
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1530–1536
August 1–6, 2021. ©2021 Association for Computational Linguistics

1530

Learning Slice-Aware Representations with Mixture of Attentions

Cheng Wang Sungjin Lee Sunghyun Park Han Li Young-Bum Kim Ruhi Sarikaya
Amazon Alexa AI

{cwngam,sungjinl,sunghyu,lahl,youngbum,rsarikay}@amazon.com

Abstract

Real-world machine learning systems are
achieving remarkable performance in terms of
coarse-grained metrics like overall accuracy
and F-1 score. However, model improvement
and development often require fine-grained
modeling on individual data subsets or slices,
for instance, the data slices where the mod-
els have unsatisfactory results. In practice, it
gives tangible values for developing such mod-
els that can pay extra attention to critical or
interested slices while retaining the original
overall performance. This work extends the re-
cent slice-based learning (SBL) (Chen et al.,
2019) with a mixture of attentions (MoA)
to learn slice-aware dual attentive representa-
tions. We empirically show that the MoA
approach outperforms the baseline method as
well as the original SBL approach on moni-
tored slices with two natural language under-
standing (NLU) tasks.

1 Introduction

Though machine learning systems have been
achieving excellent performance in terms of coarse-
grained metrics like accuracy, they perform poorly
or even fail on some individual data subsets (i.e.,
slices). For instance, many models have difficulties
when learning for classes with only a few sam-
ples or samples with challenging structures. In-
specting particular data slices can serve as an im-
portant component in model development cycles.
A recently proposed slice-based learning (SBL)
exhibited compelling results with more than 3%
improvements on pre-defined slices (Chen et al.,
2019) in the task of binary classification. However,
one potential limitation of the existing attention
mechanism in SBL is that in multi-class cases, the
attention suffers from the difficulty in using the
experts’ confidences appropriately for computing
slice distributions (refer to Sec. 3).
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Figure 1: The slice-aware architecture with MoA. It
consists of six components: (1) slice functions define
the special data slices that we want to monitor; (2)
backbone model for feature extraction (e.g., BERT); (3)
slice indicators are membership functions to predict if
a sample belongs to the slice; (4) slice experts aim to
learn slice-specific representations; (5) shared head is
the base task predictive layer across experts and (6) the
proposed mixture of attentions (MoA) learns to attend
to the slices of interest. It contains two different at-
tention mechanism (red boxes): a membership atten-
tion and a dot-product attention. The MoA learns to
re-weight the expert representation r to a slice-aware
representation s and the original representation x to
s (yellow lines). The slice distributions are computed
in deterministic (weighted sum of slices) or stochastic
(sampling) way in re-weighting r and x.

In this paper, we extend SBL with a mixture of
attentions (MoA) mechanism. Two different at-
tention mechanisms are learned to jointly attend
to the defined slices from different representations
in different latent subspaces. The first attention is
based on slice membership likelihood and/or ex-
perts confidence as in SBL (Chen et al., 2019),
which we call membership attention. The second
one is dot-product attention that is based on the
backbone model (e.g., BERT (Devlin et al., 2019))
extracted representations. The MoA approach is
akin to multi-head attention (Vaswani et al., 2017)
but with different attention types that receive dif-
ferent inputs.

As presented in Figure 1, the two attentions in
MoA can work jointly to attend to (1) the expert rep-
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def SF_Length(utterance,k=10):
return len(utterance) < k

def SF_Time(utterance):
return "time" in utterance

def SF_Email(utterance):
return "email" in utterance

def SF_Long(sentence,k=10):
n = len(sentence

.split(’ ’))
return n > k

def SF_Question(sentence):
return sentence[-1]

== ’?’

Table 1: The designed slice functions (SFs)1. Left: We monitor three data slices - short utterances, those involving
“time”, and those involving “email”. Right: We monitor long sentences and questions2.

resentation r and (2) the backbone model extracted
representation x, and finally form an attentive rep-
resentation s. The s is a slice-aware featurization
of the samples in the particular data slices and will
be used for making a final model prediction.

