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Abstract

We propose a method to distil language-
agnostic meaning embedding using a multilin-
gual sentence encoder. By removing language-
specific information from the original embed-
ding, we retrieve an embedding that fully rep-
resents the meaning of the sentence. The pro-
posed method relies only on parallel corpora
without any human annotations. Our meaning
embedding allows for efficient cross-lingual
sentence similarity estimation using a simple
cosine similarity calculation. Experimental re-
sults of both the quality estimation of machine
translation and cross-lingual semantic textual
similarity tasks reveal that our method con-
sistently outperforms the strong baselines us-
ing the original multilingual embeddings. The
method also consistently improves the per-
formance of any pre-trained multilingual sen-
tence encoder, even in low-resource language
pairs, where only tens of thousands of parallel
sentence pairs are available.1

1 Introduction

Pre-trained sentence encoders (Kiros et al., 2015;
Logeswaran and Lee, 2018; Cer et al., 2018; De-
vlin et al., 2019; Liu et al., 2019; Lan et al.,
2020) boost the performance of various natural
language understanding (NLU) tasks (Wang et al.,
2018). Among them, the combination of self-
attention networks (SANs) (Vaswani et al., 2017)
and masked language modelling (Devlin et al.,
2019; Liu et al., 2019) has proved to be remark-
ably successful. These techniques are generalised
across languages (K et al., 2020) and are even ap-
plied to cross-lingual and multilingual NLU tasks
such as cross-lingual semantic textual similarity
(STS) (Cer et al., 2017) and quality estimation (QE)
of machine translation (Specia et al., 2020).

∗This study was conducted when the first author was an
undergraduate student at Osaka University.

1The source code for this paper is available at https:
//github.com/nattaptiy/qe_disentangled
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Figure 1: Visualisation of 1, 000 mBERT embeddings
of parallel sentences in three languages: English (en),
Chinese (zh), and Nepalese (ne)

In the latest QE competitions at the confer-
ence on machine translation (WMT) (Specia
et al., 2020), all top-ranked systems (Ranasinghe
et al., 2020; Fomicheva et al., 2020a; Nakamachi
et al., 2020) employed pre-trained multilingual
sentence encoders, such as multilingual BERT
(mBERT) (Devlin et al., 2019) and XLM-RoBERTa
(XLM-R) (Conneau and Lample, 2019; Conneau
et al., 2020). These multilingual sentence encoders
form a single self-attention network pre-trained on
monolingual corpora in over 100 languages with
the objective function of masked language mod-
elling. Fine-tuning with a human-annotated corpus
is mandatory for these models to enable them to
estimate the semantic similarity between sentences
across languages. Otherwise, these models are not
sensitive to semantic similarity.

A sentence encoder that can estimate semantic
similarity across languages without fine-tuning for
the target task is desirable because bilingual cor-
pora with human annotations are unavailable in
most language pairs. Figure 1 plots embeddings
of parallel sentences in three languages extracted
from mBERT without fine-tuning. This visuali-
sation implies that the mBERT embeddings form
clusters by language rather than by meaning.

We propose a method for distilling language-

https://github.com/nattaptiy/qe_disentangled
https://github.com/nattaptiy/qe_disentangled
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agnostic meaning embeddings by removing
language-specific information from sentence em-
beddings generated by off-the-shelf multilingual
sentence encoders. Our embeddings allow efficient
cross-lingual sentence similarity estimation using
simple cosine similarity. Our method does not re-
quire human annotations specific to the target task
and is based solely on the bilingual corpora. Experi-
mental results on both the WMT20 QE task (Specia
et al., 2020) and the SemEval-2017 cross-lingual
STS task (Cer et al., 2017) in unsupervised settings
revealed that our method consistently outperformed
the strong baselines using the existing pre-trained
multilingual sentence encoders.

