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Abstract

Recipe texts are an idiosyncratic form of in-
structional language that pose unique chal-
lenges for automatic understanding. One chal-
lenge is that a cooking step in one recipe
can be explained in another recipe in differ-
ent words, at a different level of abstraction, or
not at all. Previous work has annotated corre-
spondences between recipe instructions at the
sentence level, often glossing over important
correspondences between cooking steps across
recipes. We present a novel and fully-parsed
English recipe corpus, ARA (Aligned Recipe
Actions), which annotates correspondences be-
tween individual actions across similar recipes
with the goal of capturing information implicit
for accurate recipe understanding. We rep-
resent this information in the form of recipe
graphs, and we train a neural model for pre-
dicting correspondences on ARA. We find that
substantial gains in accuracy can be obtained
by taking fine-grained structural information
about the recipes into account.

1 Introduction

Cooking recipes are a type of instructional text that
many people interact with in their everyday lives.
A recipe explains step by step how to cook a cer-
tain dish, describing the actions a chef needs to
perform as well as the ingredients and intermediate
products of the cooking process. However, recipes
for the same dish often differ in which cooking
actions they describe explicitly, how they describe
them, and in which order.1 For instance, in the
three recipes in Fig. 1, the overall process of as-
sembling a batter and making waffles is explained
with different levels of detail: recipe (a) explains
the process with three distinct cooking actions (in
bold); recipe (b) with eight distinct actions; and
recipe (c) with nineteen actions.

1For now, we understand an action as synonymous to a
semantic event. We use the former term for consistency with
other recipe work.

(a) Beat eggs. Mix in remaining ingredients. Cook on hot

waffle iron. 2

(b) Preheat your waffle iron. In a large bowl, mix together

the flour, salt, baking powder, and sugar. In another bowl,

beat the eggs. Add the milk, butter, and vanilla to the

eggs. Pour the liquid into the flour mixture and beat until

blended. Ladle the batter into the waffle iron and cook
until crisp and golden. 3

(c) Sift together in a large mixing bowl flour, baking pow-

der, salt, and sugar. In a jug, measure out milk. Separate
eggs, placing egg whites in the bowl of standing mixer.

Add yolks and vanilla essence to milk and whisk together.

Pour over the flour mixture and very gently stir until about

combined. Stir in the melted butter and continue mix-
ing very gently until combined. Beat egg whites until

stiff and slowly fold into batter. Spoon the batter into pre-
heated waffle iron in batches and cook according to its

directions. Remove immediately and serve with maple

syrup and fruits. 4

Figure 1: Three recipe texts for making waffles with
cooking actions in bold. The recipes are ordered from
least amount of detail (a) to most (c).

The set of recipes in Fig. 1 provides more general
information about how to make waffles than each
individual recipe can. To our knowledge, only one
previous work focuses on alignment of instructions
across recipes to facilitate recipe interpretation on
a dish level: Lin et al. (2020) (henceforth referred
to as L’20) present the Microsoft Research Mul-
timodal Aligned Recipe Corpus to align English
recipe text instructions to each other and to video
sequences. L’20 focus on alignment of instructions
as sentences. Yet, as sentences can be quite long
and contain multiple actions, defining instructions
at the sentence level often glosses over the relation-
ship between individual actions and excludes the

2http://myhappytribe.com/recipes/
waffles/

3http://www.tastygardener.com/waffles/
4http://bakesbychichi.com/2014/03/

waffles.html
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complex event structure that makes recipe interpre-
tation challenging and compelling. For example,
in L’20, “Ladle the batter into the waffle iron and
cook [...]” in Recipe (b) is aligned to “Spoon
the batter into preheated waffle iron in batches
and cook [..]” in Recipe (c). If aligned at the
sentence level only, the action correspondence of
(b)’s recipe-initial “Preheat” and (c)’s “preheated”
much later in the recipe is not (and cannot be) ac-
counted for. The relationship between the individ-
ual actions ((b) “Ladle,” (c) “Spoon”) as well as
between both instances of “cook” is additionally
obscured by coarse-grained sentence alignment.

Aligning recipes at the action level (i.e. the bold
items in Fig. 1) instead of the sentence level is
practically useful to aggregate detailed information
about how to cook a dish in different ways. This
alignment would additionally offer greater insight
into how recipe actions implicitly contain informa-
tion about ingredients, tools, cooking processes,
and other semantic information necessary for accu-
rate recipe interpretation.

