
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 2772–2783
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2772

Better Neural Machine Translation by
Extracting Linguistic Information from BERT

Hassan S. Shavarani Anoop Sarkar
School of Computing Science

Simon Fraser University
BC, Canada

{sshavara,anoop}@sfu.ca

Abstract

Adding linguistic information (syntax or se-
mantics) to neural machine translation (NMT)
has mostly focused on using point estimates
from pre-trained models. Directly using the ca-
pacity of massive pre-trained contextual word
embedding models such as BERT (Devlin
et al., 2019) has been marginally useful in
NMT because effective fine-tuning is difficult
to obtain for NMT without making training
brittle and unreliable. We augment NMT by
extracting dense fine-tuned vector-based lin-
guistic information from BERT instead of us-
ing point estimates. Experimental results show
that our method of incorporating linguistic in-
formation helps NMT to generalize better in a
variety of training contexts and is no more dif-
ficult to train than conventional Transformer-
based NMT.

1 Introduction

Probing studies into large contextual word em-
beddings such as BERT (Devlin et al., 2019)
have shown that these deep multi-layer models es-
sentially reconstruct the traditional NLP pipeline
capturing syntax and semantics (Jawahar et al.,
2019); information such as part-of-speech tags,
constituents, dependencies, semantic roles, co-
reference resolution information (Tenney et al.,
2019a,b) and subject-verb agreement information
can be reconstructed from BERT embeddings
(Goldberg, 2019). In this work, we wish to ex-
tract the relevant pieces of linguistic information
related to various levels of syntax from BERT in the
form of dense vectors and then use these vectors as
linguistic “experts” that neural machine translation
(NMT) models can consult during translation.

But can syntax help improving NMT? Linzen
et al. (2016); Kuncoro et al. (2018); Sundararaman
et al. (2019) have reported that learning grammati-
cal structure of sentences can lead to higher levels

of performance in NLP models. In particular, Sen-
nrich and Haddow (2016) show that augmenting
NMT models with explicit linguistic annotations
improves translation quality.

BERT embeddings have been previously con-
sidered for improving NMT models. Clinchant
et al. (2019) replace the encoder token embedding
layer in a Transformer NMT model with BERT
contextual embeddings. They also experiment with
initializing all the encoder layers of the translation
model with BERT parameters, in which case they
report results on both freezing and fine-tuning the
encoder parameters during training. In their ex-
periments BERT embeddings can help with noisy
inputs to the NMT model, but otherwise do not
help improving NMT performance.

Imamura and Sumita (2019) suggest that replac-
ing the encoder layer with BERT embeddings and
fine-tuning BERT while training the decoder leads
to a catastrophic forgetting phenomenon where
useful information in BERT is lost due to the mag-
nitude and number of updates necessary for train-
ing the translation decoder and fine-tuning BERT.
They present a two-step optimization regime in
which the first step freezes the BERT parameters
and trains only the decoder while the next step fine-
tunes the encoder (BERT) and the decoder at the
same time. Yang et al. (2020) also try to address
the catastrophic forgetting phenomenon by think-
ing of BERT as a teacher for the encoder of the
neural translation model (student network) (Hinton
et al., 2015). They propose a dynamic switching
gate implemented as a linear combination of the en-
coded embeddings from BERT and the encoder of
NMT. However these papers do not really focus on
the linguistic information in BERT, but rather try
to combine pre-trained BERT and NMT encoder
representations.

Sundararaman et al. (2019) identify part-of-
speech, case, and sub-word position as essential lin-

2773

guistic information to improve the quality of both
BERT and the neural translation model. They ex-
tract each linguistic feature using the Viterbi output
of separate models, embed the extracted linguistic
information (similar to trained word embeddings)
and append these vectors to the token embeddings.
However, their model uses point estimates of the
syntactic models and they do not use the linguistic
information in BERT embeddings.