2 Related Work

2.1 Multilingual Sentence Encoders

Early multilingual sentence encoders, such as
LASER (Artetxe and Schwenk, 2019a,b), were
encoder-decoder models based on recurrent neural
networks. Similar to the evolution of monolingual
sentence encoders (Kiros et al., 2015; Logeswaran
and Lee, 2018; Cer et al., 2018; Reimers and
Gurevych, 2019), multilingual sentence encoders
have now been replaced by encoder-only models
based on self-attention networks (Vaswani et al.,
2017) for computational efficiency and improved
performance in downstream tasks. Recent multi-
lingual sentence encoders, such as mBERT (De-
vlin et al., 2019) and XLM-R (Conneau and Lam-
ple, 2019; Conneau et al., 2020), are single self-
attention networks pre-trained on monolingual cor-
pora in over 100 languages for the objective func-
tion of masked language modelling (Devlin et al.,
2019; Liu et al., 2019). LaBSE (Feng et al., 2020)
is a state-of-the-art multilingual sentence encoder
for parallel text retrieval trained in both masked
language modelling and translation language mod-
elling (Conneau and Lample, 2019). LaBSE is
trained using a maximum of 100 million sentence
pairs in each language, with a total of 6 billion sen-
tence pairs of bilingual corpora. We extended these
SAN-based multilingual sentence encoders for un-
supervised cross-lingual similarity estimation.

The multilingual version of Sentence-BERT
(SBERT) (Reimers and Gurevych, 2020) was ob-
tained by knowledge distillation from the English
version of SBERT (Reimers and Gurevych, 2019).
Although this model achieves the best performance
in cross-lingual STS tasks, it is not fully unsuper-
vised because SBERT is fine-tuned for STS tasks.

2.2 Unsupervised Methods for Cross-lingual
Sentence Similarity Estimation

Libovický et al. (2020) extracts language-neutral
embeddings (centered and projection) from pre-
trained multilingual sentence encoders. The cen-
tered method subtracts the mean embedding for
each language from the sentence embedding. The
projection method involves bilingual projections
using a parallel corpus and map embeddings in
other languages into the space of English.

BERTScore (Zhang et al., 2020) estimates the
semantic similarity between sentences by matching
token embeddings from BERT (Devlin et al., 2019).
Although the BERTScore of its original form is
a reference-based automatic evaluation method, it
can be applied to an unsupervised cross-lingual sim-
ilarity estimation by using multilingual sentence
encoders instead of BERT.

D-TP and D-Lex-Sim (Fomicheva et al., 2020b)
are unsupervised QE methods; however, they use
neural machine translation (NMT) systems that are
the targets of QE. D-TP uses a sequence-level trans-
lation probability normalised by sentence length.
D-Lex-Sim calculates the METEOR score (Baner-
jee and Lavie, 2005) based on the lexical variation
between the translation hypotheses. These meth-
ods are useful for white-box machine translation
systems; however, in general, users can access only
the output sentences.

Prism (Thompson and Post, 2020) and BGT (Wi-
eting et al., 2020) are state-of-the-art unsupervised
methods for QE and STS, respectively. These are
NMT models that train encoder-decoder structures
of SANs on bilingual corpora. Prism uses the gen-
eration probability of force-decoding a target sen-
tence as the QE score. BGT disentangles language-
specific and language-agnostic embeddings from
input sentences based on an auto-encoding mech-
anism. By calculating the cosine similarity be-
tween such language-agnostic embeddings, BGT
estimates cross-lingual sentence similarity. The
need for large-scale bilingual corpora to train NMT
models limits the language pairs that these models
can support. While multilingual sentence encoders
cover over 100 languages, Prism covers only 39
languages. Although we extract both language-
specific and language-agnostic embeddings, the
decoder-free architecture of our model supports
to support low-resource language pairs. In other
words, our method is sufficiently efficient to sup-
port the massively multilingual scenario.
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Figure 2: Multitask training for distilling meaning embeddings from multilingual sentence embeddings

3 Proposed Method

Although multilingual sentence encoders are use-
ful for cross-lingual NLU, their embeddings are
highly biased by language-specific information,
which separates sentence embeddings into multi-
ple languages, as shown in Figure 1. We distil
language-agnostic meaning embedding from mul-
tilingual sentence embeddings to estimate cross-
lingual sentence similarity in an unsupervised man-
ner. By training with bilingual corpora, we unite
embeddings of semantically similar sentences from
pre-trained multilingual sentence encoders.

Our model is an autoencoder comprising two
multi-layer perceptrons (MLPs), MLPM and
MLPL, as shown in Figure 3. The former is re-
sponsible for extracting meaning, while the latter
extracts language-specific information, and then,
these outputs are summed to reconstruct the input
sentence embedding.