In this paper, we make two contributions towards
the goal of complete and accurate alignment of ac-
tions across similar recipes. First, we collect a
novel corpus that aligns cooking actions across
recipes, Aligned Recipe Actions (ARA), (Section
4), by crowdsourcing alignment annotations on top
of the L’20 corpus for a select number of dishes. In
order to determine the annotation possibilities, we
develop a neural recipe parser to identify descrip-
tions of actions and substances and arrange them
in a recipe graph (Section 3). Second, we present
an alignment model which identifies correspon-
dences between actions across recipe graphs based
on our parsed corpus (Section 5). Error analysis of
both human and machine performance illustrates
that, though complex, the task of aligning recipe
actions is achievable with our methodology and can
inform future work on aligning sets of instructions.
Our corpus and code are publicly available.5

2 Background And Related Work

Recipe text. The recipes in Fig. 1 illustrate some
of the idiosyncracies of recipe text: all texts are
written entirely in imperative mood ((a) “cook”;
(b) “preheat”; (c) “sift”); definite noun phrases
frequently drop their determiners ((a) “eggs”; (c)
“milk,” “egg whites”); many arguments are elided
or left implicit ((b) “beat ∅”; (c) “pour ∅ over”);

5https://github.com/coli-saar/ara

bare adjectives are used to describe desired end
states ((b) “until crisp and golden”); and many
anaphoric expressions refer to entities which were
not explicitly introduced before ((b) “the liquid”;
(c) “the flour mixture”). Accurate interpretation
of single recipe instructions requires familiarity
with situated food ingredients, knowledge of verb
semantics to identify how each cooking step relates
to the others, and general commonsense about the
cooking environment and instructional syntax.

Recipe graphs and corpora. Representing
recipes as graphs is the dominant choice (Mori
et al., 2014; Jermsurawong and Habash, 2015; Kid-
don et al., 2015; Yamakata et al., 2016; Chen, 2017;
Chang et al., 2018; Özgen, 2019). Of relevance
to this paper is the recipe corpus of Yamakata
et al. (2020) (Y’20), which consists of 300 En-
glish recipes annotated with graphs as in Fig. 2.
We train a recipe parser on this corpus (Section
3) and use the trained parser to identify actions in
the L’20 corpus. As noted earlier, Lin et al. (2020)
(L’20) created the Microsoft Research Multimodal
Aligned Recipe Corpus of roughly 50k text recipes
and 77k recipe videos across 4000 dishes in En-
glish. The recipes and video transcriptions were
segmented into sentences (but not parsed), and 200
recipe pairs were manually annotated for corre-
spondences between recipe sentences. L’20 cluster
dishes based on exact match of recipe title; they
perform sentence alignments on pairs of recipes
using the unsupervised algorithm of Naim et al.
(2014). We use L’20’s dataset as a basis for our
alignment task in Sections 4 and 5.

Recipe parsing. Parsing recipes into graphs is
usually comprised of two steps: (i) tagging men-
tions of substances and cooking steps, and (ii) link-
ing these mentions with input and output edges.
Recent work on English recipes has achieved F-
Scores above 90 for identifying mentions (Chen,
2017) and F-Scores above 80 for adding the edges
(Jermsurawong and Habash, 2015; Chen, 2017;
Özgen, 2019). Most of this work uses supervised
learning based on hand-annotated recipe datasets.
Using unsupervised methods, Kiddon et al. (2015)
train a generative neural model on a large corpus
of unannotated recipe texts and achieve an F-Score
of 80 on predicting edges given gold information
about the nodes; the output graphs are less detailed
than ours. Özgen (2019) achieves an F-Score of 75
on the same task and presents a subtask of creating
action graphs similar to ours in Section 3.4.

https://github.com/coli-saar/ara
https://github.com/coli-saar/ara
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Event alignment. Our work shares an interest
in modelling procedural knowledge with the de-
tection and alignment of script events. Chambers
and Jurafsky (2008, 2009) identified event types
from text according to their predicate-argument
structures and behavior in event chains via count-
based statistics. We capture similar information in
a crowdsourcing task reminiscent of Wanzare et al.
(2016, 2017) to automatically align actions without
all surface text (Regneri et al., 2010).

3 Parsing Recipes into Graphs

The main contribution of this paper is a corpus of
action alignments between action graphs of cook-
ing recipes. Basing our corpus on unannotated
recipe texts from L’20, we are dependent on an
accurate tagger and parser for pre-processing. The
tagger identifies the alignable actions in a recipe,
and the parser structures recipes into graph repre-
sentations. For both tasks, we train neural models
on the data of Yamakata et al. (2020) (Y’20); we set
a new state of the art on this dataset. Finally, we dis-
till the Y’20-style recipe graphs into more focused
action graphs (Section 3.4) which the alignment
model (Section 5) takes as input.

3.1 Recipe Graphs
The recipe graphs in the Y’20 dataset are directed
acyclic graphs with node and edge labels (Fig. 2).
Nodes represent entities of ten different types, such
as ingredients, cooking tools, and various types
of actions. Edges represent actions’ predicate-
argument structure, as well as part-whole relations
and temporal information. The full graph shows
the states of ingredients and tools throughout the
cooking process; it can be read from top to bottom
as inputs transformed into consecutive outputs.

