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Abstract

Video grounding aims to localize the tempo-
ral segment corresponding to a sentence query
from an untrimmed video. Almost all existing
video grounding methods fall into two frame-
works: 1) Top-down model: It predefines a set
of segment candidates and then conducts seg-
ment classification and regression. 2) Bottom-
up model: It directly predicts frame-wise prob-
abilities of the referential segment boundaries.
However, all these methods are not end-to-end,
i.e., they always rely on some time-consuming
post-processing steps to refine predictions. To
this end, we reformulate video grounding as a
set prediction task and propose a novel end-to-
end multi-modal Transformer model, dubbed
as GTR. Specifically, GTR has two encoders
for video and language encoding, and a cross-
modal decoder for grounding prediction. To fa-
cilitate the end-to-end training, we use a Cubic
Embedding layer to transform the raw videos
into a set of visual tokens. To better fuse these
two modalities in the decoder, we design a new
Multi-head Cross-Modal Attention. The whole
GTR is optimized via a Many-to-One match-
ing loss. Furthermore, we conduct comprehen-
sive studies to investigate different model de-
sign choices. Extensive results on three bench-
marks have validated the superiority of GTR.
All three typical GTR variants achieve record-
breaking performance on all datasets and met-
rics, with several times faster inference speed.
Our project is available at GTR.

1 Introduction

Video grounding is a fundamental while challeng-
ing task for video understanding and has recently
attracted unprecedented research attention (Chen
et al., 2018, 2019b,a; Zhang et al., 2019a; Liu et al.,
2018a; Yuan et al., 2021). Formally, it aims to iden-
tify the two temporal boundaries of the moment of
interest based on an input untrimmed video and a
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5 × faster

4.9% better

Figure 1: Performance comparisons on TACoS in terms of
R@1, IoU@0.5 and Query Per Second (the number of queries
that are retrieved each second during inference). Marker sizes
are proportional to the model size. Our GTR-H is 4.9% better
than 2D-TAN (Zhang et al., 2020b) with 5 times faster speed.

natural language query. Compared to the conven-
tional video action localization task (Shou et al.,
2016; Zhao et al., 2017; Zhang et al., 2021), video
grounding is more general and taxonomy-free, i.e.,
it is not limited by the predefined action categories.

The overwhelming majority of the state-of-the-
art video grounding methods fall into two frame-
works: 1) Top-down models (Anne Hendricks et al.,
2017; Gao et al., 2017; Ge et al., 2019; Chen et al.,
2018; Zhang et al., 2019b; Liu et al., 2018b; Yuan
et al., 2019a): They always use a propose-and-rank
pipeline, where they first generate a set of moment
proposals and then select the best matching one. To
avoid the proposal bottlenecks and achieve high re-
call, a vast number of proposals are needed. Corre-
spondingly, some time-consuming post-processing
steps (e.g., non-maximum suppression, NMS) are
introduced to eliminate redundancy, which makes
the matching process inefficient (cf. Figure 1). 2)
Bottom-up models (Mun et al., 2020; Rodriguez
et al., 2020; Zeng et al., 2020; Chen et al., 2020;
Lu et al., 2019): They directly regress the two tem-
poral boundaries of the referential segment from
each frame or predict boundary probabilities frame-
wisely. Similarly, they need post-processing steps
to group or aggregate all frame-wise predictions.

https://sites.google.com/view/mengcao/publication/gtr


Although these two types of methods have real-
ized impressive progress in video grounding, it is
worth noting that they still suffer several notorious
limitations: 1) For top-down methods, the heuristic
proposal generation process introduces a series of
hyper-parameters. Meanwhile, the whole inference
stage is computation-intensive for densely placed
candidates. 2) For bottom-up methods, the frame-
wise prediction manner overlooks fruitful temporal
context relationships, which strictly limits their per-
formance. 3) All these methods are not end-to-end,
which need complex post-processing steps to refine
predictions, and easily fall into the local optimum.

In this paper, we reformulate the video ground-
ing as a set prediction problem and propose a novel
end-to-end multi-modal Transformer model GTR
(video Grounding with TRansformer). GTR has
two different encoders for video and language fea-
ture encoding, and a cross-modal decoder for fi-
nal grounding result prediction. Specifically, we
use a Cubic Embedding layer to transform the raw
video data into a set of visual tokens, and regard all
word embeddings of the language query as textual
tokens. Both these visual and textual tokens are
then fed into two individual Transformer encoders
for respective single-modal context modeling. Af-
terwards, these contextualized visual and textual
tokens serve as an input to the cross-modal decoder.
Other input for the decoder is a set of learnable seg-
ment queries, and each query try to regress a video
moment by interacting with these contextualized
tokens. To better fuse these two modalities in the
decoder, we design a new Multi-head Cross-Modal
Attention module (MCMA). The whole GTR model
is trained end-to-end by optimizing a Many-to-One
Matching Loss which produces an optimal bipar-
tite matching between predictions and ground-truth.
Thanks to this simple pipeline and the effective rela-
tionship modeling capabilities in Transformer, our
GTR is both effective and computationally efficient
with extremely fast inference speed (cf. Figure 1).

Since our community has few empirical expe-
riences on determining the best design choice for
multi-modal Transformer-family models, we con-
duct extensive exploratory studies on GTR to in-
vestigate the influence of different model designs
and training strategies, including: (a) Visual to-
kens acquisition. We use a cubic embedding layer
to transform raw videos to visual tokens, and dis-
cuss the design of the cubic embedding layer from
three dimensions. (b) Multi-modal fusion mecha-

nism. We propose six types of multi-modal fusion
mechanisms, and compare their performance and
computation cost thoroughly. (c) Decoder design
principles. We explore some key design principles
of a stronger multi-modal Transformer decoder,
such as the tradeoff between depth and width, or
the attention head number in different layers. (d)
Training recipes. We discuss the influence of sev-
eral training tricks. We hope our exploration results
and summarized take-away guidelines can help to
open the door for designing more effective and
efficient Transformer models in multi-modal tasks.

In summary, we make three contributions in this
paper:

1. We propose the first end-to-end model GTR
for video grounding, which is inherently effi-
cient with extremely fast inference speed.

2. By the careful design of each component, all
variants of GTR achieve new state-of-the-art
performance on three datasets and all metrics.

3. Most importantly, our comprehensive explo-
rations and empirical results can help to guide
the design of more multi-modal Transformer-
family models in other multi-modal tasks.