We train these MLPs using multilingual and mul-
titask learning using three loss functions:

L = LR + LM + LL, (1)

where LR for reconstruction (Section 3.1), LM

is used for extracting the meaning (Section 3.2),
and LL for extracting language information (Sec-
tion 3.3).

Figure 2 presents an overview of our multitask
training, for which we input a pair of bilingual sen-
tences, (a) and (b), as well as randomly selected
sentences of each language, (c) and (d). Sentences
(a) and (c) are from the same language, as are (b)
and (d). The constraints in LM make the mean-
ing embeddings derived from (a) and (b) to come

Sentence embedding

Sentence embedding

MLPL

Language 
embedding

Meaning 
embedding

MLPM

Figure 3: Design of our autoencoder

closer, while the meaning embeddings derived from
(a) and (c) (also (b) and (d)) become distant. In
contrast, the constraints of LL make the language
embeddings derived from (a) and (c) as well as
(b) and (d) to come closer, respectively. In addi-
tion, it further acts as a constraint on how language
embeddings retain language-specific information
using language identification.

We perform multitask learning in a multilingual
manner, that is, by mixing all languages to sup-
port the target task. All parameters of MLPM are
shared (same for MLPL). Obviously, our model
is trained using only parallel corpora without any
human annotations, such as QE labels.

3.1 Reconstruction Loss

The reconstruction loss LR in Equation (1) is the
basis of the autoencoder training, which ensures
that meaning and language embeddings, êM ∈
Rd and êL ∈ Rd, respectively, can reconstruct
the input sentence embedding e ∈ Rd (d is the
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dimension of the sentence embedding). We define
reconstruction loss as:

LR =
1

d
||e− (êM + êL)||22. (2)

The embeddings of êM and êL are derived from
e using the meaning encoder MLPM (·) and the
language encoder MLPL(·) as follows:

êM = MLPM (e), (3)

êL = MLPL(e). (4)

3.2 Meaning Embedding Loss
The constraint of LM in Equation (1) is such that
MLPM (·) extracts language-agnostic meaning rep-
resentation as êM . To achieve this, LM considers
a pair of parallel sentences ((a) and (b) in Figure 2)
and random sentences of each language ((c) and
(d) in Figure 2). The meaning embeddings of the
former should be closer, while those of the latter
should be distant, which is achieved by losses of
Lx
M and Lm

M , respectively:

LM = Lx
M + Lm

M . (5)

Lx
M takes the meaning embeddings of parallel

sentences, that is, an embedding of a source sen-
tence ŝM ∈ Rd and an embedding of a target sen-
tence t̂M ∈ Rd, and computes the cosine distance.

Lx
M = 1− φ(ŝM , t̂M ), (6)

where φ(·) computes cosine similarity.
In contrast, Lm

M takes the meaning embeddings
of the same language ŝM and ŝ′M ∈ Rd. Because
these sentences are randomly paired, their meaning
embeddings should be distant. The same constraint
applies to the meaning embeddings of the other
languages, t̂M and t̂′M ∈ Rd. We define Lm

M as:

Lm
M = max(0, φ(ŝM , ŝ

′
M ))+max(0, φ(t̂M , t̂

′
M )).

(7)

Language Pair Number of sentence pairs

en-de 1, 172, 003
en-zh 1, 015, 264
ro-en 195, 082
et-en 43, 997
ne-en 24, 914
si-en 32, 340

Table 1: The number of parallel sentence pairs in each
language used to train our model for the QE task

3.3 Language Embedding Loss
The constraint of LL in Equation (1) is such that
MLPL(·) extracts language-specific information
as êL. To achieve this, LL consists of two sub-
loss functions: language embedding loss Lm

L and
language identification loss Li

L:

LL = Lm
L + Li

L. (8)

The constraint of Lm
L is such that language em-

beddings of the same language come closer. In
addition, the constraint of Li

L is such that language
embeddings become useful for language identifica-
tion and for avoiding collection of random noises.
Lm
L takes language embeddings of the same lan-

guage: for one language ŝL and ŝ′L, and another t̂L
and t̂′L. Then, Lm

L computes the cosine distances
of each pair of language embeddings:

Lm
L = 2− φ(ŝL, ŝ′L)− φ(t̂L, t̂′L). (9)

