewFC dataset, where TI, TC, AI, AC denote trigger identification, trigger
classification, argument identification and argument classification, respectively.

strategy. We train all the methods with an Adam
weight decay optimizer. The initial learning rate
is tuned in [1e−5, 5e−5] for BERT parameters and
[1e−4, 3e−4] for other parameters. The warming
up proportion for learning rate is 10%, and the max
training epoch is set to 20. The batch size is set
to 8. For CasEE, the dimension dp of the relative
position embedding is tuned in {16, 32, 64}. To
avoid overfitting, we apply dropout to BERT hid-
den states with the rate tuned in [0, 1]. Besides, the
thresholds ξ1, ξ2, ξ3, ξ4, ξ5 for prediction are tuned
in [0, 1]. We select the best model leading to the
highest performance on the validation data. The
optimal hyper-parameter settings are tuned by grid
search, listed in the Appendix A.

4.4 Main Results

The performance of all methods on the FewFC
dataset is shown in 2. The table reveals that:

(1) Compared to the joint sequence labeling
methods, CasEE achieves better performance on
the F1 score. Specifically, CasEE achieves improve-
ments of 4.5% over BERT-CRF and 4.3% over
BERT-CRF-joint on F1 score of AC, respectively.
Besides, CasEE produces higher results on the re-
call of the evaluation metrics, since the sequence
labeling methods have label conflicts that only one
label can be predicted for those multi-label tokens.
The results demonstrate the effectiveness of CasEE
on overlapping event extraction.

(2) Compared to the pipeline methods, our
method also outperforms them on the F1 score.
The results show that CasEE achieves 3.1% and
2.6% improvements on F1 score of TC and AC
over PLMEE, indicating the importance of solving
the overlapped trigger problem in EE. Though the
MRC based baselines can extract the overlapped
triggers and arguments, CasEE still achieves better

Variants TI (%) TC (%) AI (%) AC (%)

BERT-softmax 76.5 49.0 56.1 53.5
BERT-CRF 77.9 52.4 61.0 58.4
BERT-CRF-joint 77.8 52.0 58.8 56.8

PLMEE 80.7 66.6 63.2 61.4
MQAEE-1 87.0 73.4 69.4 62.3
MQAEE-2 83.6 70.4 62.1 60.1
MQAEE-3 87.5 73.7 64.3 62.2

Ours 89.0 74.9 71.5 70.3

Table 3: Results of overlap sentences in testing. F1
scores are reported for each evaluation metric.

Variants TI (%) TC (%) AI (%) AC (%)

BERT-softmax 86.9 79.9 76.2 74.1
BERT-CRF 88.4 80.8 74.9 72.8
BERT-CRF-joint 86.9 79.9 76.1 74.0

PLMEE 86.4 79.7 75.7 74.0
MQAEE-1 88.0 78.5 65.1 57.7
MQAEE-2 89.0 82.0 74.2 72.3
MQAEE-3 87.1 77.6 71.3 69.6

Ours 88.4 80.2 74.0 72.3

Table 4: Results of normal sentences in testing. F1
scores are reported for each evaluation metric.

performance. Specifically, CasEE improves by a
relative margin of 4.1% against the strong baseline
MQAEE-2. The reason may be that CasEE jointly
learns textual representations for subtasks, build-
ing helpful interactions and connections among the
subtasks. The results demonstrate the superiority
of CasEE over the above pipeline baselines.

4.5 Analysis on Overlap/Normal Data

To further understand the performance in testing,
we divide the original test data into two groups:
the sentences with overlapped elements and the
sentences without overlapped elements.
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Variants P (%) R (%) F1 (%)

MaxP 88.1 89.2 88.5
MeanP 88.3 89.8 88.6
CLS 88.9 88.7 88.5

CasEE 87.5 91.9 89.2

Table 5: Results of type detection decoder variants.
The evaluation metric is precision, recall and F1 score
in macro average of type classification.

Variants P (%) R (%) F1 (%)

w/o self-attention 89.2 88.1 88.6
w/o condition 86.5 87.6 87.0
repl. concatenation 89.3 87.7 88.5
repl. addition 90.4 88.8 89.6
repl. gate mechanism 90.2 88.2 89.1

CasEE 90.1 90.2 90.1

Table 6: Results of trigger extraction decoder variants.
The evaluation metric is precision, recall and F1 score
on TC metric with oracle results of type detection.

Performance on Overlap Sentences. As shown
in table 3, our method significantly outperforms
previous methods on the overlap sentences. The
improvements may come from the property that
our method avoids label conflicts compared to the
sequence labeling methods, and builds more ef-
fective feature-level connections among subtasks
compared to the pipeline methods.

Performance on Normal Sentences. As shown
in table 4, our method still performs acceptable
results on the normal sentences without overlapped
event elements. The sequence labeling methods
reveal similiar results on trigger extraction but rela-
tively better results on argument extraction, where
they avoid potential propagation errors of the cas-
cade decoding. Besides, PLMEE performs similar
results on trigger extraction but relatively better re-
sults on argument extraction, where the reason may
be that it adopts elaborate re-weighting losses for
different argument roles as in its original literature.
In addition, MQAEE-2 predicts more accurate trig-
gers since it jointly predicts triggers with types, but
it unfortunately ignores feature-level connections
among the subtasks, making the argument extrac-
tion results similar to CasEE. Even so, the vanilla
CasEE still conducts acceptable performance on
the normal sentences compared to the baselines.
We would further tackle the potential propagation
errors and improve the performance for the general
event extraction in the future work.