3.2 Tagging Recipes
We split the parsing task into two steps. In the
first step, we tag the tokens of a recipe with their
respective node types. We implement the sequence
tagger as a neural network (NN) with a two-layered
BiLSTM encoder generating predictions in a CRF
output layer:

~y = CRF (BiLSTM (2)(BiLSTM (1)(~x))),

where ~y are the predicted tags over the input
sequence with the embedding ~x. For comparison,
Y’20 employ BERT-NER6 for their ‘recipe named

6https://github.com/kyzhouhzau/
BERT-NER
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Figure 2: Full graph for recipe (b) (Fig. 1) in the style
of Y’20. Actions are displayed as diamonds, foods as
circles, tools as rectangles, and all else as ellipses.

entity (r-NE)’ tagging task.
Contrary to common expectation, we find that

this tagger performs better with ELMo embeddings
(Peters et al., 2018) than with BERT embeddings
(Devlin et al., 2019) (Table 1). Trained and evalu-
ated on Y’20’s 300-r corpus, our tagger performs
two points better than Y’20’s tagger and reaches
Y’20’s inter-annotator agreement.

3.3 Parsing Recipes

In the second step, we predict the edges of the
graph. We use the biaffine dependency parser by
Dozat and Manning (2017), implemented by Gard-
ner et al. (2018). The model consists of a biaffine
classifier upon a three-layered BiLSTM with mul-
tilingual BERT embeddings. The model takes as
input the tagged recipe text generated by the tagger
and generates a dependency tree over the recipe.
We use the parser to generate connected recipe
graphs of full recipes, so we parse the entire recipe

https://github.com/kyzhouhzau/BERT-NER
https://github.com/kyzhouhzau/BERT-NER
https://github.com/kyzhouhzau/BERT-NER
https://github.com/kyzhouhzau/BERT-NER
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Model Corpus Embedder Precision Recall F-Score

IAA 100-r by Y’20 89.9 92.2 90.5

Y’20 300-r by Y’20 86.5 88.8 87.6
Our tagger 300-r by Y’20 English ELMo 89.9 ± 0.5 89.2 ± 0.4 89.6 ± 0.3
Our tagger 300-r by Y’20 multilingual BERT 88.7 ± 0.4 88.4 ± 0.1 88.5 ± 0.2

Table 1: Recipe tagging performance compared to Y’20’s performance and inter-annotator agreement (IAA).

as a single “sentence”.
As this is a dependency tree parser, we remove

edges from the recipe graphs in the training data to
make them into trees: we preserve the edge that is
listed first in the raw annotation data and ignore all
other edges. This results in dependency edges that
point from the inputs to the actions and from the
actions to the outputs, such that the final dish only
has incoming edges. We still evaluate against the
complete recipe graphs in the test set.

Our parsing results are presented in Table 2. We
train the parser on the English 300-r corpus by
Y’20. Our parser sets a new state of the art on this
corpus, with an F-Score of 78.2 on gold-tagged
evaluation data. Moreover, the combined tagger
and parser achieve an F-Score of 72.3 on unanno-
tated recipe text, compared to 43.3 of Y’20’s own
parser on automatically tagged recipe text. See Sup-
plementary Material A for model hyperparameters
and label-specific performance on actions.

3.4 Action Graphs for Recipe Alignment

To automatically align actions across recipe graphs,
we abstract the output of our parser to action
graphs, which only retain the action nodes from the
full graphs: the full graph in Fig. 2 is transformed
into the action graph in Fig. 3. We accomplish this
by removing all non-action nodes. The paths be-
tween action nodes in the full graph become edges
in the action graph. Similar to full recipe graphs,
action graphs can be read from top to bottom as
a temporal and sometimes causal sequence of ac-
tions. Each interior node has parent action nodes
it is dependent on, as well as child nodes condi-
tional upon it. We utilize this information in our
automatic alignment model (Section 5).

In creating our action graphs, we unify all Y’20
action types into a single type action: actions by
chef, both continuous (e.g. “chop,” “add”) and dis-
continuous (“siftai ingredients togetherai+1”); ac-
tions by food (“until the butter meltsaj”); and ac-
tions by tool (“until skewer comes outak clean”).7

7On the specific task of action tagging, we also outperform
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Figure 3: An example of how actions align across ac-
tion graphs for the recipes in Fig. 1 (expert annotation).

While most actions have surface realizations of ex-
actly one verb token, actions can span up to four
consecutive tokens (see Table 3).