2 Related Work

Video Grounding. The overwhelming majority of
state-of-the-art video grounding methods are top-
down models (Anne Hendricks et al., 2017; Gao
et al., 2017; Ge et al., 2019; Liu et al., 2018a, 2020;
Zhang et al., 2019a, 2020b; Chen et al., 2018; Yuan
et al., 2019a; Wang et al., 2020; Xu et al., 2019;
Xiao et al., 2021b,a; Liu et al., 2021). Although
these top-down models have dominated the perfor-
mance, they suffer from two inherent limitations:
1) The densely placed proposal candidates lead to
heavy computation cost. 2) Their performance are
sensitive to the heuristic rules (e.g., the number and
the size of anchors). Another type of methods is
bottom-up models (Yuan et al., 2019b; Lu et al.,
2019; Zeng et al., 2020; Chen et al., 2020, 2018;
Zhang et al., 2020a). Some works (He et al., 2019;
Wang et al., 2019) resort to Reinforcement Learn-
ing to guide the boundary prediction adjustment.
However, all existing methods (both top-down and
bottom-up) are not end-to-end and require complex
post-processing steps. In this paper, we propose a
end-to-end model GTR, which directly generates
predictions with ultrafast inference speed.
Vision Transformer. Transformer (Vaswani et al.,
2017) is a de facto standard language modeling
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Figure 2: An overview of GTR. (1) Input Embedding transforms the video and language data to feature space. (2) Encoder is
applied to encode global context. (3) Decoder contains a novel Multi-head Cross-Modal Attention module (MCMA) to fuse two
modalities. (4) Prediction Heads generate grounding results optimized by a Many-to-One Matching Loss.

architecture in the NLP community. Recently, a
pioneering object detection model DETR (Carion
et al., 2020) starts to formulate the object detec-
tion task as a set prediction problem and use an
end-to-end Transformer structure to achieve state-
of-the-art performance. Due to its end-to-end na-
ture, DETR regains the CV community attention
about the Transformer, and a mass of vision Trans-
former models have been proposed for different
vision understanding tasks, such as image classifi-
cation (Wang et al., 2021), object detection (Carion
et al., 2020; Zhu et al., 2021), tracking (Meinhardt
et al., 2021; Xu et al., 2021; Chen et al., 2021;
Sun et al., 2020), person re-id (He et al., 2021),
image generation (Jiang et al., 2021), super resolu-
tion (Yang et al., 2020), and video relation detec-
tion (Gao et al., 2021). Unlike previous methods
only focusing on the vision modality, our GTR is
a multi-modal Transformer model, which not only
needs to consider the multi-modal fusion, but also
has few empirical experience for model designs.

3 Video Grounding with TRansformer

As shown in Figure 2, GTR yields temporal seg-
ment predictions semantically corresponding to the
given query by four consecutive steps: (1) Input
Embedding. Given a raw video and a query, this
step aims to encode them into the feature space
(i.e., visual and textual tokens). 2) Encoder. Visual
and textual token embeddings are enhanced with
a standard Transformer encoder by modeling the
intra-modality correlations. (3) Cross-Modal De-
coder. Contextualized visual and textual token em-
beddings are fused by a Multi-head Cross-Modal
Attention module (MCMA), and a set of learnable
segment queries are fed into the decoder to inter-
act with these two modal features. (4) Prediction

Heads. A simple feed-forward network (FFN) is
applied to predict final temporal segments.

3.1 Input Embedding and Encoder

Video Cubic Embedding. Aiming to build a pure
Transformer model without the reliance on CNNs,
ViT (Dosovitskiy et al., 2021) decomposes input
images into a set of non-overlapping patches. To
process video data, a straightforward solution is to
apply this partition for each frame. However, this
simple extension overlooks the frame-wise tempo-
ral correlations. Thus, we propose a Cubic Embed-
ding layer which directly extracts 3D visual tokens
from the height, width, and temporal dimensions
respectively (cf. Figure 2).

Formally, given a raw video, we firstly use fram-
erate 1/γτ to sample the video, and obtain video
clip V ∈ RT×H×W×3. Then, we use a sampling
kernel κ with shape (kh, kw, kt) to transform the
video into visual tokens, and the sampling kernel κ
is propagated with stride size s(sh, sw, st), where
sh, sw, and st denote the stride size in the height,
width, and temporal dimension respectively. Each
sampled 3D visual patch is fed into a projection
layer, and the output of the cubic embedding layer
is a set of visual token embeddings Iv ∈ RF×d,
where F is the number of visual tokens, and d is
the dimension of the projected layer. In our experi-
ments, we set d to the same hidden dimension of
the Transformer. Apparently, F = Oh ×Ow ×Ot
where Oh =

⌊
H−kh
sh

+ 1
⌋

, Ow =
⌊
W−kw
sw

+ 1
⌋

,

and Ot =
⌊
T−kt
st

+ 1
⌋

. Compared to the non-
overlapping tokenization manners, our cubic em-
bedding layer allows overlapping sampling, which
implicitly fuses adjacent spatial-temporal context
(More experiments and discussions about the cu-
bic embedding layer are shown in Sec. 4.2). In
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Figure 3: Different instantiations of the Multi-head Cross-Modal Attention module (MCMA).

particular, when setting sh = kh, sw = kw, and
st = kt = 1, our cubic embedding degrades into
the prevalent patch embedding in ViT.
Sentence Embedding. For the language input, we
first encode each word with pretrained GloVe em-
beddings (Pennington et al., 2014), and then em-
ploy a Bi-directional GRU to integrate the sentence-
level embedding feature Is ∈ RS×ds , where S rep-
resents the length of the sentence query, and ds is
the dimension of textual token embeddings.
Encoder. We use two plain Transformer encoders
to model the visual and textual intra-modality con-
text, respectively. Specifically, for the video token
embeddings Iv, we apply an encoder with Nv lay-
ers to obtain their corresponding contextualized
visual tokens H ∈ RF×d. Similarly, for the tex-
tual token embeddings Is, we use an encoder with
Ns layers to obtain contextualized textual tokens
S. Another feed-forward network with two fully-
connected layers is applied to adjust S to be the
same channel with H, i.e., S ∈ RS×d.

3.2 Cross-modal Decoder

As shown in Figure 2, the inputs for cross-modal
decoder consist of the visual features H ∈ RF×d,
language features S ∈ RS×d, and a set of learn-
able segment queries Q ∈ RN×d. Each segment
query qi ∈ Q tries to learn a possible moment by
interacting with H and S, and the whole decoder
will decode N moment predictions in parallel. For
accurate segment localization, video grounding re-
quires modeling fine-grained cross-modal relations.
To this end, we design a cross-modal decoder with
a novel Multi-head Cross-Modal Attention mod-
ule (MCMA). As shown in Figure 3, we propose
several specific instantiations of MCMA1:
Joint Fusion. Given visual and language features
H and S, we firstly generate a set of modal-specific
key (Hk, Sk) and value (Hv, Sv) pairs by lin-

1More details are left in the supplementary materials.

ear transformations: Hk = HWk
h, Sk = SWk

s ,
Hv = HWv

h, Sv = SWv
s , where Wk

h, Wk
s ,

Wv
h and Wv

s ∈ Rd×d are all learnable parameters.
Then joint fusion concatenates the two modalities
before conducting the attention computing:

Yjoint = MHA(Q̂,Hk ⊗ Sk,Hv ⊗ Sv),

where Q̂ is the enhanced segment query embed-
dings after the self-attention and ⊗ denotes the
channel concatenation. MHA stands for the stan-
dard Multi-head Attention (Vaswani et al., 2017).
Divided Fusion. We provide a modality-specific
attention computation manner, i.e., Divided Fusion
decomposes the multi-modal fusion into two par-
allel branches and the final results are summed up
with learnable weights.