By minimising the distance between language
embeddings of non-parallel sentences, the indi-
rect constraint of Lm

L is such that meaning and
language-specific information are clearly separated.
Such non-parallel sentences are written in the same
language, but their meanings are different. The
constraint of our meaning embedding loss makes
these non-parallel sentences distant, while the con-
straint of our language embedding loss makes lan-
guage embeddings come closer. In other words,
meaning and language embedding losses operate
in opposite directions for non-parallel sentences.
We expect that this training helps clearly separate
the meaning and language embeddings. In con-
trast, language-specific embeddings in BGT (Wi-
eting et al., 2020) are trained with only parallel
sentences, which may allow meaning information
to leak into the language-specific embeddings.
Li
L computes the loss for language identification.

We conduct language identification using an MLP:

ŷ = softmax(MLPI(êL)), (10)
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High Resource Medium Resource Low Resource

Model en-de en-zh ro-en et-en ne-en si-en Avg.

mBERT 0.071 0.010 0.182 0.009 0.025 - 0.056
mBERT (Meaning) 0.125 0.131 0.663 0.354 0.400 - 0.335

XLM-R 0.061 0.007 0.151 0.016 0.008 0.148 0.063
XLM-R (Meaning) 0.093 0.120 0.647 0.334 0.310 0.227 0.289

LaBSE 0.084 0.036 0.705 0.550 0.545 0.455 0.396
LaBSE (Meaning) 0.151 0.156 0.711 0.549 0.627 0.552 0.458

mBERT (centered) 0.088 0.079 0.592 0.285 0.430 - 0.295
mBERT (projection) 0.105 0.054 0.468 0.187 0.170 - 0.197
LASER 0.105 0.106 0.705 0.463 0.182 0.325 0.314
BERTScore 0.134 0.143 0.746 0.568 0.562 0.549 0.450

D-TP 0.259 0.321 0.693 0.642 0.558 0.460 0.489
D-Lex-Sim 0.172 0.313 0.669 0.612 0.600 0.513 0.480
Prism 0.464 0.303 0.829 0.694 - - 0.573
Predictor-Estimator 0.145 0.190 0.685 0.477 0.386 0.374 0.376

Table 2: Pearson correlation coefficients evaluated on WMT20 QE task (For reference, the last set of rows shows
the state-of-the-art models, which are not directly comparable to ours because the settings are different.)

where êL is either ŝL or t̂L and softmax(·) is a
softmax function. Li

L computes the multiclass
cross-entropy loss as:

Li
L = −

∑
j

yj log ŷj . (11)

3.4 Training Details

All the MLPs in our model, MLPM , MLPL, and
MLPI , are a single-layer feedforward networks.
We used mBERT2 (Devlin et al., 2019), XLM-
R3 (Conneau et al., 2020), and LaBSE4 (Feng et al.,
2020), which are state-of-the-art pre-trained multi-
lingual sentence encoders (Wolf et al., 2020). We
froze the parameters of these multilingual sentence
encoders and trained only the MLPs using paral-
lel corpora. We used the output embedding of the
[CLS] token for sentence embedding.

We trained our model with a batch size of 512.
As an optimiser, we used Adam (Kingma and Ba,
2015) with a learning rate of 1e − 4 for all the
models. We employed early stopping for training
with a patience of 15 using a validation loss. The
validation set was created by randomly sampling
10% from the training set.

2https://huggingface.co/
bert-base-multilingual-cased

3https://huggingface.co/
xlm-roberta-large

4https://huggingface.co/
sentence-transformers/LaBSE

4 Evaluation

We evaluated the effectiveness of the proposed
method in two regression tasks: the WMT20 QE
task (Specia et al., 2020) and SemEval-2017 cross-
lingual STS task (Cer et al., 2017). As shown in
Figure 4, the meaning embeddings of each input
sentence are extracted using our meaning encoder.
In this experiment, we evaluated the correlation be-
tween the cosine similarity of meaning embeddings
and human labels. Following the official evaluation
metrics, we used Pearson correlation for both tasks
implemented in the SciPy5 package.