Weng et al. (2019) use multiple multi-layer per-
ceptron (MLP) modules to combine the informa-
tion from different layers of BERT into the trans-
lation model. To make the most out of the fused
information, they also alter the translation model
training objective to contain auxiliary knowledge
distillation (Hinton et al., 2015) parts concerned
with the information coming from the pre-trained
language model. Zhu et al. (2020) also inject BERT
into all layers of the translation model rather than
only input embeddings. Their model uses an at-
tention module to dynamically control how each
layer interacts with the representations. In both of
these works, the training of the Transformer for
NMT becomes quite brittle and is prone to diverge
to local optima.

In this paper, we propose using pre-trained
BERT as a source of linguistic information rather
than a source of frozen pre-trained contextual em-
bedding. We identify components of the BERT
embeddings that correspond to different types of
linguistic information such as part-of-speech, etc.
and fine-tune dense vector embeddings for these
linguistic aspects of the input and use them within
an NMT model. Our approach does not radically
complicate the Transformer NMT model training
process both in terms of time and hardware re-
quirements and also in terms of training difficulty
(avoids bad local optima).

Our contributions are as follows: (1) A method
of linguistic information extraction from BERT
which needs supervision while training but works
without supervision afterwards. (2) An easily train-
able procedure for integrating the extracted infor-
mation into the translation model. (3) Evaluation
of the proposed model on small, medium and large
translation datasets.

The source code and trained aspect ex-
tractors are available at https://github.com/sfu-
natlang/SFUTranslate and our experiments can
be replicated using scripts under resources/
exp-scripts/aspect exps.

2 NMT and BERT

Machine translation is the problem of transforming
an input utterance sequence X in source language
lf into another utterance sequence Y (possibly with
varying length) in target language le. Machine
translation models search among all possible se-
quences in target language to find the most proba-
ble sequence based on the probability distribution
of Equation 1.

P (y|X, y ∈ le) =
|max len|∏

i=0

p(yi|X, y0, ..., yi−1)

(1)
Neural machine translation (NMT) tries to model

the probability distribution p(y|X) using neural
networks by taking advantage of deep learning
techniques. Transformers (Vaswani et al., 2017)
are one type of encoder-decoder neural networks
used for translation tasks. In Transformers, the
input (in one-hot format) is passed through N lay-
ers of encoder and N layers of decoder. In each
layer, the layer input passes through multiple atten-
tion heads (h heads; each considered a specialist in
a different sentence-level linguistic attribute) and
then gets transformed to the input for the next layer
using a two layer feed-forward perceptron module
with input size of dmodel and hidden layer size
of dff. The final probability distribution p(y|X) is
generated using an affine transformation applied
to the output of the last feed-forward module in
the N th decoder layer. Please see (Vaswani et al.,
2017) for further details.

BERT (Devlin et al., 2019) adopts the encoder
part of the transformer model and requires train-
ing it on large amounts of text data using a
masked language model objective over sub-words
p(yi|X, y0, ..., yi−1, yi+1, ..., ymax len) instead of
guessing the next sub-word p(yi|X, y0, ..., yi−1).
This bidirectional context turns BERT into a
provider of strong contextual sub-word embed-
dings in many languages. These massively over-
parameterized neural networks have revolutionized
many different NLP tasks. Effective application
of BERT in NMT has been studied in a number of
contemporary research projects; Language Model-
ing, Named Entity Recognition, Question Answer-
ing, Natural Language Inference, Text Classifica-
tion (Devlin et al., 2019), and Question Generation
(Chan and Fan, 2019). We approach this problem
from the novel perspective of extracting linguistic
information encoded in BERT and applying such
information in NMT.

https://github.com/sfu-natlang/SFUTranslate
https://github.com/sfu-natlang/SFUTranslate

2774

3 Linguistic Aspect Extraction from
BERT

Since BERT contextual embeddings contain a vari-
ety of information (linguistic and non-linguistic),
extraction of relevant information plays an impor-
tant role in further improvement of the downstream
tasks. In the rest of this section, we define aspect
vectors as single-purpose dense vectors of extracted
linguistic information from BERT, discuss how as-
pect vectors can be extracted, and explain how to
integrate aspect vectors into NMT.