We argue that learning joint attention with MoA
from different resources for computing slice dis-
tributions is beneficial (Vaswani et al., 2017; Li
et al., 2018). We evaluate the effectiveness of our
proposed approach on intent detection (Liu et al.,
2019) and linguistic acceptability (Warstadt et al.,
2018) tasks.

Our main contributions are twofold:

• We extend SBL with MoA. The MoA ap-
proach has the ability to attend to slices
in deterministic (weighted summation) and
stochastic (sampling) ways.

• We conduct extensive experiments on two
NLU tasks. The results show that MoA out-
performs the baseline and vanilla SBL by aver-
age up to 9% and 6% respectively on defined
slices.

2 Architecture

Figure 1 presents the slice-aware architecture based
on SBL (Chen et al., 2019). Let {xn, yn}Nn be a
dataset with N samples. We aim to learn slice-
aware representation s from slice-experts-learned
representation r and backbone-model-extracted
representation x.

We first define slice functions (SFs) as in Ta-
ble 1 to split the dataset into k slices of interests.
Each sample is assigned with a slice label γ ∈ [0, 1]
in {γ1, γ2, ..., γk} as supervision data3.

1The SFs are task-dependent and not assumed to be per-
fectly accurate. They can be noisy or from weak supervision
sources (Ratner et al., 2016). Here, for the task in sec.4.2,
SFs are defined to improve the slices where the model has
unsatisfactory results as compared to the overall performance.
For the task in sec.4.3, we define the SFs for the slices of
interest.

2Alternatively, 5W1H rule for questions (Kim et al., 2019).
3s1 is the base slice, and s2 to sk are the slices of interest.

Second, we use a backbone model like BERT to
extract representation x ∈ Rd for a given sample.
Then, slice indicators fi(x;wf

i ), wf
i ∈ Rd×1,

i ∈ {1, .., k} map x to a prediction hi. fi are
trained with {xn, γn}Nn to predict whether a sam-
ple belongs to a particular slice. They are learned
with cross entropy loss

ζ1 =

k∑
i

LCE(hi, γi) (1)

Then, slice experts gi(x;wg
i ), wg

i ∈ Rd×d

learn a mapping from x to a slice vector ri ∈ Rd

with the samples that only belong to the slice, fol-
lowed by a shared head, which is shared across all
experts and maps ri to a prediction ŷ = ϕ(ri;ws).
gi and ϕ are learned on the base (original) task with
ground-truth label y by

ζ2 =

k∑
i

γiLCE(ŷ, y) (2)

Finally, a mixture of attentions(MoA) (as in
Sec. 3) re-weights r and x to form s. The s goes
through a final prediction function η on the base
task. The loss function is

ζ3 = LCE(η(s;wp), y) (3)

The total loss is a combination of the loss for
slice indicators, slice experts and base task predic-
tion function:

ζ = ζ1 + ζ2 + ζ3 (4)

The whole model is optimised with back-
propagation (Rumelhart et al., 1986) in an end-
to-end way.

3 Methodology

The SBL approach (Chen et al., 2019) proposed
a slice-residual attention modules (SRAMs) that
are directly based on stacked membership likeli-
hood H ∈ Rk and experts’ prediction confidence
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|Y | ∈ Rc×k, c = 1 (i.e., binary classification).
Then, slice distribution (attention weights) is com-
puted with a = SOFTMAX(H + |Y |). One poten-
tial limitation of this mechanism is that the above
formulation can lead to mismatch shape in element-
wise addition when c > 2 (i.e., multi-class classifi-
cation). To circumvent this, we propose a mixture
of attentions (MoA) to augment membership at-
tention with dot-product attention from different
information resources.