4 A Corpus of Recipe Action Alignments

We collect a corpus of crowdsourced annotations
of action alignments between recipes for a sub-
set of L’20’s corpus. Our Aligned Recipe Action
(ARA) corpus makes two important contributions:
(i) manual alignments, as opposed to the majority
of L’20’s automatically aligned corpus; (ii) align-
ments are at the action level, as opposed to the
more coarse-grained sentence level.

4.1 Data Preparation
We draw the recipes for the crowdsourcing from
the training data of L’20. We manually chose 10

Y’20 on gold labels (89.6 F-Score); see Table 5, Supplemen-
tary Materials.



6934

Model Corpus Tag source Precision Recall F-Score

IAA 100-r by Y’20 gold tags 84.4 80.4 82.3

Y’20 300-r by Y’20 gold tags 73.7 68.6 71.1
Our parser 300-r by Y’20 gold tags 80.4 ± 0.0 76.1 ± 0.0 78.2 ± 0.0

Y’20 300-r by Y’20 Y’20 tagger 51.1 37.7 43.3
Our parser 300-r by Y’20 our ELMo tagger 74.4 ± 0.5 70.4 ± 1.0 72.3 ± 0.8

Table 2: Recipe parsing performance compared to Y’20 and inter-annotator agreement (IAA).

count mean

dishes 10
recipes 110
recipes per dish 11
total action pairs annotated 1592
annotations per source action at least 3
actions per recipe 3-37 15.1
actions per source recipe 4-37 15.9
actions per sentence 0-9 1.7
tokens per action 1-4 1.2

Table 3: Makeup of our ARA annotated corpus.

dishes from the subset of dishes with exactly 11
pairwise-matched recipes.8 We chose the 10 dishes
and corresponding recipes for their variation and
to ensure our work generalizes to new cuisines and
recipes: they span different cuisines (Italian, Chi-
nese, Indian, American, German) and dish types
(appetizer, side, main, dessert). A full list of dishes
we annotate is in Supplementary Material B. In all
recipes, we detect actions with our tagger (Section
3.3) using ELMo embeddings and trained on the
English data of Y’20.

For each dish, we define ten pairs of recipes
such that one recipe is the source recipe of an align-
ment to the next shorter target recipe of the same
dish. We select these pairings by measuring the
length of recipes in number of actions. Using this
methodology, all recipes except for the longest and
shortest recipes of each dish are annotated once
as source recipe and once as target recipe, respec-
tively. The pairing procedure is motivated by two
rationales: 1. Long-to-Short. In order to limit an-
notator disagreement from 1:n alignments in our
data, we always present the longer recipe as the
source recipe as we expect 1:n alignments to be not
as common if the source recipe is longer than the
target recipe. 2. Transitive closure. An alignment
from a source recipe to a secondary target recipe
can be approximated by the alignments between
(i) the source recipe and the target recipe and (ii)
the alignments between the target recipe and the
secondary target recipe.

8Dishes in L’20 have between 3 and 100 recipes.

4.2 Data Collection

We obtain the alignments in the corpus in a multi-
step process: For every source action a, we initially
ask three crowd-workers to vote for the correct tar-
get action. If we find a unique plurality vote for
a target action b, a is aligned to b. If there is no
agreement between the crowd-workers, we itera-
tively ask more crowd-workers to select a target
action, until we have a unique plurality vote for the
target. This approach optimizes resource spending
as it takes into account that some alignments are
very easy (needing few votes) whereas others are
harder, resulting in more noise in the votes and
therefore needing more votes to obtain a reliable
annotation. In extreme cases, where we did not
obtain a plurality even after five or six votes, we
deferred to an expert annotator: 190 out of 1592
source actions did not receive a unique plurality tar-
get; these were adjudicated by two of the authors.

Crowd-sourcing setup. We implemented our
crowdsourcing experiment with Lingoturk (Pusse
et al., 2016). Participants were hired through Pro-
lific9. In total we hired 250 participants, each of
whom answered on average 32 questions. Each
participant was paid 1.47 GBP; the average hourly
payment was 8.82 GBP.

A participant’s task was to align the set of actions
in a source recipe to its target recipe. Importantly,
this task is not a simple verb matching task. Partic-
ipants were instructed to read both recipes in their
entirety and were then presented with two source
actions at a time in the order in which they appear
in the recipe.10 For each source action, the partici-
pant was asked to choose one action from the target
recipe that it “best corresponds to”, or “None of
these”; the entire set of actions in the target recipe
was available for selection. Both recipes were dis-

9https://www.prolific.co/; as part of screening for the plat-
form, all participants were native English speakers and had
normal vision (in particular, they distinguish colors correctly).

10If a source recipe has an odd number of actions, the last
set of questions for the recipe pair has only one question.
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played at all times with all actions bolded and in
unique colors for ease of identification. Each par-
ticipant did this for two recipe pairs of differing
length and for different dishes, such that the total
length of each experiment was roughly comparable.
See Supplementary Material B for more details on
the annotation setup.