Variants P (%) R (%) F1 (%)

w/o self-attention 82.8 81.7 82.2
w/o indicator function 84.1 81.4 82.7
w/o position embedding 83.2 81.5 82.3

w/o condition 84.7 78.2 81.3
repl. concatenation 84.0 79.3 81.6
repl. addition 84.2 78.2 81.1
repl. gate mechanism 84.6 80.2 82.4

CasEE 84.1 83.7 83.9

Table 7: Results of argument extraction decoder vari-
ants. The evaluation metric is precision, recall and F1
score on AC metric with oracle results of type detection
and trigger extraction.

4.6 Discussion for Model Variants

To investigate the effectiveness of each module, we
conduct variant experiments for CasEE.

Detection Module Variants. Table 5 shows per-
formance of type detection variants. Specifically,
MaxP/MeanP aggregates textual representations
by applying max/mean pooling over BERT hidden
states; CLS utilizes the hidden state of the special
token <CLS> as the sentence representation. The
results show that our method outperforms all the
above variants on F1 score, indicating that learning
sentence representation adaptive to the event type
produces better representation for type detection.

Extraction Module Variants. Table 6 and Ta-
ble 7 show performance of decoder variants for
trigger extraction and argument extraction, respec-
tively. We remove the self-attention layer in the
both extraction decoders, and remove the relative
position embeddings and the indicator function
in the argument extraction decoder. The results
demonstrate the effectiveness of each module.

Furthermore, we conduct experiments to explore
the impact of condition fusion function φ. The ex-
periments include: 1) we simply remove condition
integrate function; 2) we achieve φ by concate-
nating the condition and token representations; 3)
we achieve φ by simply adding the condition em-
bedding to token representations; 4) we achieve
φ by the gate mechanism, which adds the condi-
tion embedding to token representations according
to a learnable trade-off factor. The results show
that the performance without condition fusion func-
tion decline significantly on the F1 score in the
two decoders, since the model can not discern dif-
ferent targets to extract in the sentence. Besides,
empirical results also show that CLN performs bet-
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ter performance than other fusion functions on F1
scores in the two decoders, indicating that CLN can
generate better conditional token representations
for downstream subtasks.

5 Conclusion

This paper proposes a joint learning framework
with cascade decoding for overlapping event ex-
traction, termed as CasEE. Previous studies usually
assume that events appear in sentences without
overlaps, which are not applicable to the compli-
cated overlapping scenarios. CasEE sequentially
performs type detection, trigger extraction and ar-
gument extraction, where the overlapped targets
are separately extracted conditioned on former pre-
dictions. All subtasks are jointly learned to capture
dependencies among subtasks. Experiments on the
public dataset demonstrate that our model outper-
forms previous competitive methods on overlap-
ping event extraction. Our future work may further
tackle the potential error propagation problem in
the cascade decoding paradigm, and improve the
performance for the general event extraction.
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A Hyper-parameter Settings

Our implementation is based on PyTorch5. We
trained our models with a NVIDIA TESLA T4
GPU. For re-implementation, we report our hyper-
parameter settings on the dataset in Table 8. Note
that the hyper-parameter settings are tuned on the
validation data by grid search with 3 trials.

Hyper-parameter CasEE

type embedding dimension d 768
position embedding dimension dp 64
dropout rate of decoders 0.3
batch size 8
training epoch 20
initial learning rate of BERT 2e−5

learning rate of decoders 1e−4

threshold ξ1 0.5
threshold ξ2 0.5
threshold ξ3 0.5
threshold ξ4 0.5
threshold ξ5 0.5

Table 8: Hyper-parameter settings of CasEE.

B Details of MRC Based Baselines

Here we describe the details of the extended MRC
baselines. Since the MRC paradigm could place
condition information in the questions, we extend
it to solve the overlapping event extraction.

MQAEE-1 contains two models: 1)A BERT
classifier to detect event types; 2) A MRC BERT to
extract triggers and arguments. The question tem-
plate is like <type> to predict triggers with type
type, and <role> to predict arguments with role
role. Though this method neglects associations
between the trigger and argument, it tackles over-
lapped trigger problem and overlapped argument
problem since the overlapped targets are extracted
separately according to different questions.

MQAEE-2 contains two models: 1) A MRC
BERT to extract all triggers with types. The ques-
tion template is a single word trigger to predict
all typed triggers. 2) A MRC BERT to extract ar-
guments in different roles. The question template
is like <type>and<trigger> to predict all argu-
ments associated with the type type and the trigger
trigger. This method tackles overlapped trigger
problem with multiple taggers, and tackles over-
lapped argument problem by extracting argument
separately according to both the type and trigger.

5https://pytorch.org/

MQAEE-3 contains three models: 1)A BERT
classifier to detect event types; 2) A MRC BERT
to extract triggers with different types. The ques-
tion template is like <type> to predict triggers
with type type. 3) A MRC BERT to extract ar-
guments in different roles. The question template
is like <type>and<trigger> to predict all argu-
ments associated with the type type and the trigger
trigger. This method tackles overlapped trigger
problem by extracting triggers according to the
type, and tackles overlapped argument problem
according to both the type and trigger.

https://pytorch.org/