Ydivided=MHA(Q̂,Hk,Hv)⊕MHA(Q̂,Sk,Sv),

where Q̂, Hk, Hv, Sk and Sv are defined the same
as in the joint fusion. ⊕ denotes the additive sum
with learnable weights.
Hybrid Fusion. Hybrid Fusion offers a compro-
mise between Joint Fusion and Divided Fusion.
Specifically, the query-key multiplication is con-
ducted separately while the query-value multipli-
cation is still in an concatenation format. Suppose
there are nh self-attention heads. The query, key
and value embeddings are uniformly split into nh
segments Q̂i ∈ RN×dh , Hk

i , Hv
i ∈ RF×dh , Ski ,

Svi ∈ RS×dh , {i = 1, 2, . . . , nh} along channel
dimension, where dh is the dimension of each head
and equal to d/nh. For each head, we apply hybrid
fusion in the form:

headi =

(
σ (

Q̂iH
k>
i√
dv

)⊗ σ (
Q̂iS

k>
i√
dv

)

)
(Hv

i ⊗ Sv
i ) ,

where σ is the softmax function. The outputs of
all heads are then again concatenated along the
channel dimension and a linear projection is finally
applied to produce the final output as follows:

Yhybrid = (head0 ⊗ head1 ⊗ . . . headnh−1)W
O,



where WO ∈ Rd×d is linear projection parameters.
Stepwise Fusion. This fusion manner implements
the cross-modality reasoning in a cascaded way,
i.e., attention computation is performed between
Q̂ and video features and then propagated to the
sentence modality:

Ystep = MHA(MHA(Q̂,Hk,Hv),Sk,Sv).

We further discuss more multi-modal fusion mech-
anisms in Sec. 4.2 and supplementary materials.

3.3 Many-to-One Matching Loss
Training: Based on the Cross-Modality Decoder
output, a feed forward network is applied to gen-
erate a fixed length predictions Ŷ = {ŷi}Ni=1,
where ŷi = (b̂i; ĉi) contains temporal segment
predictions b̂i ∈ [0, 1]2 and the confidence score
ĉi ∈ [0, 1]. The ground truth is denoted asY , which
contains the segment coordinate b ∈ [0, 1]2.

GTR applies set prediction loss (Carion et al.,
2020; Stewart et al., 2016) between the fixed-size
output sets and ground-truth. Notably, considering
each language query only corresponds to one tem-
poral segment, we adapt the many-to-many match-
ing in (Carion et al., 2020) to the many-to-one ver-
sion. Specifically, the loss computation is con-
ducted in two consecutive steps. Firstly, we need
to determine the optimum prediction slot via the
matching cost based on the bounding box similarity
and confidence scores as follows:

i∗ = argmin
i∈[0,N−1]

Cmatch

(
Ŷ,Y

)
= argmin

i∈[0,N−1]

[
−ĉi + Cbox(b, b̂i)

]
.

(1)

In our many-to-one matching loss, the optimal
match requires only one iteration of N generated
results, rather than checking all possible permu-
tations as in (Carion et al., 2020), which greatly
simplifies the matching process. For Cbox(·, ·), we
define Cbox = λ`1‖b− b̂i‖1 + λiouCiou(b, b̂i) with
weighting parameters λ`1 , λiou ∈ R. Here Ciou(·, ·)
is a scale-invariant generalized intersection over
union in (Rezatofighi et al., 2019). Then the sec-
ond step is to compute the loss function between
the matched pair:

Lset(y, ŷ) = − log ĉi∗ + Cbox(b, b̂i∗), (2)

where i∗ is the optimal match computed in Eq. (1).
Inference: During inference, the predicted seg-
ment set is generated in one forward pass. Then

the result with the highest confidence score is se-
lected as the final prediction. The whole inference
process requires no predefined threshold values or
specific post-processing processes.

4 Experiments

We first introduce experimental settings in Sec. 4.1.
Then, we present detailed exploratory studies on
the design of GTR in Sec. 4.2. The comparisons
with SOTA methods are discussed in Sec. 4.3, and
we show visualization results in Sec. 4.4. More
results are left in supplementary materials.

4.1 Settings

Datasets. We evaluated our GTR on three challeng-
ing video grounding benchmarks: 1) ActivityNet
Captions (ANet) (Krishna et al., 2017): The aver-
age video length is around 2 minutes, and the av-
erage length of ground-truth video moments is 40
seconds. By convention, 37,417 video-query pairs
for training, 17,505 pairs for validation, and 17,031
pairs for testing. 2) Charades-STA (Gao et al.,
2017): The average length of each video is around
30 seconds. Following the official splits, 12,408
video-query pairs for training, and 3,720 pairs for
testing. 3) TACoS (Regneri et al., 2013): It is a
challenging dataset focusing on cooking scenarios.
Following previous works (Gao et al., 2017), we
used 10,146 video-query pairs for training, 4,589
pairs for validation, and 4,083 pairs for testing.
Evaluation Metrics. Following prior works, we
adopt “R@n, IoU@m” (denoted asRmn ) as the met-
rics. Specifically, Rmn is defined as the percentage
of at least one of top-n retrieved moments having
IoU with the ground-truth moment larger than m.
Modal Variants. Following the practice of Visual
Transformers or BERTs (Dosovitskiy et al., 2021;
Devlin et al., 2019), we also evaluate three typical
model sizes: GTR-Base (GTR-B, Nv = 4, Ns =
4, Nd = 6, d = 320), GTR-Large (GTR-L, Nv =
6, Ns = 6, Nd = 8, d = 320), and GTR-Huge
(GTR-H, Nv = 8, Ns = 8, Nd = 8, d = 512).1

Implementation Details. For input video, the sam-
pling rate 1/γτ was set to 1/8, all the frames were
resized to 112 × 112, the kernel shape and stride
size were set to (8, 8, 3) and (8, 8, 2), respectively.
We used AdamW (Loshchilov and Hutter, 2017)
with momentum of 0.9 as the optimizer. The initial
learning rate and weight decay were set to 10−4.
All weights of the encoders and decoders were ini-
tialized with Xavier init, and the cubic embedding



Models R0.5
1 R0.7

1 GFLOPs
GTR-B/8 49.67 28.45 20.55
GTR-B/12 44.32 24.62 8.71
GTR-B/16 43.14 23.93 5.44
GTR-B/24 42.01 23.82 1.96

(a) Spatial Configuration

kt R0.5
1 R0.7

1 GFLOPs
3 49.67 28.45 20.55
5 47.34 26.12 17.83
7 47.87 26.91 15.03
9 48.04 27.02 13.91

(b) Temporal Configuration

Models Stride R0.5
1 R0.7

1 GFLOPs

Temporal (8, 8, 1) 49.73 28.51 41.05
(8, 8, 2) 49.67 28.45 20.55

Spatial (4, 4, 3) 44.54 23.12 54.51
(6, 6, 3) 44.23 22.81 24.26

None (8, 8, 3) 43.73 22.45 14.69

(c) Overlapping Exploration
Table 1: Input ablations for the GTR-B model2 on ANet dataset (%).