3.1 Aspect Vectors

To start the information extraction process, we ini-
tially need to choose a limited (desired) set of lin-
guistic attributes to look for in BERT embeddings.
This attribute set can contain a number of linguis-
tic aspects (e.g. part-of-speech). Each linguistic
aspect itself will be defined over a possible aspect
tag set (e.g. the set of {NOUN, ADJ, ...} in part-
of-speech). In this paper, we show a linguistic
attribute set with A, show a generic aspect with a
and point to its relative tag set with ta.

Given the definition of a linguistic aspect and
inspired by the information bottleneck idea (Tishby
and Zaslavsky, 2015), we define an aspect vector
as a single-purpose dense vector extracted from
BERT and containing information about a certain
linguistic aspect of a particular (sub-word) token
in the input sequence. Aspect vectors can be inter-
preted as feature values equivalent to a specific key
(aspect).

3.2 Aspect Vector Extraction

For each embedding vector E and linguistic aspect
a, we define Ma as an aspect-extraction function
where ea =Ma(E) is a single-purpose dense vec-
tor containing maximum aspect information and
minimum irrelevant other information.

We ensure the aspect encoding power of ea by
retrieving its equivalent tag in ta using a classifier.
The aspect prediction loss for a linguistic attribute
set A of size n can be calculated as the average
cross entropy loss (LCE) between the classifier
prediction and the expected aspect tags for each
aspect (Equation 2).

La =
1

n

|n|∑
i=0

LiCE (2)

Linguistic
Aspect

Extractors

Token
Bert Embedding

Reconstructed
Bert Embedding

POS Shape ... LeftOver

POS
Classifier

Prediction

Figure 1: Schematic Aspect Extraction from BERT

We also ensure information integrity1 of ea
by concatenating all the aspects (in addition to a
“left-over” aspect equivalent to all the other non-
interesting information) and reconstructing the orig-
inal embedding vector E from them2 in reconstruc-
tion vector R. The reconstruction loss (Lr) for the
extracted aspect vectors can be calculated as the
euclidean distance of the reconstruction vector R
and the original embedding vector E (Equation 3).

Lr = ||R−E||2 (3)

In addition, since our aspect extractor is similar
in architecture to a multi-head attention module
(with a difference in the fact that we know what ex-
actly each head will be responsible for), to prevent
learning redundant representations (Michel et al.,
2019), we add the average euclidean similarity (Ls)
of each pair of aspect vectors to the training loss
function (Equation 4).

Ls = 1−

 1

n(n− 1)

|n|∑
i=0

|n|∑
j 6=i=0

||ei − ej ||2

(4)
The aspect extractor will be trained over the ac-

cumulation of the three mentioned loss components
(Equation 5). Figure 1 demonstrates different parts
of the aspect extractor and their connections.

Lfe = La + Lr + Ls (5)

1We don’t expect Ma to change the information inside E
but rather to extract the relevant information.

2This idea is analogous to stack-propagation (Zhang and
Weiss, 2016) in which propagating the information loss for
two tasks helps improving the quality of the encoded repre-
sentations.

2775

Positional
Encodig

Positional
Encodig

Input
Embedding

Output
Embedding

OutputsInputs

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

MultiHead
Attention

MultiHead
Attention

Feed
Forward

Masked
MultiHead
Attention

Softmax

Linear

Output
Probabilities

N× N×

Integration
Module

BERT

Aspect
Extractors

...Aspect 1 Aspect N

cat

...

TokenEmbsLingEmbs

Dimension Transformation

Linguistic
Embedding

Linguistic
Embedding

Linguistic Aspect
Extractors

Token
B

ertE
m

bedding

R
econstructed

B
ertE

m
bedding

PO
S

Shape
...

L
eftO

ver

PO
S

C
lassifier

Prediction

Figure 2: Integration of Extracted Aspect Vectors into NMT. The right hand side part of this figure is taken from
Vaswani et al. (2017).

As another important point, a pre-trained BERT
model has multiple encoder layers as well as an
embedding layer. Choosing the proper layer which
contains all of our desired aspects is not simply
possible since different layers specialize in differ-
ent linguistic aspects (Jawahar et al., 2019; Tenney
et al., 2019a).

