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Abstract

A major factor contributing to the success
of modern representation learning is the ease
of performing various vector operations. Re-
cently, objects with geometric structures (eg.
distributions, complex or hyperbolic vectors,
or regions such as cones, disks, or boxes) have
been explored for their alternative inductive bi-
ases and additional representational capacities.
In this work, we introduce Box Embeddings, a
Python library that enables researchers to eas-
ily apply and extend probabilistic box embed-
dings. 1 Fundamental geometric operations
on boxes are implemented in a numerically sta-
ble way, as are modern approaches to training
boxes which mitigate gradient sparsity. The
library is fully open-source, and compatible
with both PyTorch and TensorFlow, which al-
lows existing neural network layers to be re-
placed with or transformed into boxes effort-
lessly. In this work, we present the implemen-
tation details of the fundamental components
of the library, and the concepts required to use
box representations alongside existing neural
network architectures.

1 Introduction

Much of the success of modern deep learning rests
on the ability to learn representations of data com-
patible with the structure of deep architectures used
for training and inference (Hinton, 2007; LeCun
et al., 2015). Vectors are the most common choice
of representation, as linear transformations are well
understood and element-wise non-linearities of-
fer increased representational capacity while be-

∗* Equal Contributions.
1The source code and the usage and API documentation for

the library is available at https://github.com/iesl/
box-embeddings and https://www.iesl.cs.
umass.edu/box-embeddings/main/index.html,
respectively. A quick video tutorial is available at
https://youtu.be/MEPDw8sIwUY.

ing straightforward to implement. Recently, vari-
ous alternatives to vector representations have been
explored, each with different inductive biases or
capabilities. Vilnis and McCallum (2015) repre-
sent words using Gaussian distributions, which can
be thought of as a vector representation with an
explicit parameterization of variance. This vari-
ance was demonstrated to be capable of captur-
ing the generality of concepts, and KL-divergence
provides a natural asymmetric operation between
distributions, ideas which were expanded upon in
Athiwaratkun and Wilson (2018). Nickel and Kiela
(2017), on the other hand, change the embedding
space itself from Euclidean to hyperbolic space,
where the negative curvature has been shown to
provide a natural inductive bias toward modeling
tree-like graphs (Nickel and Kiela, 2018; Weber,
2020; Weber and Nickel, 2018).

A subset of these alternative approaches explores
region-based representations, where entities are not
represented by a single point in space but rather
explicitly parameterized regions whose volumes
and intersections are easily calculated. Order em-
beddings (Vendrov et al., 2016) represent elements
using infinite cones in Rn+ and demonstrate their
efficacy of modeling partial orders. Lai and Hock-
enmaier (2017) endow order embeddings with prob-
abilistic semantics by integrating the space under a
negative exponential measure, allowing the calcu-
lation of arbitrary marginal, joint, and conditional
probabilities. Cone representations are not particu-
larly flexible, however - for instance, the resulting
probability model cannot represent negative corre-
lation - motivating the development of probabilistic
box embeddings (Vilnis et al., 2018), where entities
are represented by n-dimensional rectangles (i.e.
Cartesian products of intervals) in Euclidean space.

Probabilistic box embeddings have undergone
several rounds of methodological improvements.

https://github.com/iesl/box-embeddings
https://github.com/iesl/box-embeddings
https://www.iesl.cs.umass.edu/box-embeddings/main/index.html
https://www.iesl.cs.umass.edu/box-embeddings/main/index.html
https://youtu.be/MEPDw8sIwUY
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The original model used a surrogate function to
pull disjoint boxes together, which was improved
upon in Li et al. (2018) via Gaussian convolution of
box indicator functions, resulting in a smoother loss
landscape and better performance as a result. Das-
gupta et al. (2020) improved box training further
by using a latent random variable approach, where
the corners of boxes are modeled using Gumbel
random variables. These latter models lacked valid
probabilistic semantics, however, a fact rectified in
Boratko et al. (2021).