Models R0.5
1 R0.7

1 GFLOPs
Framewise 46.10 26.27 46.36

Cubic 49.67 28.45 20.55
Table 2: Cubic vs. Framewise Embedding on ANet(%).

Models R0.5
1 R0.7

1 Param(M) GFLOPs
Early Fusion 39.35 19.64 12.86 11.31

Conditional Fusion 35.25 14.57 12.42 10.60
Joint Fusion 42.51 21.53 16.62 13.91

Divided Fusion 46.91 26.21 25.16 21.02
Hybrid Fusion 46.82 25.45 20.94 17.25

Stepwise Fusion 49.67 28.45 25.98 20.55
Table 3: Multi-modal fusion comparisons on ANet.(%).

layer was initialized from the ImageNet-pretrained
ViT (Dosovitskiy et al., 2021). We used random
flip, random crop, and color jitter for video data
augmentation. Experiments were conducted on 16
V100 GPUs with batch size 64.

4.2 Empirical Studies and Observations

In this subsection, we conducted extensive studies
on different design choices of GTR, and tried to
answer four general questions: Q1: How to trans-
form a raw video into visual tokens? Q2: How to
fuse the video and text features? Q3: Are there any
design principles to make a stronger Transformer
decoder? Q4: Are there any good training recipes?

4.2.1 Visual Tokens Acquisition (Q1)

Settings. In cubic embedding layer, there are two
sets of hyper-parameters (kernel shape (kw, kh, kt)
and stride size (sw, sh, st)). We started our studies
from a basic GTR-B model2, and discussed design
choices from three aspects: 1) Spatial configura-
tion. We compared four GTR-B variants with dif-
ferent kernel spatial size kw, kh = {8, 12, 16, 24},
and denoted these models as GTR-B/*. Results are
reported in Table 1 (a). 2) Temporal configuration.
We compared four GTR-B variants with different
kernel temporal depths kt = {3, 5, 7, 9}. Results
are reported in Table 1 (b). 3) Overlapping explo-
ration. We conducted experiments with several dif-
ferent stride sizes (sw, sh, st) in Table 1 (c), which

2The baseline GTR-B is with the stepwise fusion strategy,
and with sw = kw = sh = kh = 8, kt = 3, st = 2.

Figure 4: Top: R0.5
1 v.s. Frame Crop Size & Sample Rate;

Bottom: FLOPs v.s. Frame Crop Size & Sample Rate.

corresponds to three basic types (temporal overlap-
ping, spatial overlapping, and non-overlapping).
Observations. 1) Models with smaller patch size
(e.g., GTR-B/8) achieve better performance yet at
the cost of the dramatic increase of FLOPs. 2)
Models with larger kernel temporal depth (kt) will
not always achieve better results. It is worth not-
ing that our cubic embedding will degrade into the
prevalent framewise partition in vision Transform-
ers by setting kt = st = 1. We further compared
cubic embedding with this special case in Table 2,
and the results show the superiority of our cubic
embedding layer. 3) Compared to non-overlapping
and spatial overlapping, temporal overlapping can
help to improve model performance significantly.
Besides, the performance is not sensitive to the
overlapping degree in all overlapping cases.
Guides. The temporal overlapping sampling strat-
egy can greatly boost the performance of the Cubic
Embedding layer at an affordable overhead.

4.2.2 Multi-modal Fusion Mechanisms (Q2)
Settings. As mentioned in Sec. 3.2, we design four
types of multi-modal fusion mechanism in the de-
coder (i.e., joint/divided/hybrid/stepwise fusion),
and we group all these fusion mechanisms as late
fusion. Meanwhile, we also propose two additional
fusion mechanisms1: 1) Early fusion: The multi-
modal features are fused before being fed into the
decoder. 2) Conditional fusion: The language fea-
tures act as conditional signals of segment queries
of the decoder. Results are reported in Table 3.
Observations. 1) All four late fusion models out-



Models ActivityNet Captions Charades-STA TACoS Param
R0.5

1 R0.7
1 R0.5

5 R0.7
5 Feat. R0.5

1 R0.7
1 R0.5

5 R0.7
5 R0.3

1 R0.5
1 R0.3

5 R0.5
5 QPS

2D-TAN 44.51 26.54 77.13 61.96 VGG 39.81 23.25 79.33 52.15 37.29 25.32 57.81 45.04 2.36 93.37
DRN 45.45 24.36 77.97 50.30 I3D 53.09 31.75 89.06 60.05 — 23.17 — 33.36 1.82 108.34

SCDM 36.75 19.86 64.99 41.53 I3D 54.44 33.43 74.43 58.08 26.11 21.17 40.16 32.18 1.28 93.82
QSPN 33.26 13.43 62.39 40.78 C3D 35.60 15.80 79.40 45.40 20.15 15.23 36.72 25.30 1.14 95.03

CBP 35.76 17.80 65.89 46.20 C3D 36.80 18.87 70.94 50.19 27.31 24.79 43.64 37.40 1.92 98.55
2D-TAN* 45.21 27.35 77.60 62.32 VGG 40.32 23.63 80.22 52.57 37.89 25.99 58.23 45.21 2.36 93.37

DRN* 46.34 24.92 78.12 50.93 I3D 53.82 32.34 89.74 60.23 — 23.84 — 33.91 1.82 108.34
GTR-B (Ours) 49.67 28.45 79.83 64.34 — 62.45 39.23 91.40 61.76 39.34 28.34 60.85 46.67 13.4 25.98
GTR-L (Ours) 50.43 28.91 80.22 64.95 — 62.51 39.56 91.62 61.97 39.93 29.21 61.22 47.10 12.7 40.56
GTR-H (Ours) 50.57 29.11 80.43 65.14 — 62.58 39.68 91.62 62.03 40.39 30.22 61.94 47.73 11.8 61.35

Table 4: Performance comparisons on three benchmarks(%). All the reported results on ANet and TACoS datasets are based on
C3D (Tran et al., 2015) extracted feature. “*” denotes finetuning on corresponding backbones. For pair comparisons, Parma (M)
includes the parameter of feature extractor (C3D). GTR-B is more efficient while GTR-H achieves the highest recall.

perform the early fusion and conditional fusion
ones. 2) Among late fusion models, the stepwise
fusion model achieves the best performance by us-
ing the largest number of parameters. 3) The per-
formance is not sensitive to the crop size, but is pos-
itively correlated with sample rate and converges
gradually(cf. Figure 4). 4) We find that the FLOPs
difference does not increase significantly regarding
the crop size and sample rate (cf. Figure 4).

Guides. Stepwise fusion is the optimal fusion mech-
anism, even for long and high-resolution videos.