Therefore, as Peters et al. (2018) suggest, we
define BERT embedding vector E as a weighted
sum of all BERT layers (of size `) using Equation
6 where α weights are learnable parameters and
will be trained along with the other aspect extractor
parameters.

E =
∑̀
j=0

αjE
BERT
j (6)

3.3 Integrating Aspect Vectors into NMT
Once the aspect vectors are created, we throw away
the classifiers and the reconstruction layers and
place the encoder part of our trained aspect ex-
tractor (the mapping from BERT contextual em-
beddings to aspect vectors) in an input integration
module designed to augment the neural translation
model input with aspect vectors3.

The integration module (constructed using a two
layer perceptron network) receives the concate-
nated aspect vectors (we call this concatenated

3We use the same sub-word model in pre-trained BERT to
provide sub-word tokens to our NMT model.

vector a linguistic embedding4) and the token em-
bedding (inherited from the Transformer model),
and maps the linguistic embedding into a vector
of the same size as the token embedding. Then,
it projects the concatenation of both embeddings
to a vector with the same size as the token embed-
ding of the original Transformer model5. Figure 2
demonstrates this process.

4 Experiments

In this section, we initially examine our designed
aspect extractor and report its classification accu-
racy scores. Next, we integrate the extracted aspect
vectors into the neural machine translation frame-
work as explained in Section 3.3 and study the
effects of integrated vectors on the performance of
the models.

4.1 Data

We choose three German (which has explicit and
nuanced linguistic features) to English datasets in
different data sizes to examine our proposed frame-
work.

4This embedding vector can be similar to what a factor to-
ken contains in Factored-NMT (Garcı́a-Martı́nez et al., 2016)
with a difference that it is generated in the space of linguistic
aspects and does not need an embedding layer.

5This step is necessary to prevent any change in other parts
of the model which would make comparison of the results
unfair due to effects on the number of parameters and the
learning capability of the model.

2776

We use Multi30k (M30k)6 as our small dataset.
This dataset contains a multilingual set of image
descriptions in German, English and French. Due
to this reason, we also consider experimenting on
German to French as our second small dataset. The
M30k data contains 29K training sentences, 1014
validation sentences (val) and 1000 test sentences
(test2016).

We take IWSLT (Cettolo et al., 2012)7 as our
medium sized dataset. The sentences in this dataset
are quite different from M30k since they are com-
posed from the transcriptions of TED talks as well
as dialogues and lectures8. The IWSLT data con-
tains 208K training sentences, 888 validation sen-
tences (dev2010) and multiple test sets (tst2010
to tst2015 with 1568, 1433, 1700, 993, 1305, and
1080 sentences, respectively).

For the large data size, we consider WMT9, a
large (4.5M training sentences) set of parallel sen-
tences from the proceedings of the European Par-
liament as well as web crawled news articles. We
remove 0.05% of the training data (2290 sentences;
lines with numbers divisible by 2000) and use it
as the validation set (we call it wmt val) and take
newstest data from 2014 to 2019 as our test sets
(with 3003, 2169, 2999, 3004, 2998 and 1997 sen-
tences, respectively).

We remove train data sentences longer than 100
words and uncase and normalize both side sen-
tences using MosesPunctNormalizer10 be-
fore tokenization. The reference side of the test
data remains untouched in all the steps of our ex-
periments.

4.2 Linguistic Aspect Vector Extraction

In this section, we study our linguistic aspect ex-
tractor training procedure and analyze the quality
of the extracted aspect vectors.

6AKA Flickr30K provided in task 1 of WMT17 mul-
timodal machine translation, http://www.statmt.org/wmt17/
multimodal-task.html

72017 was the last year that the data for this task got up-
dated; https://wit3.fbk.eu/mt.php?release=2017-01-mted-test

8While the talks are quite polished, they still con-
tain many verbal structures and sometimes even sounds
(e.g. “Imagine an engine going clack, clack,
clack, clack, clack, clack, clack.”).