4.1 WMT20 Quality Estimation Task

4.1.1 Setting
In this task, we trained our model on the publicly
available bilingual corpora6 that were used to train
the target machine translation systems7 (Ott et al.,
2019) for QE. The dataset contains sentence pairs
for English-German (en-de), English-Chinese (en-
zh), Romanian-English (ro-en), Estonian-English
(et-en), Nepalese-English (ne-en), and Sinhala-
English (si-en).8 To train our model, we randomly
sampled 5% of parallel sentence pairs for each lan-

5https://docs.scipy.org/doc/scipy/
reference/index.html

6http://www.statmt.org/wmt20/
quality-estimation-task.html

7https://github.com/pytorch/fairseq
8We excluded the Russian-English language pair in this

experiment as we did not have access to the dataset.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-roberta-large
https://huggingface.co/xlm-roberta-large
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
https://docs.scipy.org/doc/scipy/reference/index.html
https://docs.scipy.org/doc/scipy/reference/index.html
http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
https://github.com/pytorch/fairseq
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guage pair.9 Table 1 lists the numbers of parallel
sentence pairs used in this experiment.

We compared previous unsupervised QE meth-
ods based on pre-trained multilingual sentence
encoders. The method proposed by Libovický
et al. (2020) obtains language-neutral embed-
dings from mBERT, denoted as mBERT (cen-
tered) and mBERT (projection).10 Owing to the
lack of a development set to determine which
layer to use in these methods, we used the 8th
layer, which was reported to perform consistently
well in the original paper. LASER11 (Artetxe
and Schwenk, 2019a,b) is a multilingual encoder-
decoder model. BERTScore12 (Zhang et al., 2020)
is a method for estimating sentence similarity by
matching token embeddings from a sentence en-
coder. In this experiment, we used BERTScore
with xlm-roberta-large, which has been re-
ported to have the highest performance.

4.1.2 Result
Table 2 shows the Pearson correlation coefficients
of the models compared. The first set of rows
shows the scores of the original mBERT, XLM-R,
and LaBSE, and their meaning embeddings using
our method. Our method consistently improved the
QE performance on all of the multilingual sentence
encoders. Among them, meaning embeddings of
LaBSE achieved the best performance. While the
meaning embeddings of mBERT and XLM-R are
inferior to those of LaBSE, improvements over the
original models are noticeable.

Our method outperformed the original LaBSE,
even though the bilingual corpora we used are three
orders of magnitude smaller than those used to train
the LaBSE. This implies that the benefits of our
method are not simply due to the use of bilingual
corpora, but also due to the effectiveness of the
distillation method.

The second set of rows shows the performance
of previous methods. The meaning embeddings of
LaBSE outperformed these methods for both high-
and low-resource language pairs.

The last set of rows shows the performance of
other QE models that do not use pre-trained multi-
lingual sentence encoders. These methods achieve

9As mBERT does not support Sinhala, mBERT-based mod-
els were trained on only for language pairs other than si-en.

10https://github.com/jlibovicky/
assess-multilingual-bert

11https://github.com/facebookresearch/
LASER

12https://github.com/Tiiiger/bert_score

Language Pair Number of sentence pairs

en-ar 27, 593
en-de 299, 766
en-es 207, 514
en-fr 262, 075
en-it 482, 945
en-nl 72, 388
en-tr 668, 260

Table 3: The number of parallel sentence pairs in each
language used to train our model for the STS task

higher performance than ours in high-resource lan-
guage pairs, but not in low-resource language pairs.
D-TP and D-Lex-Sim (Fomicheva et al., 2020b) are
unsupervised QE methods using the NMT models
that are the targets of QE. It is unlikely that we
will always be allowed to use these NMT param-
eters in practice, while our method can conduct
QE for black-box NMT systems. Prism13 (Thomp-
son and Post, 2020) is the current state-of-the-art
unsupervised QE method, which is based on an
encoder-decoder model trained on large-scale bilin-
gual corpora. In contrast, our meaning embed-
dings of LaBSE efficiently support low-resource
language pairs.

The last row shows the performance of the
Predictor-Estimator (Kim et al., 2017), which is
the supervised QE model.14 Predictor-Estimator is
regarded as the strong baseline for supervised QE
tasks. It is notable that the meaning embeddings
of LaBSE outperformed the supervised Predictor-
Estimator in both medium- and low-resource lan-
guage pairs.