4.2.3 Decoder Design Principles (Q3)

Settings. To explore the key design principles of
a stronger multi-modal Transformer decoder, we
considered two aspects: 1) Deeper vs. Wider, i.e.,
whether the decoder should go deeper or wider?
Based on the basic GTR-B model2, we designed
two GTR-B variants with nearly equivalent param-
eters: GTR-B-Wide (d = 352) and GTR-B-Deep
(Nd = 8)1. The results are reported in Table 5 (a).
2) Columnar vs. Shrink vs. Expand., i.e., how to
design the attention head number in different lay-
ers. We tried three different choices: i) the same
number of heads in all layers (columnar); ii) grad-
ually decrease the number of heads (shrink); iii)
gradually increase the number of heads (expand).
Results are reported in Table 5 (b).

Observations. 1) Under the constraint of similar
parameters, the deep model (GTR-B-Deep) out-
performs the wide counterpart (GTR-B-Wide). 2)
The model with the expanding strategy (GTR-B-
Expand) achieves the best performance while the
shrinking one (GTR-B-Shrink) is the worst.

Guides. Going deeper is more effective than going
wider and progressively expanding the attention
heads leads to better performance.

Models Param(M) ActivityNet TACoS
R0.5

1 R0.7
1 R0.3

1 R0.5
1

GTR-B-Wide 34.05 49.94 28.62 39.52 28.70
GTR-B-Deep 33.89 50.15 28.74 39.60 29.04

(a) Wide vs. Deep.
Models Heads R0.3

1 R0.5
1

GTR-B-Columnar [4, 4, 4, 4, 4, 4] 49.42 28.34
GTR-B-Shrink [8, 8, 4, 4, 2, 1] 49.01 27.95
GTR-B-Expand [1, 2, 4, 4, 8, 8] 49.67 28.45

(b) Columnar vs. Shrink vs. Expand on ANet.

Table 5: (a) Performance (%) comparisons between the wide
variant and deep variant. (b) Performance (%) comparisons
between different attention head number choices.

4.2.4 Training Recipes (Q4)
Settings. Due to the lack of inductive biases, vi-
sual Transformers always over-rely on large-scale
datasets for training (Dosovitskiy et al., 2021; Tou-
vron et al., 2020). To make multi-modal Transform-
ers work on relatively small multi-modal datasets,
we discussed several common training tricks: 1)
Pretrained weights. Following the idea of pretrain-
then-finetune paradigm in CNN-based models3, we
initialize our video cubic embedding layer from the
pretrained ViT. Specifically, we initialized our 3D
linear projection filters by replicating the 2D filters
along the temporal dimension. 2) Data augmen-
tations. To study the impact of different data aug-
mentation strategies, we apply three typical choices
sequentially, i.e., random flip, random crop, and
color jitter. Results are reported in Table 6.
Observations. 1) Using the pretrained cubic em-
bedding weights can help to improve model perfor-
mance significantly. 2) Color jitter brings the most
performance gains among all visual data augmenta-
tion strategies. We conjecture that this may be due
to the fact that color jitter can change the visual
appearance without changing the structured infor-

3Modern CNN models always rely on pretrained weights
from large-scale datasets as initialization (e.g., ImageNet), and
then finetune the weights on specific downstream tasks.



Models R0.5
1 R0.7

1

Baseline 41.50 20.13
+ Pretrained Weight 47.12+5.62 26.03+5.90

+ Random flip 47.59+0.47 26.69+0.66

+ Random crop 47.61+0.02 26.81+0.12

+ Color Jitter 49.67+2.06 28.45+1.64

Table 6: Results of different training tricks
of the baseline GTR-B model2 on the ANet
dataset.

10-th

20-th

30-th

40-th

50-th

Figure 5: A visualization example of the self-attention in the video encoder.

Ground Truth

Prediction

34.51s 65.98s

66.32s33.79s

Query: The lady puts contact lenses from her eye balls.

#1 #2 #3

Figure 6: Top: A visualization example of the cross-attention
in the decoder. Bottom: Visualization of the sentence atten-
tion weights.

mation, which is critical for multi-modal tasks.
Guides. Using pretrained embedding weights and
color jitter video augmentation are two important
training tricks for multi-modal Transformers.

4.3 Comparisons with State-of-the-Arts

Settings. We compared three variants of GTR (i.e.,
GTR-B, GTR-L, and GTR-H) to state-of-the-art
video grounding models: 2D-TAN (Zhang et al.,
2020b), DRN (Zeng et al., 2020), SCDM (Yuan
et al., 2019a), QSPN (Xu et al., 2019), CBP (Wang
et al., 2020). These video grounding methods were
based on pre-extracted video features (e.g., C3D or
I3D) while our GTRs were trained in an end-to-end
manner. For more fair comparisons, we selected
two best performers (2D-TAN and DRN), and re-
trained them by finetuning the feature extraction
network. Results are reported in Table 41.
Results. From Table 4, we have the following ob-
servations: 1) All three GTR variants outperform
existing state-of-the-art methods on all benchmarks
and evaluation metrics. Particularly, the GTR-H
achieves significant performance gains on more
strict metrics (e.g., 6.25% and 4.23% absolute per-
formance differences on Charades-STA with metric
R0.7

1 and TACoS with metric R0.5
1 , respectively.) 2)

The inference speed of all GTR variants are much
faster than existing methods (e.g., 13.4 QPS in

GTR-B vs. 2.36 QPS in 2D-TAN). Meanwhile, our
GTR has fewer parameters than existing methods
(e.g., 25.98M in GTR-B vs. 93.37M in 2D-TAN).

4.4 Visualizations
Self-Attention in Video Encoder. We showed an
example from TACoS dataset in Figure 5. For a
given video snippet (e.g., the 30-th frame4), we
selected two reference patches4, and visualized the
attention weight heatmaps of the last self-attention
layer on other four frames (i.e., the 10-th frame to
50-th frame). From Figure 5, we can observe that
the self-attention in the video encoder can effec-
tively focus more on the semantically correspond-
ing areas (e.g., the person and chopping board)
even across long temporal ranges, which is benefi-
cial for encoding global context.
Cross-attention in Decoder. An example from
ANet dataset was presented in Figure 6. We took
the stepwise fusion strategy for MCMA in the de-
coder. For the output, we selected the segment
query slot which outputs the highest confidence
scores and visualized its attention weights on two
modal features. For the background video frames4

(#1), the decoder mainly focuses on figure outline.
For ground-truth video frames4 (#2, #3), it captures
the most informative parts (e.g., moving hands and
touching eye action), which plays an important role
in location reasoning. As for the language atten-
tion weights, it focuses on essential words, e.g., the
salient objects (lady, eye) and actions (put).

5 Conclusions and Future Works

In this paper, we propose the first end-to-end multi-
modal Transformer-family model GTR for video
grounding. By carefully designing several novel
components (e.g., cubic embedding layer, multi-
head cross-modal attention module, and many-to-
one matching loss), our GTR achieves new state-
of-the-art performance on three challenging bench-
marks. As a pioneering multi-modal Transformer

4We slightly abuse "frame" and "patch" here, and we refer
to them as a video snippet and a video cube, respectively.



model, we also conducted comprehensive explo-
rations to summarize several empirical guidelines
for model designs, which can help to open doors for
the future research on multi-modal Transformers.
Moving forward, we aim to extend GTR to more
general settings, such as weakly-supervised video
grounding or spatial-temporal video grounding.