3.1 Mixture of Attentions
Let x ∈ Rd be the original representation from the
backbone model (e.g., BERT), hi ∈ Rc (c = 1) as
i-th indicator function’s prediction, and ri ∈ Rd as
i-th expert learned representation. When stacking
on k slices, we have h ∈ Rc×k and r ∈ Rd×k.
MoA’s goal is to (1) attend to r based on indicator
functions’ membership likelihood and/or experts
confidence4; (2) attend to x with a dot-product
attention; (3) to form a new slice-aware attentive
representation s ∈ Rd with weighted (sampled) r
and x.

The slice distributions are computed differently.
For membership attention, the probability p1 =
SOFTMAX(h) or p1 = SOFTMAX(h + |r|) ∈ Rk

(d=1 in binary classification). Then membership
weighted slice representation is computed: s1 =
r • p1, s1 ∈ Rd. For dot-product attention, we aim
to learn an attention matrix A = {a1, ...,ak},a ∈
Rd,A ∈ Rd×k is randomly initialized and learned
by the standard back-propagation. Intuitively, each
a is learned to be a slice prototype (Wang and
Niepert, 2019; Roy et al., 2020). The probability
over slices is computed as:

p2 = SOFTMAX(A> • x) ∈ Rk (5)

A new attentive representation s2 is formed by
weighting A with p2:

s2 = A • p2, s2 ∈ Rd (6)

or sampling from A:

sample s2 ∼ {a1, ...,ak} (7)

Then slice-aware vector s is computed by

s = s1 } s2 (8)

where } is an operator (either ⊕: element-wise
addition or ⊗: element-wise multiplication). The

4In multi-class case, only membership likelihood is used.

eq.(8) can be extended into a more general form –
mixture of attentions (MoA):

s = r • φ(h)︸ ︷︷ ︸
membership

} A • φ(A> • x)︸ ︷︷ ︸
dot-product

(9)

Note eq.(9) entails the following transformations
(→) and captures the representational differences
from r to s and from x to s:

x→ r→ p1 → s1 → s (10)

p2 → s2 (11)

The φ(·) is either SOFTMAX: pi = exp(zi)∑k
j exp(zj)

that deterministically computes slice distributions
or a Monte-Carlo gradient estimator: GUMBEL-
SOFTMAX (Gumbel, 1954; Jang et al., 2017; Mad-
dison et al., 2017):

pi =
exp[(log(zi) + πi)/τ ]∑k
j exp[log(zj) + πj)/τ ]

(12)

The πi are i.i.d. samples from the GUMBEL(0, 1),
that is, π = − log(− log(u)), u ∼ UNIFORM(0, 1).
τ is temperature which controls the concentration
of slice distribution, and small τ leads to more
confident prediction over slices. It aims to stochas-
tically compute slice distribution. With Gumbel-
softmax, the slice distribution is a soft sampling
from:

p1 ∼ GUMBEL-SOFTMAX(h) (13)

p2 ∼ GUMBEL-SOFTMAX(A> · x) (14)

or a hard sampling (but differentiable) from:

p1 ∼ ONE-HOT(argmax(p1)) (15)

p2 ∼ ONE-HOT(argmax(p2)) (16)

for membership and dot-product attention respec-
tively.

4 Experiments

We performed our experiments on a binary classi-
fication task with linguistic acceptability and on a
multi-class classification task with intent detection.

4.1 Experimental Setup
Datasets and Metrics. The CoLA (Warstadt et al.,
2018) dataset has 8551 train and 527 development
in domain samples5. We randomly split it into

5https://nyu-mll.github.io/CoLA/

https://nyu-mll.github.io/CoLA/
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Figure 2: Distributions over slices (base, s1= Length, s2=Time and s3=Email) of random test samples that are
from membership and dot-product attention mechanisms. In (a)(c) membership attention shows higher confidence
while dot-product attention gives higher confidence in (b)(d). Top rows are the utterances from the test set.