4.2 SemEval-2017 Cross-lingual STS Task

4.2.1 Setting
In this experiment, we evaluated the effects of our
method on a cross-lingual STS task (Cer et al.,
2017; Reimers and Gurevych, 2020).15 The dataset
provides 7 cross-lingual sentence pairs of English-
Arabic (en-ar), English-German (en-de), English-
Turkish (en-tr), English-Spanish (en-es), English-
French (en-fr), English-Italian (en-it), English-

13https://github.com/thompsonb/prism
14We used OpenKiwi (https://github.com/

Unbabel/OpenKiwi) (Kepler et al., 2019) to implement
the Predictor-Estimator model.

15https://public.ukp.informatik.
tu-darmstadt.de/reimers/
sentence-transformers/datasets/
STS2017-extended.zip

https://github.com/jlibovicky/assess-multilingual-bert
https://github.com/jlibovicky/assess-multilingual-bert
https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
https://github.com/Tiiiger/bert_score
https://github.com/thompsonb/prism
https://github.com/Unbabel/OpenKiwi
https://github.com/Unbabel/OpenKiwi
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/STS2017-extended.zip
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/STS2017-extended.zip
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/STS2017-extended.zip
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/STS2017-extended.zip
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Model en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

mBERT 0.048 0.068 0.068 0.048 0.047 0.070 0.058 0.058
mBERT (Meaning) 0.156 0.234 0.172 0.092 0.313 0.342 0.353 0.237

XLM-R 0.089 0.095 0.153 0.113 0.029 0.080 0.073 0.090
XLM-R (Meaning) 0.233 0.281 0.337 0.164 0.323 0.277 0.380 0.285

LaBSE 0.705 0.721 0.748 0.692 0.759 0.760 0.755 0.734
LaBSE (Meaning) 0.730 0.746 0.753 0.688 0.782 0.781 0.776 0.751

mBERT (centered) 0.168 0.204 0.115 0.168 0.282 0.285 0.306 0.218
mBERT (projection) 0.159 0.096 −0.016 −0.016 0.204 0.216 0.153 0.114
LASER 0.656 0.659 0.721 0.599 0.694 0.717 0.689 0.676
BERTScore 0.451 0.452 0.441 0.376 0.479 0.479 0.531 0.458

Multilingual SBERT 0.745 0.766 0.755 0.757 0.767 0.783 0.762 0.762
BGT 0.735 - 0.749 0.756 - - - 0.747

Table 4: Pearson correlation coefficient evaluated on cross-lingual STS task (For reference, the last set of rows
shows the state-of-the-art models, which are not directly comparable to ours because their settings are different.)

Model ar-ar en-en es-es Avg.

mBERT 0.306 0.250 0.294 0.283
mBERT (Meaning) 0.391 0.408 0.403 0.401

XLM-R 0.084 0.141 0.149 0.125
XLM-R (Meaning) 0.321 0.425 0.344 0.363

LaBSE 0.705 0.759 0.823 0.762
LaBSE (Meaning) 0.709 0.791 0.817 0.772

mBERT (centered) 0.451 0.416 0.365 0.410
mBERT (projection) −0.080 0.123 0.105 0.049
LASER 0.693 0.773 0.797 0.754
BERTScore 0.579 0.605 0.589 0.591

Multilingual SBERT 0.757 0.806 0.809 0.791
BGT 0.749 - 0.857 0.803

Table 5: Pearson correlation coefficient evaluated on monolingual STS task (For reference, the last set of rows
shows the state-of-the-art models, which are not directly comparable to ours because their settings are different.)

Dutch (en-nl), and 3 monolingual sentence pairs
of Arabic (ar-ar), English (en-en), and Spanish
(es-es). Following Reimers and Gurevych (2020),
we trained our model using parallel corpora from
Tatoeba.16 Table 3 lists the numbers of parallel
sentence pairs used to train our models. Again,
we compared mBERT (centered), mBERT (projec-
tion), LASER, and BERTScore as baselines.