6 Acknowledgement

This paper was partially supported by National
Engineering Laboratory for Video Technology-
Shenzhen Division, and Shenzhen Municipal De-
velopment and Reform Commission (Disciplinary
Development Program for Data Science and In-
telligent Computing). It is also supported by
National Natural Science Foundation of China
(NSFC 6217021843). Special acknowledgements
are given to AOTO-PKUSZ Joint Research Center
of Artificial Intelligence on Scene Cognition tech-
nology Innovation for its support. Mike Shou does
not receive any funding for this work.

References
Lisa Anne Hendricks, Oliver Wang, Eli Shechtman,

Josef Sivic, Trevor Darrell, and Bryan Russell. 2017.
Localizing moments in video with natural language.
In ICCV, pages 5803–5812.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In ECCV, pages 213–229.

Jingyuan Chen, Xinpeng Chen, Lin Ma, Zequn Jie, and
Tat-Seng Chua. 2018. Temporally grounding natural
sentence in video. In EMNLP, pages 162–171.

Jingyuan Chen, Lin Ma, Xinpeng Chen, Zequn Jie, and
Jiebo Luo. 2019a. Localizing natural language in
videos. In AAAI, pages 8175–8182.

Long Chen, Chujie Lu, Siliang Tang, Jun Xiao, Dong
Zhang, Chilie Tan, and Xiaolin Li. 2020. Rethink-
ing the bottom-up framework for query-based video
localization. In AAAI, pages 10551–10558.

Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun
Yang, and Huchuan Lu. 2021. Transformer tracking.
In CVPR.

Zhenfang Chen, Lin Ma, Wenhan Luo, and Kwan-
Yee K Wong. 2019b. Weakly-supervised spatio-
temporally grounding natural sentence in video. In
ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2021.
An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Neva-
tia. 2017. Tall: Temporal activity localization via
language query. In ICCV, pages 5267–5275.

Kaifeng Gao, Long Chen, Yifeng Huang, and Jun Xiao.
2021. Video relation detection via tracklet based vi-
sual transformer. In ACM MM.

Runzhou Ge, Jiyang Gao, Kan Chen, and Ram Nevatia.
2019. Mac: Mining activity concepts for language-
based temporal localization. In WACV, pages 245–
253.

Dongliang He, Xiang Zhao, Jizhou Huang, Fu Li, Xiao
Liu, and Shilei Wen. 2019. Read, watch, and move:
Reinforcement learning for temporally grounding
natural language descriptions in videos. In AAAI,
pages 8393–8400.

Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. 2021. Transreid: Transformer-based
object re-identification. arXiv.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. 2021.
Transgan: Two transformers can make one strong
gan. arXiv.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei,
and Juan Carlos Niebles. 2017. Dense-captioning
events in videos. In ICCV, pages 706–715.

Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou,
Yu Cheng, Wei Wei, Zichuan Xu, and Yulai Xie.
2021. Context-aware biaffine localizing network for
temporal sentence grounding. arXiv.

Daizong Liu, Xiaoye Qu, Xiao-Yang Liu, Jianfeng
Dong, Pan Zhou, and Zichuan Xu. 2020. Jointly
cross-and self-modal graph attention network for
query-based moment localization. In ACM MM,
pages 4070–4078.

Meng Liu, Xiang Wang, Liqiang Nie, Xiangnan He,
Baoquan Chen, and Tat-Seng Chua. 2018a. Atten-
tive moment retrieval in videos. In SIGIR, pages 15–
24.

Meng Liu, Xiang Wang, Liqiang Nie, Qi Tian, Bao-
quan Chen, and Tat-Seng Chua. 2018b. Cross-
modal moment localization in videos. In ACM MM,
pages 843–851.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. arXiv.

Chujie Lu, Long Chen, Chilie Tan, Xiaolin Li, and Jun
Xiao. 2019. Debug: A dense bottom-up grounding
approach for natural language video localization. In
EMNLP, pages 5147–5156.



Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe,
and Christoph Feichtenhofer. 2021. Trackformer:
Multi-object tracking with transformers. arXiv.

Jonghwan Mun, Minsu Cho, and Bohyung Han. 2020.
Local-global video-text interactions for temporal
grounding. In CVPR, pages 10810–10819.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543.

Michaela Regneri, Marcus Rohrbach, Dominikus Wet-
zel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. 2013. Grounding action descriptions in
videos. TACL, pages 25–36.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak,
Amir Sadeghian, Ian Reid, and Silvio Savarese.
2019. Generalized intersection over union: A met-
ric and a loss for bounding box regression. In CVPR,
pages 658–666.

Cristian Rodriguez, Edison Marrese-Taylor, Fate-
meh Sadat Saleh, Hongdong Li, and Stephen Gould.
2020. Proposal-free temporal moment localization
of a natural-language query in video using guided
attention. In WACV, pages 2464–2473.

Zheng Shou, Dongang Wang, and Shih-Fu Chang.
2016. Temporal action localization in untrimmed
videos via multi-stage cnns. In CVPR, pages 1049–
1058.

Russell Stewart, Mykhaylo Andriluka, and Andrew Y
Ng. 2016. End-to-end people detection in crowded
scenes. In CVPR, pages 2325–2333.

Peize Sun, Yi Jiang, Rufeng Zhang, Enze Xie, Jinkun
Cao, Xinting Hu, Tao Kong, Zehuan Yuan, Changhu
Wang, and Ping Luo. 2020. Transtrack: Multiple-
object tracking with transformer. arXiv.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2020. Training data-efficient image transform-
ers & distillation through attention. arXiv.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Tor-
resani, and Manohar Paluri. 2015. Learning spa-
tiotemporal features with 3d convolutional networks.
In ICCV, pages 4489–4497.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Jingwen Wang, Lin Ma, and Wenhao Jiang. 2020. Tem-
porally grounding language queries in videos by con-
textual boundary-aware prediction. In AAAI, pages
12168–12175.

Weining Wang, Yan Huang, and Liang Wang. 2019.
Language-driven temporal activity localization: A
semantic matching reinforcement learning model.
In CVPR, pages 334–343.

Wenxiao Wang, Lu Yao, Long Chen, Deng Cai, Xi-
aofei He, and Wei Liu. 2021. Crossformer: A versa-
tile vision transformer based on cross-scale attention.
arXiv.

Shaoning Xiao, Long Chen, Jian Shao, Zhuang Yuet-
ing, and Jun Xiao. 2021a. Natural language video
localization with learnable moment proposals. In
EMNLP.

Shaoning Xiao, Long Chen, Songyang Zhang, Wei Ji,
Jian Shao, Lu Ye, and Jun Xiao. 2021b. Bound-
ary proposal network for two-stage natural language
video localization. In AAAI.