9Europarl+CommonCrawl+NewsCommentary
https://www.statmt.org/wmt14/translation-task.html, please
note that in the later years this training set remained the same,
but ParaCrawl data was added to it. We do not use ParaCrawl
data since it is quite noisy and we aim to limit the effects
of uncontrolled variables in our training data. However, we
report our results on all the test tests after 2014.

10https://github.com/alvations/sacremoses/

We choose our linguistic attribute set (A) as Sun-
dararaman et al. (2019) suggest, however, we re-
place ‘case’ with ‘word-shape’11 since we believe
the complete shape of the word is much more in-
formative specially in sub-word settings. In addi-
tion, we consider a two-level hierarchy in part-of-
speech tags to benefit from both higher accuracy
in exploring the syntactic search space and lower
model confusion in cases where the fine-grained
tags are not helpful. Therefore, we consider coarse-
grained and fine-grained part-of-speech (CPOS and
FPOS), word-shape (WSH), and sub-word posi-
tion12 (SWP) to form our experimental linguistic
attribute set (A). Other linguistic attributes such as
dependency parses or sentiment could be consid-
ered as aspects in our model but we leave that for
future work.

We use the spaCy German tagger13 model to ac-
quire our intended linguistic aspect labels. Since
spaCy is trained on word-level while BERT is
trained on sub-word level, we had to align the se-
quences using a monotonic alignment algorithm
(see Appendix A.1.1). The fine-grained part-of-
speech tagger in spaCy14 is pre-trained on TIGER
Corpus15 (Smith et al., 2003) and inherits its 55
fine-grained tags from TIGER treebank. The
coarse-grained spaCy part-of-speech tagger has
been trained by defining a direct mapping from
55 tags of the TIGER treebank to the 16 tags in the
Universal Dependencies v2 POS tag set16.

We use a 12-layer17 German pre-trained BERT
model for encoding the source sentences in aspect
extractors. We use an uncased model as our transla-
tion model performs on lowercased data and the re-
sults are recased using the moses recaser so that the
results are cased BLEU scores comparable to other
systems18. We pass the BERT-encoded source sen-
tences through a single perceptron middle layer of
size 1000. We divide the output of this layer to

11Representing capitalization (changing alphabet to x or
X), punctuation, and digits (changing digits to d). As an
example for word-shape, the sub-word ##arxiv. in the token
‘myarxiv.org’ will turn to ##xxxxx..

12Encoding the word with one of the three labels “Begin”,
“Inside”, or “Single”.

13https://spacy.io/models/de
14SpaCy reports 96.52% accuracy for this model.
15https://www.ims.uni-stuttgart.de/
16https://universaldependencies.org/v2/postags.html
17Hidden state size of 768 with 12 heads; written in PyTorch

and distributed by Wolf et al. (2019). You can find model
configurations in https://github.com/dbmdz/berts.

18We recommend using a cased BERT model for translation
systems that handle casing differently.

http://www.statmt.org/wmt17/multimodal-task.html
http://www.statmt.org/wmt17/multimodal-task.html
https://wit3.fbk.eu/mt.php?release=2017-01-mted-test
https://www.statmt.org/wmt14/translation-task.html
https://github.com/alvations/sacremoses/blob/master/sacremoses/normalize.py#L11
https://spacy.io/models/de#de_core_news_md
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger/
https://universaldependencies.org/v2/postags.html
https://github.com/dbmdz/berts

2777

Sub-word Level Word Level
CPOS FPOS WSH SWP #tokens CPOS FPOS WSH #tokens

M30k 96.88 96.18 99.79 99.93 16096 97.95 97.34 99.74 12823
IWSLT 92.69 90.48 99.73 97.14 22687 94.84 93.07 99.69 19039
WMT 92.64 91.60 97.74 98.94 70139 94.86 94.01 97.38 55135

Table 1: F-1 scores acquired after training the aspect extractor on German side of parallel data and passing the
validation sets of each data set through trained aspect extractors. The #tokens column shows the number of
tokens in the validation set.