While each methodological improvement
demonstrated better performance on various
modeling tasks, the implementations grew more
complex, bringing with it various challenges
related to performance and numerical stability.
Various applications of probabilistic box embed-
dings (eg. modeling joint-hierarchies (Patel et al.,
2020), uncertain knowledge graph representation
(Chen et al., 2021), or fine-grained entity typing
(Onoe et al., 2021)) have relied on bespoke
implementations, adding unnecessary difficulty
and differences in implementation when applying
box embeddings to new tasks. To mitigate this
issue and make applying and extending box
embeddings easier, we saw the need to introduce
a reusable, unified, stable library that provides
the basic functionalities needed in studying box
embeddings. To this end, we introduce “Box
Embeddings”, a fully open-source Python library
hosted on PyPI. The contributions of this work are
as follows:

• Provide a modular and reusable library that
aids the researchers in studying probabilistic
box embeddings. The library is compatible
with both of the most popular Machine Learn-
ing libraries: PyTorch and TensorFlow.

• Create extensive documentation and example
code, demonstrating the use of the library to
make it easy to adapt to existing code-bases.

• Rigorously unit-test the codebase with high
coverage, ensuring an additional layer of reli-
ability.

2 Box Embeddings

Formally, a “box” is defined as a Cartesian product
of closed intervals,

B(θ) =

n∏
i=1

[zi(θ), Zi(θ)]

= [z1(θ), Z1(θ)]× · · · × [zn(θ), Zn(θ)],

z the lower-left coordinate of the boxes
Z the top-right coordinate of the boxes
centre the center coordinate of the boxes, z+Z2
box_shape shape of the center coordinates (or z, Z)
box_reshape if possible, reshapes the box_shape into the target_shape

broadcast
if possible, adds new dimensions to the box_shape to make
it compatible with the target_shape

Table 1: BoxTensor Properties

where θ represent some latent parameters. In the
simplest case, θ ∈ R2n are free parameters, and
zi, Zi are projections onto the i and n+ i compo-
nents, respectively. In general, however, the pa-
rameterization may be more complicated, eg. θ
may be the output from a neural network. For
brevity, we omit the explicit dependency on θ. The
different operations (such as volume and intersec-
tion) commonly used when calculating probabil-
ities from box embeddings can all be defined in
terms of zi, Zi - the min and max coordinates of
the interval in each dimension.

2.1 Parameterizations
The fundamental component of the library is
the BoxTensor class, a wrapper around the
torch.Tensor and tensorflow.Tensor
class that represents a tensor/array of boxes.
BoxTensor is an opaque wrapper, in that it ex-
poses the operations and properties necessary to
use the box representations (see table 1) irrespec-
tive of the specific way in which the parameters
θ are related to zi, Zi. The main two properties
of the BoxTensor are z and Z, which repre-
sent the min and max coordinates of an instance
of BoxTensor. Listing 1 shows how to create
an instance of BoxTensor consisting of two 2-
dimensional boxes in Figure 1.

import torch
from box_embeddings.parameterizations import

BoxTensor
theta = torch.tensor(

[[[-2, -2], [-1, -1]], [[1, 0], [3, 4]]]
)
box = BoxTensor(theta)
A = box[0]
B = box[1]

Listing 1: Manually initializing a BoxTensor
consisiting for the 2-D boxes depicted in Figure 1.

Given a torch.Tensor corresponding to the
parameters θ of a BoxTensor, one can obtain a
box representation in multiple ways depending on
the constraints on the min and max coordinates of
the box representations as well as the the range
of values in θ. The BoxTensor class itself sim-
ply splits θ in half on the last dimension, using
θ[. . . , 1 : n] as z and θ[. . . , n + 1 : 2n] as Z.
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Figure 1: Box Parameterization

Here, the Ellipsis “. . . ” denotes any number of
leading dimensions, for instance, batch, sequence-
length, etc. For the sake of simplifying the nota-
tions, from here on, the presence of the leading
dimensions will not be explicitly denoted using the
Ellipsis. Moreover, all the indexing operations
can be assumed to be operating only on the last
dimension, unless stated otherwise.
from box_embeddings.parameterizations import

BoxTensor, MinDeltaBoxTensor, SigmoidBoxTensor
box_tensor = BoxTensor(theta)
box_tensor_pos_sides = MinDeltaBoxTensor(theta)
box_tensor_in_unit_cube = SigmoidBoxTensor(theta)

Listing 2: Converting latent vectors to boxes, for
various choices of box parameterizations.