Huijuan Xu, Kun He, Bryan A Plummer, Leonid Si-
gal, Stan Sclaroff, and Kate Saenko. 2019. Multi-
level language and vision integration for text-to-clip
retrieval. In AAAI, pages 9062–9069.

Yihong Xu, Yutong Ban, Guillaume Delorme, Chuang
Gan, Daniela Rus, and Xavier Alameda-Pineda.
2021. Transcenter: Transformers with dense queries
for multiple-object tracking. arXiv.

Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and
Baining Guo. 2020. Learning texture transformer
network for image super-resolution. In CVPR, pages
5791–5800.

Yitian Yuan, Xiaohan Lan, Xin Wang, Long Chen, Zhi
Wang, and Wenwu Zhu. 2021. A closer look at tem-
poral sentence grounding in videos: Datasets and
metrics. arXiv.

Yitian Yuan, Lin Ma, Jingwen Wang, Wei Liu, and
Wenwu Zhu. 2019a. Semantic conditioned dy-
namic modulation for temporal sentence grounding
in videos. In NeurIPS.

Yitian Yuan, Tao Mei, and Wenwu Zhu. 2019b. To find
where you talk: Temporal sentence localization in
video with attention based location regression. In
AAAI, pages 9159–9166.

Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao
Chen, Mingkui Tan, and Chuang Gan. 2020. Dense
regression network for video grounding. In CVPR,
pages 10287–10296.

Can Zhang, Meng Cao, Dongming Yang, Jie Chen,
and Yuexian Zou. 2021. Cola: Weakly-supervised
temporal action localization with snippet contrastive
learning. In CVPR, pages 16010–16019.

Da Zhang, Xiyang Dai, Xin Wang, Yuan-Fang Wang,
and Larry S Davis. 2019a. Man: Moment alignment
network for natural language moment retrieval via
iterative graph adjustment. In CVPR, pages 1247–
1257.

Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou.
2020a. Span-based localizing network for natural
language video localization. In ACL.



Songyang Zhang, Houwen Peng, Jianlong Fu, and
Jiebo Luo. 2020b. Learning 2d temporal adjacent
networks for moment localization with natural lan-
guage. In AAAI, pages 12870–12877.

Zhu Zhang, Zhijie Lin, Zhou Zhao, and Zhenxin Xiao.
2019b. Cross-modal interaction networks for query-
based moment retrieval in videos. In SIGIR, pages
655–664.

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu,
Xiaoou Tang, and Dahua Lin. 2017. Temporal ac-
tion detection with structured segment networks. In
ICCV, pages 2914–2923.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. 2021. Deformable detr: De-
formable transformers for end-to-end object detec-
tion. In ICLR.



7 Appendix

7.1 GTR Variant Settings
We list typical GTR variant parameter settings in
Table 7.

Models Nv Ns Nd d Params(M)
GTR-B 4 4 6 320 25.98
GTR-L 6 6 8 320 40.56
GTR-H 8 8 8 512 61.35
GTR-B-Wide 4 4 6 352 34.05
GTR-B-Deep 4 4 8 320 33.89
GTR-L-Wide 6 6 8 352 47.18
GTR-L-Deep 6 6 10 320 47.23

Table 7: Typical GTR variant parameter settings.

7.2 Empirical Studies and Observations
7.2.1 Visual Token Acquisition
Through ablation studies, we have found that tem-
poral overlapping sampling plays a critical role in
Cubic Embedding. Here we present more experi-
mental results to confirm our findings. Specifically,
we choose three kernel sizes (8, 8, 3), (16, 16, 3),
and (8, 8, 6). In each case, we set five sets of stride
shape corresponding to temporal overlapping, spa-
tial overlapping, and non-overlapping cases, respec-
tively. Experimental results in Table. 8 show that
temporal overlapping brings about significant per-
formance improvement under various kernel shape
settings.

We also compare our Cubic Embedding layer
with the framewise partition in Vision Transformer.
Part of the results have been listed in the main pa-
per and the full results are shown in Table. 9. It
demonstrates the superiority of our cubic embed-
ding layer.

7.2.2 Decoder Design Principles
Columnar vs. Shrink vs. Expand. We provide more
experiments to determine how to design the atten-
tion head number in different layers. We set up
three different distributions of attention heads: i)
the same number of heads in all layers (columnar);
ii) gradually decrease the number of heads (shrink);
iii) gradually increase the number of heads (ex-
pand). The results are listed in Table. 10. It is con-
sistent with our conclusion that progressively ex-
panding the attention head leads to better per-
formance.
Deep vs. Wide. We have developed two variants
(GTR-B-Wide, GTR-B-Deep) and reported the re-
sults on ActivityNet Caption and TACoS datasets,
which demonstrates that going deeper is more ef-
fective than going wider. Here we provide two

Models Stride R0.5
1 R0.7

1 GFLOPs
kernel (8, 8, 3)

Temporal
(8, 8, 1) 49.73 28.51 41.05
(8, 8, 2) 49.67 28.45 20.55

Spatial
(4, 4, 3) 44.54 23.12 54.51
(6, 6, 3) 44.23 22.81 24.26

None (8, 8, 3) 43.73 22.45 14.69
kernel (16, 16, 3)

Temporal
(16, 16, 1) 43.23 24.13 10.83
(16, 16, 2) 43.14 23.93 5.44

Spatial
(8, 8, 3) 41.26 21.58 13.33

(12, 12, 3) 41.03 21.35 6.42
None (16, 16, 3) 40.83 21.26 3.90

kernel (8, 8, 6)

Temporal
(8, 8, 2) 46.71 26.84 17.93
(8, 8, 4) 46.10 26.71 8.99

Spatial
(4, 4, 6) 42.96 21.93 22.21
(6, 6, 6) 42.95 21.90 9.90

None (8, 8, 6) 42.84 21.61 6.01

Table 8: Input ablations for GTR-B on ActivityNet Caption
dataset(%).

additional variants (GTR-L-Wide, GTR-L-Deep)
and report results on all three datasets in Table 12.
Similarly, the deep model also outperforms the
wide model, which further confirms our conclusion.

7.2.3 Multi-modal Fusion Mechanisms

In general, multi-modal fusion methods can be di-
vided into three categories (cf. Figure. 7): 1) Early
fusion: The multi-modal features are fused before
being fed into the decoder. 2) Conditional fusion:
The language feature acts as conditional signals of
segment queries of the decoder. We concatenate it
with the learnable segment queries features. 3) Late
fusion: Multi-modal fusion is conducted with the
decoder via the proposed Multi-head Cross-modal
Attention (MCMA) Module.

For the specific instantiations of MCMA, except
for the four fusion strategies mentioned in the main
paper, we additionally present two additional vari-
ants in Figure. 8. 1) Hybrid Fusion (value split)
concatenates the key features and computes the
query and value multiplication separately. Specif-
ically, Q̂ ∈ RN×d, Hk ∈ RF×d, Sk ∈ RS×d gen-
erate the attention matrix with shape (F + S)× d,
which is divided into two parts and each is with
shape F × d and S × d, respectively. These two di-
vided attention weights are used to computed with
Hv and Sv separately to generate the final results.
2) Stepwise Fusion (language-vision) fuses the lan-
guage feature firstly and then the video features.