Aspect Extractor
Training Data FPOS SWP

M30k 79.39 90.63
IWSLT 77.80 88.34
WMT 82.13 91.42
TIGER 84.64 92.64

Table 2: F-1 scores of fine-grained part-of-speech pre-
diction of TIGER corpus test data (BERT encoded) fed
to each of the trained aspect classifiers. The scores are
calculated over a total of 7516 sub-word tokens in 358
test sentences of TIGER. Extractors trained on M30k,
IWSLT, and WMT have not been provided with any
part of TIGER before evaluation.

‘number of aspects + 1’ splits to form our desired
aspect vectors (of size 200). Please see Appendix
A.1.1 for more implementation details.

We train three different aspect extractors, one
for each dataset and feed in the source sentences of
the dataset to our model in batches of size 32 for 3
epochs19. Table 1 shows F-1 scores of classifying
the validation set data using different aspect vectors
after training the aspect extractors on the train set
sentences. Please note that for calculating the word-
level scores, in cases of disagreement between dif-
ferent sub-word tokens, the sub-word prediction of
the first sub-word token has been counted as the
prediction for the word label.

We also validate our trained (on M30k, IWSLT,
and WMT) aspect extractors against the manual an-
notations of TIGER treebank with which the spaCy
fine-grained part-of-speech tagger has been trained.
We train an extra aspect extractor using the train
set of TIGER corpus and test all four trained as-
pect extractors against TIGER data test set20. This
experiment evaluates the absolute power of our

19Since the number of WMT sentences are much bigger,
we stop training WMT aspect extractors when there is no
improvement in aspect classification result (rounded to have 3
decimal places) of any label for at least 40 batches.

20We use german tiger test gs.conll in the ver-
sion of TIGER released in 2006 CoNLL Shared Task - Ten

simple feed-forward aspect extractors in perform-
ing the aspect classification task. Please note that
our goal in this experiment is not to achieve the
state-of-the-art fine-grained part-of-speech tagging
results as our aspect extractors receive their input
from BERT and do not directly access the tagged
input sentences. Table 2 contains the results of
comparison between predictions of different aspect
extractor classifiers and TIGER gold labels.

4.3 Uniqueness of Information in Linguistic
Aspect Vectors

Considering the high F-scores for each aspect cat-
egory in each dataset (Table 1), we can conclude
that our aspect extractor maximizes the relevant in-
formation extraction from BERT embeddings. The
loss in Equation 4 maximizes the distance between
aspect vectors. To test whether this leads to a di-
verse set of aspect vectors, each specialized to their
own linguistic attributes, we consider each aspect
category a, after training the aspect extractors. We
take each of the other extracted aspect vectors a′

(except the “left-over” vector) and use each of them
to train a new classifier21 that predicts the right
class for category a based on aspect vector a′. This
will test the correlation between the information
in aspect vectors a′ and the tags in category a. If
the classification scores for this counterfactual test
are high then our model has failed in fine-tuning
each aspect vector to predict a particular linguistic
aspect. We compare the classification scores to
a trivial baseline: predict the most frequent class
always. Table 3 shows the results of this counterfac-
tual test on the aspect extractor trained on TIGER
data. We can see that the average F-1 scores are
very low when we use counterfactual aspect vectors
to predict a linguistic aspect on which it was not
fine-tuned (e.g. use aspect vector trained on part-

Languages. Both train and test data are accessible through
https://catalog.ldc.upenn.edu/LDC2015T11.

21We thank the anonymous reviewers for their valuable
feedback on this procedure.

https://catalog.ldc.upenn.edu/LDC2015T11

2778

TIGER test Sub-word Level
CPOS FPOS WSH SWP

most frequent
class

NOUN NN xxxx single

percentage
in total

27.12 27.07 39.07 59.92

average
classification F-1

1.89 0.23 12.20 42.97

#tokens 7516 × 3 = 22548

Table 3: Classification scores of each aspect classifier
when fed with other extracted aspect vectors. We ex-
pect the F-1 scores to be low so we can conclude that
our aspect extractor truly excludes irrelevant informa-
tion from each aspect.

of-speech to predict word shape). This shows that
our training method fine-tunes each aspect vector
to its linguistic task.