Any box can be represented in this fashion,
however some settings of θ may lead to situa-
tions where zi > Zi. This scenario is invalid un-
der conventional box models (Vilnis et al., 2018;
Li et al., 2018), and although valid for mod-
els which interpret these coordiantes as parame-
ters of a latent random variable (Dasgupta et al.,
2020; Boratko et al., 2021) it is often still desir-
able to constrain side-lengths to be non-negative.
MinDeltaBoxTensor represents boxes that are
unbounded and have non-negative side-length in
each dimension. That is, it outputs boxes with
z, Z ∈ Rn and zi ≤ Zi, and furthermore any such
box has a corresponding θ under this parameteriza-
tion. A valid probabilistic interpretation of box em-
beddings requires that their embedding space has
finite measure, however. One trivial way to accom-
plish this is to parameterize boxes to remain within
the unit hypercube, which can be accomplished via
the SigmoidBoxTensor or TanhBoxTensor
classes. The specific mathematical operations re-

Parameterization z Z

BoxTensor θ[1 : n] θ[n+ 1 : 2n]
MinDeltaBoxTensor θ[1 : n] z + softplus(θ[n+ 1 : 2n])
SigmoidBoxTensor σ(θ[1 : n]) z + (1− z)σ(θ[n+ 1 : 2n])

TanhBoxTensor tanh(θ[1:n])+1
2 z + (1−z) tanh(θ[n+1:2n])

2

Table 2: The different subclasses of BoxTensor and
how they represent boxes using the learnable parame-
ters θ ∈ R2n taken as input.

lating the θ variables to their z, Z coordinates are
found in Table 2, and example usage can be found
in Listing 2.2

2.2 Operations on BoxTensor

We provide a variety of modules that imple-
ment different operations on the box-tensors, such
as Intersection, Volume, Pooling and
Regularization. We also implemented a
BoxEmbedding layer that, just like a vector em-
bedding layer, provides index lookup. However,
unlike a vector embedding layer, this returns boxes
instead of vectors. We discuss these layers in detail
below.

2.2.1 Intersection

Given two instances of BoxTensor with com-
patible shapes, this operation performs the inter-
section between the two box-tensors and returns
an instance of BoxTensor as the result. For
two instances of BoxTensor A and B with coor-
dinates (zA, ZA) and (zB, ZB) respectively, the
(z, Z) coordinates of the resulting intersection
box for the two types of intersection operations,
HardIntersection (Vilnis et al., 2018; Li
et al., 2018) and GumbelIntersection (Das-
gupta et al., 2020), are shown in Table 3, and corre-
sponding codes are provided in Listing 3.
from box_embeddings.parameterizations import

BoxTensor
from box_embeddings.modules.intersection import

HardIntersection, GumbelIntersection

boxA = BoxTensor(theta_a)
boxB = BoxTensor(theta_b)

hard_intersection = HardIntersection()
gumbel_intersection =

GumbelIntersection(intersection_temperature=0.8)

hard_ab = hard_intersection(boxA, boxB)
gumbel_ab = gumbel_intersection(boxA, boxB)

Listing 3: Various approaches to computing the
intersection of two box tensors.