4.2.2 Result
The first and second sets of rows in Tables 4 and
5 show the Pearson correlation coefficients of the
original multilingual sentence encoders, the mean-
ing embeddings by our model, and baselines, mea-
sured on the cross-lingual STS task, respectively.
Similar to the evaluations of the QE task, our

16https://tatoeba.org

method consistently improved the performance of
mBERT, XLM-R, and LaBSE for languages other
than Spanish on LaBSE. Our method substantially
improved STS performance not only of language
pairs for which large-scale training data are avail-
able in Table 3, but also of language pairs with
fewer data, such as Arabic (en-ar) and Dutch (en-
nl). Table 5 implies that our method improves
performance not only for cross-lingual but also for
monolingual tasks.

The last sets of rows in Tables 4 and 5 show the
performance of state-of-the-art models: the multi-
lingual version of SBERT (Reimers and Gurevych,
2020). It uses knowledge distillation by setting
SBERT trained with AllNLI (SNLI (Bowman
et al., 2015), MNLI (Williams et al., 2018)), and
STSB (Cer et al., 2017) as a teacher and training

https://tatoeba.org
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Figure 5: Visualisation of embeddings from 1, 000 sentence pairs in ro-en parallel corpus.

mBERT XLM-R LaBSE

Our Method 0.335 0.289 0.458
w/o Language Loss 0.322 0.286 0.449
w/o Meaning Loss 0.008 0.026 0.274

Table 6: Pearson correlation coefficients of WMT20
QE task on the ablation study

XLM-R as a student.17 As the teacher model is
exposed to the training of the STS task, it is ex-
pected that this model will achieve higher perfor-
mance. Nonetheless, our meaning embeddings of
LaBSE showed competitive performance without
any supervision of STS. The last row shows the
performance of BGT (Wieting et al., 2020) that dis-
entangles language-agnostic and language-specific
representations using an encoder-decoder model.
In contrast to this model, which trains a decoder
using a large-scale bilingual corpus, our method
achieves higher performance in low-resource lan-
guage pairs.

5 Analysis

We further analyse our method through an ablation
study and visualisation of sentence embeddings.

5.1 Ablation Study

Table 6 shows the performance in the QE task when
each meaning loss (Section 3.2) and language loss
(Section 3.3) is removed from our method. We ob-
serve that the model’s performance tends to worsen
without either constraint. In particular, removing
meaning loss has a serious impact on QE perfor-

17Because Reimers and Gurevych (2020) mea-
sured the performance using Spearman’s rank corre-
lation coefficient, we re-evaluated the performance of
xlm-r-bert-base-nli-stsb-mean-tokens model
(available at Hugging Face) using Pearson correlation
coefficient.

mance. We conjecture that this is because meaning
loss allows learning semantic equivalence and in-
equivalence, which is useful for conducting QE.

5.2 Visualisation

Figure 5 shows the sentence embeddings from
mBERT for randomly sampled 1, 000 parallel
sentences in English and Romanian, where di-
mensions were reduced by principal component
analysis (Maćkiewicz and Ratajczak, 1993). De-
spite these parallel sentence pairs representing the
same meaning, their embeddings from the original
mBERT (left) form clusters by language rather than
by meaning, as shown in Figure 1. By applying our
method, the meaning embeddings (center) became
language-agnostic. Besides, the language embed-
dings (right) are more clearly divided. Similar anal-
yses in other languages are shown in Figure 6. The
same tendency can be observed regardless of the
language pair.

6 Conclusion

To achieve unsupervised language-agnostic sen-
tence similarity estimation, we distilled the mean-
ing embeddings using pre-trained multilingual sen-
tence encoders. We trained the autoencoder con-
sisting of two MLPs, that is, meaning encoder and
language encoder, in a multitask and multilingual
manner. Our method successfully distils language-
agnostic (i.e., meaning embedding) information
by removing language-specific (i.e., language em-
bedding) information from the original sentence
embedding.

Our method has following advantages: (1) It
can be trained using only parallel corpora without
any human annotations. (2) Based on pre-trained
multilingual sentence encoders, our single model
can cover more than 100 languages.
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Figure 6: Visualisation of embeddings from 1, 000 sentence pairs in en-de, en-zh, et-en, and ne-en parallel corpora.

Experimental results in both the QE and cross-
lingual STS tasks revealed that our method consis-
tently improves the performance of original multi-
lingual sentence encoders, such as mBERT, XLM-
R, and LaBSE. Substantial improvements were ob-
tained even from tens of thousands of parallel sen-
tence pairs, achieving the highest performance in
QE for low-resource language pairs.
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