Annotator agreement. To quantitatively assess
agreement between our annotators, we compute
how often the votes by the participants agreed with
the alignment we obtained (i.e., the probability of
a participant’s vote to align with the plurality). A
distribution of the support behind the plurality vote
is seen in Fig. 4. While some questions are easy
and receive 100% agreement, many of them only
receive a plurality from 50% of the answers. For
some questions, disagreement between annotators
was so high that the most-chosen answer was only
chosen by 20% of the annotators. In such cases,
we collected a high number of votes from different
participants to obtain a plurality.

Overall, 69.3% of the target selections by our
annotators agreed with the annotation in the dataset
(selected by plurality vote). This measure is not an
upper bound for system performance because incor-
rect annotations by an annotator are only reflected
in the dataset if by chance several annotators chose
the same incorrect target. Otherwise, the incorrect
decision by an annotator will be remedied by the
requirement of having a plurality vote from at least
three different annotators. It is also not an upper
bound for human performance because some anno-
tators were more reliable than others and we report
the average over all annotators.

IAA measures. Due to the data collection design
(a large group of people answering question with
variable answer sets and a skewed but unknown
prior distribution over the answers), common inter-
annotator metrics such as Krippendorff’s α or Co-
hen’s κ are not applicable: These measures require
either a fixed set of possible answers for all ques-
tions or knowledge of the prior distribution of the
answers, or a fixed number of annotators (or a com-
bination of these requirements). Thus, computing
such a reliability metric would require making (in-
correct) assumptions of the data and render the
resulting number uninterpretable.

Human performance and baseline. To obtain
a human accuracy score, a subset of the authors
manually annotated ten recipe pairs and obtained
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Figure 4: For each question we computed how many
answers agreed with the plurality vote. The plot shows
the distribution of questions over this agreement score.

a 79% accuracy with respect to the gold standard.
The majority baseline for the annotations is 31.3%
(always choosing “None”).

Corpus statistics. Details about ARA, our full
annotated corpus, are in Table 3. On average, 16
action pairs are collected for each recipe pair. No-
tably, this average number of actions per recipe
(15.1) is almost double the average number of 8
sentences per dish in L’20, further motivating our
task of annotating fine-grained actions to collect
more detailed recipe information. Of particular
interest for our task, 70% of the recipes have re-
occurring action words (e.g. “add”) that do not
signal re-occurring actions based on the surround-
ing recipe context. There are 366 unique actions
distributed over 1659 action instances. The major-
ity of recipes have two repeated verbs; the highest
repetition is 5 identical verbs in one recipe, which
occurs in two recipes.

4.3 Disagreement Analysis
Qualitative analysis reveals that inter-annotator dis-
agreement has several sources (actions bolded). We
expect 10% of actions to be mistagged (Table
1); typos in the original L’20 corpus are a special
case of this (“from” misspelled as “form”). Several
recipes consist of more than 20 actions and contain
multiple identical actions in their surface form (see
paragraph Corpus statistics). Though these actions
appear in different colors on the interface, it is easy
to forget which color corresponds to which action
and subsequently misalign it. This can also cause
annotators to simply choose the most similar su-
perficial action without considering context: for
example, “mix” aligned to “mash” regardless of
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surrounding ingredients or stage of recipe.
Even given the full recipe context, linguistic pe-

culiarities of recipe text make deciding whether ac-
tions between two recipes correspond difficult. We
discuss several cases of this and quantify their fre-
quency based on 100 of the questions that initially
received no majority (percentages in parentheses).
Notably, some of these categories overlap.11

One-to-many alignments (6%). Our Long-to-
Short principle (Section 4.1) pays off, although we
still find cases where one source action can align to
two distinct target actions. We see this result with
infinitive actions: “set aside to coolai ,” as one ac-
tion, can be aligned to either action in “transferaj
to coolaj+1 .” We also see this with prepositional
result phrases: “stirak until combinedak+1

.” Ad-
ditional manual analysis shows missed cases are
minimal enough to not impact downstream perfor-
mance.

Many-to-one alignments (26%). The reverse
case of one-to-many alignments causes disagree-
ment in whether individual actions that comprise a
more complex action should be aligned. This hap-
pens frequently in baking recipes, where recipes
often differ in when and how they combine wet and
dry ingredients. For example in Fig. 3, “Add” adds
the milk, butter, and vanilla to eggs in (b), while
the same action in (c) adds egg yolks and vanilla
essence to milk. Though these high-level actions
may sequentially align across recipes, the differ-
ent ingredients that act as arguments can impact
whether they are judged to correspond. Conflated
actions contribute to this phenomenon: “Add dry
ingredients alternately with wet ingredients”; “Let
cool in pan or on wire rack.”