2The TensorFlow version for all the code snippets is pro-
vided in Appendix.
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Intersection type z Z

HardIntersection max(zA, zB) min(ZA, ZB)

GumbelIntersection β LSE( zAβ ,
zB
β ) −β LSE(−ZA

β ,−
ZB
β )

Table 3: Expressions for the two kinds of inter-
section layers. Here, LSE denotes logsumexp, i.e.,
LSE(x, y) := log(exp(x) + exp(y))

2.2.2 Volume
Boxes (or intersections of boxes) are typically
queried for their volumes. Our HardVolume
layer implements the volume calculation as orig-
inally introduced in Vilnis et al. (2018), which
is simply a direct multiplication of side-lengths.
It is in this setting where bounded parame-
terizations such as SigmoidBoxTensor and
TanhBoxTensor are particularly useful, as the
resulting volumes can be interpreted as yielding a
valid marginal or joint probability. Note, however,
that the guarantees of positive side-lengths do not
apply when taking the intersection of two disjoint
boxes, in which case the resulting box should have
zero volume.

Our SoftVolume layer implements the vol-
ume function proposed by Li et al. (2018), which
mitigates the training difficulties that arise when
disjoint boxes should overlap. Finally, our
BesselApproxVolume layer implements the
volume function proposed in Dasgupta et al. (2020),
which approximates the expected volume of a box
where the coordinates are interpreted as location pa-
rameters of Gumbel random variables. The expres-
sions and the code snippets for the various volume
operations are given in Table 4 and 4, respectively.

Remark 1. Note that due to the presence of the
product, the naive implementation of volume com-
putations as shown in Table 4 will often result in
numerical overflow or underflow for dimensions
greater than 5. Hence, we provide an option to
compute the volume in log-space, which is on by
default.

from box_embeddings.modules.volume import
HardVolume, SoftVolume, BesselApproxVolume

hard_volume = HardVolume()
log_volA = hard_volume(boxA)

soft_volume = SoftVolume(volume_temperature=5.0)
log_vol_ab = soft_volume(hard_ab)

bessel_volume =
BesselApproxVolume(volume_temperature=5.0,
intersection_temperature=0.8)

log_vol_ab = bessel_volume(gumbel_ab)

Listing 4: Different proposed methods for computing
box volume, of increasing “smoothness”.

Intersection type Volume

HardVolume
∏n
i=1max(Zi − zi, 0)

SoftVolume
∏n
i=1 T ∗ softplus(

Zi−zi
T )

BesselApproxVolume
∏n
i=1 T ∗ softplus(

Zi−zi−2γβ
T )

Table 4: The expressions for different volume im-
plementations. Here, (z, Z) are the min-max coordi-
nates of the input BoxTensor, T is the volume tem-
perature hyperparameter, γ is the Euler-Mascheroni
constant, β is the gumbel intersection parameter, and
softplus(x) = log(1 + expx).

2.2.3 Pooling
The library also provides pooling operations that
take as input an instance of BoxTensor and re-
duce one of the leading dimensions by pooling
across it. Currently, there are two types of pool-
ing operations implemented – intersection based,
which takes intersection across all the boxes in a
particular dimension, and mean based, which takes
the arithmetic mean of the min and max coordinates
of the boxes across a dimension.

2.2.4 Regularization
There is an excessive slackness in the learning ob-
jective defined using containment conditions on
boxes, which leads to large flat regions of local
minima resulting in poor training. In order to mit-
igate this problem, Patel et al. (2020) introduces
volume based regularization for boxes, which aug-
ments the loss with a penalty if the box volume
exceeds a certain threshold. This penalty reduces
the size of the flat local minima facilitating better
training of boxes.
from box_embeddings.modules.pooling import

HardIntersectionBoxPooler
from box_embeddings.modules.regularization import

L2SideBoxRegularizer

pooler = HardIntersectionBoxPooler()
pooled_box = pooler(box)

box_regularizer =
L2SideBoxRegularizer(log_scale=True)

vol_box = soft_volume(pooled_box)
loss = loss_fn(vol_box) +

box_regularizer(pooled_box)

Listing 5: Box pooling and regularization operations.