Models
ActivityNet Captions Charades-STA TACoS

R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.3
1 R0.5

1 R0.3
5 R0.5

5

Framewise 46.10 26.27 76.51 62.04 60.05 36.94 89.40 60.25 35.98 26.34 57.09 45.72
Cubic 49.67 28.45 79.83 64.34 62.45 39.23 91.40 61.76 39.34 28.34 60.85 46.67

Table 9: Framewise: ViT embedding manner; Cubic: ours.

Models Heads
ActivityNet Captions Charades-STA TACoS

R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.3
1 R0.5

1 R0.3
5 R0.5

5

GTR-B-Columnar
[4, 4, 4, 4, 4, 4] 49.42 28.34 79.75 64.20 62.34 39.02 91.25 61.41 39.01 27.93 60.42 46.39
[8, 8, 8, 8, 8, 8] 49.43 28.34 79.76 64.23 62.36 39.03 91.26 61.41 39.03 27.93 60.42 46.39

GTR-B-Shrink
[8, 8, 4, 4, 2, 1] 49.01 27.95 79.26 64.00 62.15 38.81 90.93 61.45 38.95 27.73 59.93 45.92

[16, 16, 8, 8, 4, 1] 49.03 27.96 79.26 64.02 62.16 38.81 90.93 61.45 38.95 27.74 59.94 45.92

GTR-B-Expand
[1, 2, 4, 4, 8, 8] 49.67 28.45 79.83 64.34 62.45 39.23 91.40 61.76 39.34 28.34 60.85 46.67

[1, 4, 8, 8, 16, 16] 49.64 28.42 79.81 64.32 62.45 39.22 91.41 61.77 39.33 28.33 60.85 46.67

Table 10: Columnar vs. Shrink vs. Expand. Progressively expanding the attention heads leads to better performance.

The experimental results are presented in Ta-
ble. 13 and we have the following findings. 1) Step-
wise fusion has the best performance on all three
datasets by using the largest number of parameters.
2) The performance of hybrid fusion (value split) is
almost the same as hybrid fusion. 3) Also, stepwise
fusion(L-V) shares the similar performance with
stepwise fusion, which demonstrates that the order
of fusion of visual or language information is not
sensitive.

To investigate the influence of frame crop size
and sample rate, we conduct more experiments on
stepwise fusion models. The results in Table. 11
show that 1) the performance is not sensitive o the
frame crop size; 2) the performance is positively
correlated with the sample rate but gradually reach
convergence.

7.3 Performance of GTR
The performance of GTR under more IoUs is avail-
able in Table. 14.



Sample Rate Crop size R0.5
1 R0.7

1 R0.5
5 R0.7

5

1/8

112 49.67 28.45 79.83 64.34
140 49.72 28.52 79.95 64.40
168 49.73 28.52 79.97 64.40
224 49.73 28.52 79.97 64.40

1/8

112

49.67 28.45 79.83 64.34
1/6 51.54 29.43 80.11 64.76
1/4 52.34 29.57 80.14 64.79
1/2 52.35 29.57 80.14 64.79

Table 11: Performance (%) on ANet on different frame crop size and sample rate.

Models Param(M)
ActivityNet Captions Charades-STA TACoS

R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.3
1 R0.5

1 R0.3
5 R0.5

5

GTR-B-Wide 34.05 49.94 28.62 79.86 64.43 62.49 39.41 91.42 61.85 39.52 28.70 60.91 46.84
GTR-B-Deep 33.89 50.15 28.74 80.14 64.60 62.50 39.50 91.58 61.93 39.60 29.04 61.04 47.03
GTR-L-Wide 47.18 50.48 28.96 80.28 65.00 62.51 39.58 91.62 61.94 39.98 29.35 61.45 47.30
GTR-L-Deep 47.23 50.52 29.05 80.37 65.03 62.54 39.66 91.62 62.00 40.12 29.51 61.75 47.52

Table 12: Performance (%) comparisons between the wide variants and deep variants.

Models
ActivityNet Captions Charades-STA TACoS

Param(M) GFLOPs
R0.5

1 R0.7
1 R0.5

5 R0.7
5 R0.5

1 R0.7
1 R0.5

5 R0.7
5 R0.3

1 R0.5
1 R0.3

5 R0.5
5

Early Fusion 39.35 19.64 70.39 56.34 54.13 32.72 84.69 54.53 28.25 19.56 50.46 36.06 12.86 11.31
Conditional Fusion 35.25 14.57 66.35 51.34 50.62 25.65 79.34 49.03 24.62 14.37 47.34 34.74 12.42 10.60

Joint Fusion 42.51 21.53 71.24 58.04 57.66 33.68 87.52 57.34 33.69 23.72 54.27 40.14 16.62 13.91
Divided Fusion 46.91 26.21 76.85 63.13 60.93 38.22 89.84 59.95 37.82 26.31 58.13 44.80 25.16 21.02
Hybrid Fusion 46.82 25.45 76.20 62.41 60.21 37.25 89.63 59.51 37.01 25.77 57.63 44.32 20.94 17.25

Hybrid Fusion(value split) 46.69 25.32 75.83 61.93 59.94 36.93 89.52 59.32 36.85 25.49 57.42 44.05 20.82 16.75
Stepwise Fusion 49.67 28.45 79.83 64.34 62.45 39.23 91.40 61.76 39.34 28.34 60.85 46.67 25.98 20.55

Stepwise Fusion(L-V) 49.62 28.37 79.76 64.25 62.37 38.93 91.17 61.53 39.19 28.29 60.62 46.55 25.98 20.55

Table 13: Multi-modal fusion comparisons.
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Figure 7: Three methodologies of multi-modal fusion.
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Figure 8: Modal variants of Multi-head Cross-Modal Attention module (MCMA). The first fourth variants are already presented
in the main paper and the rightmost two are two variants for Hybrid Fusion and Stepwise Fusion respectively.

Models ActivityNet Captions Charades-STA TACoS
R0.3

1 R0.5
1 R0.7

1 R0.3
1 R0.5

5 R0.7
5 R0.5

1 R0.7
1 R0.5

5 R0.7
5 R0.1

1 R0.3
1 R0.5

1 R0.1
1 R0.3

5 R0.5
5

GTR-B (Ours) 66.15 49.67 28.45 87.94 79.83 64.34 62.45 39.23 91.40 61.76 48.85 39.34 28.34 72.59 60.85 46.67
GTR-L (Ours) 66.72 50.43 28.91 88.21 80.22 64.95 62.51 39.56 91.62 61.97 49.25 39.93 29.21 73.14 61.22 47.10
GTR-H (Ours) 66.80 50.57 29.11 88.34 80.43 65.14 62.58 39.68 91.62 62.03 49.41 40.39 30.22 73.24 61.94 47.73

Table 14: Performance comparisons on three benchmarks(%).