Implicit actions (24%). Implicit actions come
in many forms in recipe texts and may cause con-
fusion as to whether an action should be aligned to
the implicit step or not aligned at all. We see this
with nouns that imply actions: “return to continue
cooking” versus “return to cooker.” We also see
actions that must be inferred from their surround-
ing actions: “Spoon onto baking tray. Take out
after 8 minutes.” to connote “Bake.” Finally, in-
gredients themselves can imply actions for the chef
(“crushed garlic”), or not (“canned tomatoes”).

Let and light verbs (22%). Light causative
verbs such as let and allow are frequent sources
of disagreement. Part of this disagreement stems

11For example, ‘let’ and light verbs can cause 1:n align-
ments. The 3% we do not report in the text are due to typos
(2) and a noun misclassified by our tagger as an action (1).

from our action tagger: while sequences such as
“let restai” and “allow to standaj” are tagged as one
action, “allowak to returnak+1

” is tagged as two. If
a noun intervenes, such as “letal dough restal+1

,”
one action can become two.12 Disagreement can
then arise as to which of the two actions carries the
semantic weight and should be aligned. By-phrases
also introduce confusing subevent structure: “cre-
ate layers by putting pasta...” versus “layer pasta.”

Negative and conditional events (2%). Some
recipes include negative events: “Avoid over mix-
ing” or “without kneading.” Conditional events
may also cause disagreement based on whether an
annotator judges them as real or not: “If refriger-
ated...”; “When you are ready to bake...”

No best alignment (17%). Though some ac-
tions have no best alignment, the crowdsourcing
task may bias participants to choose an answer.

The sources of disagreement we find in ARA il-
lustrate the need for analyzing recipe text at the fine-
grained level of actions. In refining the sentence-
level alignments of L’20 to the cooking action level,
we find that judging when and how specific actions
“correspond” is a complex task that requires intri-
cate knowledge of the cooking domain.

5 Automatic Alignment of Actions

We develop two automatic alignment models that
mimic our crowdsourcing task; these models align
action nodes between our parsed action graphs
(Section 3.4). We evaluate both models on the
crowdsourced alignment dataset (Section 4): one
using features solely from the actions to be aligned,
and one incorporating parent and child action nodes
into the alignment decision.

5.1 Alignment Model Structure

We treat alignment as an assignment problem: for
each action in the source recipe R1, we indepen-
dently decide which action in the target recipeR2 it
should align to. Alternatively, a source action may
have no adequate alignment and be unaligned. We

12This is peculiarity of English verb constructions. In pilot
annotation on a German corpus, this disagreement does not
occur, as all objects stand alone from complex verb construc-
tions and action sequences are not interrupted. Yamakata et al.
(2020) notice this difficulty with English, too, and distinguish
‘actions by chef’ and ‘actions by food,’ such that “let dough
rest” consists of one action by chef and one action by food
(Table 6). The authors still notice inconsistency in how anno-
tators evaluate these sequences: while Ac is annotated with
92.7% accuracy, other actions show accuracy between 17%
and 46%.
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use a two-block architecture for this classification
task.

Encoder The Encoder generates an encoding
vector enc(i) for each action a(i) of a recipe. We
re-tokenize each recipe with the BERT tokenizer
and obtain token embeddings emb(j) from BERT.
For each action a(i) we track the list of tokens
t(a(i)) that correspond to this action. We then ob-
tain enc(i) for the two versions of our alignment
model in the following way.

In the base model, we run an LSTM over the em-
beddings to generate the representations for each
action, such as:

enc b(i) = LSTM seq([emb(j) | j ∈ t(a(i))])
enc(i) = enc b(i)

The extended model incorporates structural in-
formation about the recipe graph. We extract the
child and parent action nodes for each source ac-
tion. We then combine the base encoding of each
action with the base encodings of its children and
parents. As each action can have multiple parents
and children, we run an LSTM p over the parent
base encodings for all parents p(a(i)) for an action
a(i) and an LSTM c over the child base encodings
for all child nodes c(a(i)). We obtain enc ext(i)
by concatenating enc b(i) with the outputs of these
two LSTMs:

enc p(i) = LSTM p([enc b(p) | p ∈ p(a(i))])
enc c(i) = LSTM c([enc b(c) | c ∈ c(a(i))])
enc ext(i) = [enc b(i); enc c(i); enc p(i)]

enc(i) = enc ext(i)

Whenever the parent or child list is empty, we re-
place the LSTM output with a trained embedding
representing the empty child / parent list.