2.3 Embedding

BoxTensor and its children classes, do not store
learnable parameters directly, they simply wrap
the input tensor and provide an interface which
interprets the wrapped tensor as box representa-
tion. However, when working with a shallow model
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(embedding only model), one needs an embedding
layer that owns its parameters and outputs boxes
corresponding to the input indices. The library
provides BoxEmbedding layer that works like a
native embedding layer in PyTorch or TensorFlow,
i.e., it performs index lookup, but instead of re-
turning an instance of the native tensor, it returns
instance of BoxTensor.

2.3.1 Initializers
We also provide an abstract interface
BoxInitializer to implement various
methods for initializing the learnable parameters of
the BoxEmbedding layer. As a concrete exam-
ple we implement UniformBoxInitializer,
which initializes boxes with uniformly random min
coordinates and side lengths. This is used as the
default initializer for the BoxEmbedding layer
unless specified otherwise.

3 Applications

In this section, we demonstrate the Box Embed-
dings library by using it to implement models for
two real-world tasks: a representation learning task
of hierarchical graph modeling (Nickel and Kiela,
2017; Vilnis et al., 2018), and the NLP task of nat-
ural language inference (Dagan et al., 2005; Bow-
man et al., 2015). We first demonstrate the intuition
behind the containment-based loss function used to
train these models using a toy example involving
two 2-dimensional boxes.

3.1 Toy example

For the purpose of demonstration, we set up a toy
example which embeds a simple graph with just
two nodes, X,Y and one edge (X,Y ). We start
with two non-overlapping boxes at initialization:
boxX and boxY , and use SGD to train the parame-
ters that minimize the following loss function

L(θ) = − log
Vol (B(θX) ∩ B(θY ))

Vol (B(θY ))
.

Geometrically, this encourages boxY ⊆ boxX . If
using a box embedding with valid probabilistic
semantics, this loss function can be interpreted as
binary cross-entropy with P (X|Y ) = 1.3 The
code for this example can be found in Appendix
A.2. We visualize the containment training process
in Figure 3. Each line represents the edge of the

3To understand further the motivation for this choice of
graph embedding, see Vilnis et al. (2018).

box in one dimension, with the left endpoint of a
blue or orange line to be the minimum coordinate
of a box, and the right endpoint of a line to be the
maximum coordinate of a box.

3.2 Representing hierarchical graph
Representing relations between the nodes of a hi-
erarchy is useful for various NLP and Machine
Learning tasks such as natural language inference
(Wang et al., 2019; Sharma et al., 2019), entity typ-
ing (Onoe et al., 2021), multi-label classification
(Chatterjee et al., 2021), and question answering
(Jin et al., 2019; Fang et al., 2020). For example,
in Figure 2, knowing the hypernym relationship
between the pairs (herb, basil), (herb, thyme), and
(herb, rosemary) can help paraphrase the sentence
“This dish requires basil, thyme and rosemary” into
“This dish requires several herbs.”. Additionally,
knowing the relationship between (herb, banana),
and (fruit, banana) can help answer questions such
as “What is both a herb and a fruit?” Note that
this latter example maps directly onto the notion
of box intersection, as we are seeking an element
contained in both “herb” and “fruit”.

For demonstration, we train box embeddings to
represent the hypernym graph of WordNet (Miller
et al., 1990). Hypernym or IS-A is a transitive re-
lation between a pair of words, where one word
(hypernym) represents a general/broader concept,
and the other word (hyponym) is a more specific
sub-concept (Yu et al., 2015). The transitive re-
duction of the WordNet noun hierarchy contains
82,114 entities and 84,363 edges. The learning
task is framed as an edge classification task where,
given a pair of nodes (h, t), the model outputs
the probability of existence of an edge from h
to t. Following Patel et al. (2020), we train an
edge classification model using the transitive reduc-
tion edges augmented with varying percentages of
the transitive closure edges (10%, 25%, 50%) as
positive examples and randomly sampled negative
examples with positive to negative ratio of 1:10.
The BoxEmbedding layer is initialized with ran-
dom boxes representing the nodes of the hypernym
graph. For each input pair x = (hi, ti), the proba-
bility of existence of the edge hi → ti is computed
as

P (hi → ti) =
Vol (B(θhi) ∩ B(θti))

Vol (B(θti))
.