F1 F1 Lift(%) MCC MCC Lift(%)
Methods Overall S1 S2 Avg. Max. Overall S1 S2 Avg. Max.
Baseline 0.70 0.60 0.65 — — 0.24 0.18 0.22 — —
SBL 0.69 0.71 0.72 9.0 % 11.0% 0.23 0.20 0.24 2.0% 2.0%
SBL-MoA ⊕ 0.70 0.71 0.68 7.0% 11.0% 0.25 0.24 0.20 2.0% 6.0%
SBL-MoA ⊗ 0.69 0.72 0.71 9.0% 12.0% 0.24 0.24 0.25 4.5% 6.0%
SBL-MoA-S ⊕ 0.69 0.67 0.68 5.0% 7.0% 0.24 0.25 0.18 1.5% 7.0%
SBL-MoA-S ⊗ 0.69 0.69 0.71 7.5% 9.0% 0.26 0.28 0.22 5.0% 10.0%
SBL-MoA-H ⊕ 0.70 0.69 0.70 7.0% 9.0% 0.25 0.28 0.26 8.0% 10.0%
SBL-MoA-H ⊗ 0.69 0.69 0.65 4.5% 9.0% 0.25 0.22 0.32 7.0% 10.0%

Table 2: The results on CoLA test datasets. F1-score and MCC are reported (averaged on 5 random runs for each
model). s1=Long, and s2=Question.The lift is the averaged relative improvement across slices over baseline. The
largest improvement is in bold and second largest lift number is in underline (same to Table 3).

train/val/test with 7200/878/1000 samples. As in
(Chen et al., 2019), we ensure the sample propor-
tion in ground-truth are consistent across splits.
We use F1-score and Matthews correlation coef-
ficient (MCC) (Matthews, 1975) as our metrics.
The NLU dataset (Liu et al., 2019) for intent detec-
tion contains 25k user utterances across 64 intents.
We randomly split it into train/val/test with ratio
0.7:0.1:0.2. We use the accuracy and F1-score as
our metrics.
Compared Methods. We implemented and com-
pared the following methods:

• Baseline: A three-layer feed-forward net-
work.

• SBL: Slice-based learning (Chen et al., 2019).

• SBL-MoA: Our approach that extends SBL
with a mixture of attentions (MoA).

For SBL-MoA, we developed multiple variants
with Gumbel-Softmax. SBL-MoA-S (SBL-MoA-
H) are the variant models with soft (hard) sampling
from a Gumbel-Softmax distributions. We also
tested the way that membership attention and dot-
product interact with each other with ⊕ (element-
wise addition) and ⊗ (element-wise multiplica-
tion).

Implementation Details. BERT-base (Devlin
et al., 2019) in sentence-transformer (Thakur et al.,
2020) is used as the backbone model. We use 128
hidden units for all models, which are implemented
with Pytorch (Paszke et al., 2019). A dropout
(p=0.5)6 is applied after input layer. The models
are trained with Adam (0.001) (Kingma and Ba,
2014), with weight decay of 0.01 and 0.001 for
the two tasks, respectively. All models are trained
with a maximum of 500 epochs with early stopping
(patience=50). The best models are selected based
on model performance on the validation sets. The
temperature τ = 1.0 is fixed in all the experiments.

4.2 Results on Linguistic Acceptability

Table 2 presents the results on CoLA. First, slice-
based models (i.e., SBL, SBL-MoA, and its vari-
ants) show that they can maintain (or improve) the
original overall performance. Second, we observe
that they achieve obvious performance lift on the
monitored slices. For instance, SBL achieves an
average 9% F1 score over the baseline. The pro-
posed method (SBL-MoA, ⊗) achieves an average
of 9% and maximum 12% lift. For MCC, the best
performer is SBL-MoA-H, which achieves an aver-
age >7% and maximum 10% as compared to the

6As the data size is relatively small, we use strong dropout
regularization to prevent overfitting.