Scorer The Scorer predicts the alignment tar-
get for an action using one-versus-all classifica-
tion. Given a source action a1(i) ∈ R1, we
compute scores s(enc(a1(i)), enc(a2(j))) for the
alignment to every target action (including the
“None” target) a2(j) ∈ R2 ∪ none. For both the
base and the extended model, the encoding of the
“None” alignment target is a trained vector of the
same size as the action encoding. We compute
s(enc(a1(i)), enc(a2(j))) using a multi-layer per-
ceptron with two hidden layers and the element-
wise product enc(a1(i))� enc(a2(j)) as input.

Model Name Accuracy

Human Upper Bound 79.0

Sequential Order 16.5
Cosine Similarity 41.5
Common Action Pairs 52.1

Our Alignment Model (base) 66.3
Our Alignment Model (extended) 72.4

Table 4: Performance comparison of the three baseline
models, alignment model (base), and alignment model
(extended) on the Action Alignment Corpus.

Training and evaluation We train both models
using cross-entropy loss, with updates only on in-
correct predictions to avoid overfitting. We use
10-fold cross validation on the ten different dishes,
with one dish serving as test dish, such that the
aligner is always evaluated on an unknown domain.

5.2 Experiment Results
We implement three baselines for comparison: (i)
sequential ordering of alignments, such that a1(i)
from recipe R1 will be aligned to a2(i) from recipe
R2; (ii) cosine similarity scores between the BERT
embeddings of action pairs as the scorer; and (iii)
common action pair frequencies with 10-fold cross-
validation (Table 4). We further compare our model
to the human upper bound for alignment accuracy
as discussed in Section 4.2. Our base alignment
model outperforms all the baselines, but we ob-
serve a substantial gain in accuracy in the extended
alignment model, illustrating the importance of
structural information about the recipe in aligning
actions. The extended model still does not reach
human performance, illustrating the difficulty of
the task.

The extended alignment model achieves an ac-
curacy of 69.8% on aligning actions of the longer
recipe to actions of the shorter recipe. This suggests
that our Long-to-Short approach to data collection
yields valid data in both directions.

As a point of comparison, L’20 achieve an F-
Score of 54.6 for text-to-text alignments and 70.3
for text-to-video alignment at the sentence level,
suggesting that alignments of actions may be harder
to annotate than alignments of entire sentences, but
easier to align automatically.

6 Conclusion & Future Work

In this paper, we have made two contributions: (i)
ARA, a novel corpus of human-annotated align-
ments between corresponding cooking actions, and
(ii) a first neural model to align actions across
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recipe graphs. We find that incorporating structural
information about recipes improves the accuracy
of the neural model, highlighting the usefulness of
recipe graphs and of recipe parsers.

Compared to previous work, our corpus and
model represent alignments at the level of indi-
vidual actions and not of entire sentences. In re-
fining the sentence-level alignments of L’20 to the
cooking action level, we find that judging when
and how specific actions “correspond” is a com-
plex task that requires intricate knowledge of the
cooking domain. Alternatively, the complexity of
recipe interpretation can be framed as a matter of
recognizing nuances in how meaning is construed
in recipe text given the genre and its preferred syn-
tactic constructions (Langacker, 1993; Trott et al.,
2020).

Looking ahead, our work lays a foundation for
research which automatically aggregates multiple
recipe graphs for the same dish, identifying com-
mon and distinct parts of the different recipes. This
opens up a variety of applications in the cooking
domain, including dialogue systems which can ex-
plain a recipe at different levels of abstraction.
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Mehmet Özgen. 2019. Tagging and action graph gener-
ation for recipes. Msc thesis, Hacettepe University.

A Tagger and Parser Evaluation

A.1 Methodology
All our measures are computed as averages of the
mean values of four individually trained instances

of our model and are reported together with the
respective standard deviations. For the evaluation
of parsing automatically tagged recipe text (Table 2
in the paper), the recipes are tagged by four individ-
ually trained instances of our tagger (with ELMo
embeddings) before they are parsed by four indi-
vidually trained instances of the parser.

While Y’20 cross-validate over the whole 300-r
corpus, we train on a subset of 240 recipes and
evaluate on a subset of 30 recipes. Each subset is
randomly chosen from the full corpus such that the
proportions of 100-r to 200-r are preserved as 1:2 .

A.2 Tagger

For hyper-parameters, see Table 5. The hyper-
parameters were fine-tuned separately for the pre-
trained embeddings (ELMo and BERT, respec-
tively).

Hyper-parameter ELMo BERT
Hidden size BiLSTM 50 200
Layers BiLSTM 2 2
Dropout BiLSTM 0.5 0.5
Dropout CRF 0.5 0.5
Regularization method L2 (α = 0.5) L2 (α = 0.1)
Optimization method Adam Adam
Learning rate 0.0075 0.001
Gradient norm 10.0 10.0
Training epochs 50 50

Table 5: Hyper-parameters for the tagger after fine-
tuning on the German data set. The number of epochs
is an observation.