In our case, we use MinDeltaBoxTensor
parameterization, HardIntersection and
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(a) An example hierarchical structure (b) Representing the structure in (a) with Box Embeddings

Figure 2: Box Embeddings can capture hierarchical structures commonly observed in natural language

(a) Before training (b) After training

Figure 3: Visualization of two 15-dimensional boxes
before and after containment training described in Sec-
tion 3.1. The green box B(θY ) has been trained to be
entirely contained in the orange box B(θX).

TC Edges 0% 10% 25% 50%

w/o Regularization 44.2% 71.3% 81.1% 89.1%
w Regularization 59.4% 90.3% 91.9% 94.2%

Table 5: Test F1 scores for predicting the transitive clo-
sure of WordNet’s hypernym relations when training on
increasing amounts of edges from the transitive closure

SoftVolume. Binary cross-entropy loss is used
to train the model for edge classification. The test
set consists of positive edges sampled from the rest
of the transitive closure (not seen during training)
and a fixed set of random negatives with the same
positive to negative ratio as training. As seen in
Table 5, we are able to replicate the result from
Patel et al. (2020).

3.3 Natural Language Inference (NLI)
Natural language inference (Dagan et al., 2005;
Bowman et al., 2015) is a task where, given two

sentences, premise and hypothesis, the model is
required to pick whether the premise entails the hy-
pothesis, contradicts the hypothesis, or whether nei-
ther relationship holds. The task of NLI is setup as
multi-class classification, and in the two-class ver-
sion, the model is only required to decide whether
the premise entails the hypothesis or not (Mishra
et al., 2021). Although NLI deals with a pair of
sentences at a time, in the space of all possible
sentences the transitive relation of entailment estab-
lishes a partial order. If the sentences are encoded
as boxes then we can train box containment to cap-
ture the transitive entailment relation. To demon-
strate this, we choose the MNLI corpus (Williams
et al., 2018) from the GLUE benchmark (Wang
et al., 2018). Since the MNLI dataset presents
the NLI task as a three-class problem, we collapse
contradiction and neutral labels into a single label
called not-entails to obtain a two-class problem
with class labels entails and not-entails.

In order to obtain box representation for the
premise and hypothesis sentences, we use a neu-
ral network E to first get vector representations vp
and vh for the premise and the hypothesis, respec-
tively. Both these vectors are then interpreted as
the parameters θp := vp and θh := vh of a box
tensor. Finally, the probability of the entails class
is computed as

P (entails) =
Vol (B(θp) ∩ B(θh))

Vol (B(θh))
.

The parameters of the encoder are trained using
the ADAM optimizer (Kingma and Ba, 2014) with
binary cross-entropy as the loss. Table 6 shows the
test accuracy with two different encoders. As seen,
the performance is much higher than random or
majority class baselines.
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Neural Network Encoder (E) Accuracy

RoBERTa 78%
LSTM 73%

Random Baseline 50%
Majority Baseline 66%

Table 6: Test accuracy on MNLI task using box embed-
dings

4 Conclusion

In this paper, we have introduced Box Embeddings,
the first Python library focused on allowing region-
based representations to be used with deep learning
libraries. Our library implements proposed training
methods and geometric operations on probabilistic
box embeddings in a well-tested and numerically-
stable fashion. We described the concepts needed
to understand and apply this library to novel tasks,
and applied the library to graph modeling and nat-
ural language inference, demonstrating both shal-
low and deep contextualized box representations.
We hope the release of this package will aid re-
searchers in using region-based representations in
their work, and that the well-documented codebase
will facilitate additional methodological extensions
to probabilistic box embedding models.
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A Appendix