1534

Acc Acc Lift(%) F1 F1 Lift(%)
Methods Overall S1 S2 S3 Avg. Max. Overall S1 S2 S3 Avg. Max.
Baseline 0.7413 0.73 0.74 0.73 — — 0.7404 0.74 0.72 0.74 — —
SBL 0.7422 0.75 0.76 0.75 2.0% 2.0% 0.7418 0.74 0.72 0.75 0.3% 1.0%
SBL-MoA ⊕ 0.7414 0.74 0.77 0.74 1.7% 3.0% 0.7390 0.74 0.73 0.74 0.3% 1.0%
SBL-MoA ⊗ 0.7440 0.80 0.73 0.76 3.0% 7.0% 0.7411 0.77 0.74 0.74 1.7% 3.0%
SBL-MoA-S ⊕ 0.7403 0.74 0.75 0.73 0.7% 1.0% 0.7403 0.73 0.73 0.76 0.7% 2.0%
SBL-MoA-S ⊗ 0.7424 0.75 0.72 0.75 0.7% 2.0% 0.7421 0.75 0.74 0.74 1.0% 2.0%
SBL-MoA-H ⊕ 0.7405 0.73 0.74 0.73 0.0% 0.0% 0.7397 0.76 0.74 0.76 2.0% 2.0%
SBL-MoA-H ⊗ 0.7418 0.74 0.73 0.75 0.7% 2.0% 0.7401 0.75 0.74 0.74 1.0% 2.0%

Table 3: The results on intent detection. Accuracy and F1 scores are reported. s1=Length, s2=Time, s3=Email are
the slices that we monitor and aim to improve. The experts’ confidence scores are not used as discussed in Sec.3.

baseline. It outperforms SBL by > 5%. Also, we
notice that using operator ⊗ (element-wise multi-
plication) between the attention mechanisms lead
to better performance as compared to ⊕.

4.3 Results on Intent Detection

Table 3 demonstrates that both SBL and SBL-
MoA improve model performance on the moni-
tored slices, with a similar (slightly better) overall
performance on the base task7. SBL-MoA variants
achieve the best scores and outperform SBL by
average 1% accuracy and 1.7% F1.

Figure 2 illustrates the slice distributions given
some random samples. We denote p1 and p2 for
membership and dot-product attention respectively.
The experiments show that p1 and p2 reach an
agreement on predicting the correct slices. In-
terestingly, the sample in (d) — “write sms to
our friends”, in principle, should be sliced as
“base”, but both attentions exhibit high confidence
to s3=“Email”. We conjecture the reason is that
all utterances are encoded with BERT which cap-
tures the similarity between the sample and the
utterances in the “Email” slice.

5 Related Work

SBL (Chen et al., 2019) is a novel programming
model for critical data slices. It is an instance
of weakly supervised learning (Zhou, 2018; Med-
lock and Briscoe, 2007). The weak supervision
data are generated from pre-defined labeling func-
tions (Ratner et al., 2016). SBL has shown better
predictive performance compared to the mixture of
experts (Jacobs et al., 1991) and multi-task learn-
ing (Caruana, 1997), with reduced run-time cost
and parameters (Chen et al., 2019). The concept of

7Note the lift on slice can be negligible to overall due
to small size of slice data, e.g., For SBL-MoA ⊗, s1 with
122 samples, 7.0% lift only contributes to 122×0.07/5124 ≈
0.0017.

SBL has been recently used in many applications.
Penha et al. (Penha and Hauff, 2020) proposed to
adapt SBL to improve ranking performance and
capture the failures of the ranker model. Wang et
al. (Wang et al., 2021) recently implemented SBL
in a commercial conversational AI system in order
to handle the long-tail problem of imbalanced dis-
tribution in customer queries and further improved
the performance of the conversational skill routing
components (Li et al., 2021; Kim et al., 2018b,a).

Our proposed mixture of attention (MoA) is an
instance of multi-head attention (Vaswani et al.,
2017) but with different attention types. MoA can
also be extended to include other attention types.
We have shown the effectiveness of this mechanism
in determining the slice distributions.

6 Conclusion

This paper extends SBL with MoA (SBL-MoA)
to improve model performance on particular data
slices. We empirically show that SBL-MoA yields
better slice level performance lift to baseline and
vanilla SBL with two NLU tasks: linguistic accept-
ability and intent detection.
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