For reference, we display an overview over the
labels defined by Y’20 in Table 6. The label-
specific performance for action sequences is item-
ized in detail in Table 7.

A.3 Parser

We did not perform any fine-tuning on the parser.
The hyper-parameters are reported in Table 8.

Hyper-parameter Value
Tag embedding dim 100

Hidden size BiLSTM 400
Layers BiLSTM 3

Input dropout 0.3
BiLSTM dropout 0.3
Classifier dropout 0.3

Optimization method Dense Sparse Adam
(betas (0.9, 0.9))

Gradient norm 5
Training epochs 20 ± 10

Table 8: Hyper-parameters for the parser - no fine-
tuning performed. The number of training epochs is
an observation.
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Label Meaning Explanation

F Food Eatable; also intermediate products
T Tool Knife, container, etc.
D Duration Duration of cooking
Q Quantity Quantity of food
Ac Action by chef Verb representing a chef’s action
Ac2 Discontinuous Ac (English only) Second, non-contiguous part of a single action by chef
Af Action by food Verb representing action of a food
At Action by tool (English only) Verb representing a tool’s action
Sf Food state Food’s initial or intermediate state
St Tool state Tool’s initial or intermediate state

Table 6: Y’20 labels for the tagging task.

Model Data Label # Instances Precision Recall F-Score

Y’20 Y’20 {Ac, Ac2, Af, At} 88.7 89.3 89.0
Our model (’21) Y’20 {Ac, Ac2, Af, At} 92.0 ± 1.6 88.4 ± 1.8 90.1 ± 1.7

Y’20 Y’20 Ac 4977 92.3 93.1 92.7
Our model (’21) Y’20 Ac 483 94.6 ± 1.1 91.7 ± 1.6 93.1 ± 1.2
Y’20 Y’20 Ac2 178 43.8 46.8 45.3
Our model (’21) Y’20 Ac2 16 69.2 ± 9.0 68.8 ± 10.2 68.1 ± 3.2
Y’20 Y’20 Af 255 51.4 50.4 50.9
Our model (’21) Y’20 Af 32 64.8 ±9.9 47.7 ± 7.8 54.9 ± 8.7
Y’20 Y’20 At 15 60.0 10.0 17.1
Our model (’21) Y’20 At 2 100 ± 0.0 100 ± 0.0 100 ± 0.0

Table 7: Label-specific performance for action sequences; comparison of our model and that of Y’20. The values
in lines 1 and 2 are micro-averaged over the four individual action labels.

The set of edges labels as determined by Y’20
are displayed in Table 9.

B Crowdsourcing

B.1 Dishes Annotated
(1) Baked Ziti; (2) Blueberry Banana Bread; (3)
Cauliflower Mash; (4) Chewy Chocolate Chip
Cookies; (5) Garam Masala; (6) Homemade Pizza
Dough; (7) Orange Chicken; (8) Pumpkin Choco-
late Chip Bread; (9) Slow Cooker Chicken Tortilla
Soup; (10) Waffles.

B.2 Experiment Platform
Figure 5 gives a screenshot of the instruction page,
and Figure 6 gives a screenshot of the question
page.

C Alignment Model Training Details

In order to re-tokenize and generate token embed-
dings for the recipes, we utilized the bert-uncased-
base BERT model with embedding dimension of
768. We trained both alignment models (base and
extended) for 10-folds with 1 dish in the test set
and 9 dishes for training. In each fold, the model
runs for 40 epochs with a train/dev split of 8/1
dishes respectively. We use Adam as the optimizer

with a 0.0001 learning rate and Cross Entropy loss
as the loss function during training. For aligner’s
hyper-parameters, see Table 10.

Hyper-parameter Value

BERT embedding dim 768
LSTM (seq) hidden dim 768
LSTM (p) hidden dim 768
LSTM (c) hidden dim 768
MLP layer 1 output dim 128
MLP layer 2 output dim 32
MLP layer 3 output dim 1

Table 10: Hyper-parameters for the Alignment model.
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Label Meaning Explanation

Agent Subject Relationship with actions (Ac or Af)
Targ Direct object Relationship with actions (Ac or Af)
Dest Indirect object (container) Relationship with actions (Ac or Af)
t-comp tool complement Tool used in an action
F-comp Food complement Food used as a tool
F-eq Food equality Identical food
F-part-of Food part-of Refer to a part of a food
F-set Food set Refer to a set of foods
T-eq Tool equality Identical tool
T-part-of Tool part-of Refer to a part of a tool
A-eq Action equality Identical action (Ac, Af)
V-tm Head verb for timing, etc.
other-mod Other relationships

Table 9: Y’20 edge labels for the parsing task.

Figure 5: A screen shot of the instruction page.
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Figure 6: A screen shot of the experiment interface.