A.1 TensorFlow (TF) version

import tensorflow as tf
from box_embeddings.parameterizations import

TFBoxTensor
theta = tf.Variable(

[[[0, 0], [2, 2]], [[4, 0], [8, 4]]]
)
box = BoxTensor(theta)
boxA = box[0]
boxB = box[1]

Listing 6: TF code for initializing a BoxTensor.

from box_embeddings.parameterizations import
TFMinDeltaBoxTensor, TFSigmoidBoxTensor,
TFTanhBoxTensor

box_tensor = TFMinDeltaBoxTensor(theta)
box_tensor_pos_sides = TFSigmoidBoxTensor(theta)
box_tensor_in_unit_cube = TFTanhBoxTensor(theta)

Listing 7: TF code for converting theta vectors to
boxes.

from box_embeddings.parameterizations import
TFBoxTensor

from box_embeddings.modules.intersection import
TFHardIntersection

from box_embeddings.modules.intersection import
TFGumbelIntersection

boxA = TFBoxTensor(theta_a)
boxB = TFBoxTensor(theta_b)

hard_intersection = TFHardIntersection()
gumbel_intersection = TFGumbelIntersection()

hard_ab = hard_intersection(boxA, boxB)
gumbel_ab = gumbel_intersection(boxA, boxB)

Listing 8: TF code for computing the intersection of
two box tensors.

from box_embeddings.modules.volume import
TFHardVolume

from box_embeddings.modules.volume import
TFSoftVolume

from box_embeddings.modules.volume import
TFBesselApproxVolume

hard_volume = TFHardVolume()
volA = hard_volume(boxA)

soft_volume = TFSoftVolume()
vol_ab = soft_volume(hard_ab)

bessel_volume = TFBesselApproxVolume()
vol_ab = bessel_volume(gumbel_ab)

Listing 9: TF code for computing the volume of a box.

from box_embeddings.modules.pooling import
TFHardIntersectionBoxPooler

from box_embeddings.modules.regularization import
TFL2SideBoxRegularizer

pooler = TFHardIntersectionBoxPooler()
pooled_box = pooler(box)

box_regularizer =
TFL2SideBoxRegularizer(log_scale=True)

vol_box = soft_volume(pooled_box)
loss = loss_fn(vol_box) +

box_regularizer(pooled_box)

Listing 10: TF code for performing pooling and
regularization operations over a box.

A.2 Toy Example

import torch
import numpy
from box_embeddings.parameterizations.box_tensor

import BoxTensor
from box_embeddings.modules.volume.volume import

Volume
from box_embeddings.modules.intersection import

Intersection

# Initialization
x_z = numpy.array([-2.0 for n in range(1, 16)])
x_Z = numpy.array([0.0 for k in (x_z)])
data_x = torch.tensor([x_z, x_Z],

requires_grad=True)
box_H = BoxTensor(data_x)

y_z = numpy.array([1/n for n in range(1, 16)])
y_Z = numpy.array([1 + k for k in reversed(y_z)])
data_y = torch.tensor([y_z, y_Z],

requires_grad=True)
box_T = BoxTensor(data_y)

# Training function
learning_rate = 0.1
def train(box_1, box_2, optimizer, epochs=1):

best_loss = int()
best_box_1 = None
best_box_2 = None
box_vol = Volume(volume_temperature=0.1,

intersection_temperature=0.0001)
box_int =

Intersection(intersection_temperature=0.0001)
for e in range(epochs):

loss = box_vol(box_2) -
box_vol(box_int(box_1, box_2))

optimizer.zero_grad()
loss.backward()
optimizer.step()
if best_loss < loss.item():

best_loss = loss.item()
best_box_2 = box_2
best_box_1 = box_1

print(’Iteration %d, loss = %.4f’ % (e,
loss.item()))

return best_box_1, best_box_2

# Train
optimizer = torch.optim.SGD([data_x, data_y],

lr=learning_rate)
best_box_H, best_box_T = train(box_H, box_T,

optimizer, epochs=50)

Listing 11: Training Pipeline for the Toy Example (3.1)