To validate the loss in Equation 3, we calculate
the average euclidean distance of the aspect extrac-
tor reconstructed vectors and the original BERT
embedding vectors22 for M30k German to English
dataset. We unit normalize each of the vectors
for a score in [0, 1]. The average euclidean dis-
tance value of 0.1863 tells us that the reconstruc-
tion component of the aspect extractor is capable of
reconstructing vectors that are close to the original
embedding vectors.

4.4 Linguistic Aspect Integrated Machine
Translation

After confirming the adequacy and uniqueness of
linguistic information in aspect vectors, we inte-
grate the encoder part of aspect extractors into the
translation model and perform translation experi-
ments on M30k, IWSLT, and WMT datasets. In our
experiments, we compare our model to three base-
lines : (1) the vanilla transformer model (Vaswani
et al., 2017) which does not use any external source
of information, (2) the syntax-infused transformer
model (Sundararaman et al., 2019) which explic-
itly embeds linguistic aspect labels and concate-
nates their embedding to the token embedding, (3)
the transformer model with bert-freeze input set-
ting (Clinchant et al., 2019) which replaces the
input embedding layer of the encoder module in
transformer with a fully pre-trained BERT model.
Appendix A.1.2 provides the configurations and

22Average results of Equation 3 for all the tokens in the
train set.

sufficient details for replication of our experiments
in this section.

During each training trial, we perform 9 valida-
tion set evaluation steps (one after visiting each
10% of the data). In each step, the validation set is
translated with the current state of the model (at the
time of evaluation) and the generated sentences are
detokenized and compared to the validation set ref-
erence data to produce sentence-level BLEU (Lin
and Och, 2004) scores. The best scoring model
throughout training is selected as the model with
which the test set(s) are translated.

For M30k and IWSLT data sets, we train two sep-
arate models, one using the aspect vectors trained
on the source side of its own training data (in-
domain) and the other using the aspect vectors
trained on the source side of WMT data (out-of-
domain). We use cased BLEU (evaluated with
the standard mteval-v14.pl script) and ME-
TEOR (Denkowski and Lavie, 2014) to compare
different models. Tables 4 and 7 show the results of
evaluating the models trained with different men-
tioned settings.

The evaluation results show that taking advan-
tage of aspect vectors improves the accuracy of
translating German to both English and French in
M30k as well as German to English in IWSLT and
WMT. Also, in majority of the cases WMT-trained
aspect vectors have pushed the model to produce
more accurate results since they contain more gen-
eralized information. Based on these results, we
conjecture that aspect vectors trained on large out-
of-domain data can be helpful in low-resource set-
tings but we leave the examination of this idea for
future work.

Aside from performance, our model is approx-
imately 5 times faster than syntax-infused trans-
lation model (Sundararaman et al., 2019) while
demanding less number of trainable parameters.
Although it is not as fast as bert-freeze model (Clin-
chant et al., 2019) in large settings (because of the
size of computations required for calculating the
linguistic embedding), it is comparable in speed
to bert-freeze in medium and small scale settings.
Appendix A.2 contains some additional insights
regarding how aspect vectors can help translation
systems trained on different dataset sizes.

Tables 5 and 6 demonstrate some examples of
cases where aspect vectors has been useful in im-
proving the translation quality.

2779

a) M30k†
German to English German to French

val test2016 #param runtime∗ val test2016 #param runtime∗

Vaswani et al. 2017 39.63 38.35 9.5 M 84 min 31.07 30.29 9.4 M 93 min
Sundararaman et al. 2019 40.03 38.32 13.9 M 514 min 32.55 32.71 13.6 M 504 min
Clinchant et al. 2019

(bert freeze)
40.07 39.73 9.1 M 99 min 33.83 33.15 9.0 M 104 min

Aspect Augmented
+M30k asp. vectors

40.47 40.19 10.1 M 104 min 34.45 34.42 9.9 M 108 min

Aspect Augmented
+WMT asp. vectors

38.72 41.53 10.1 M 102 min 34.73 34.28 9.9 M 118 min

b) IWSLT† dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015 #param runtime∗

Vaswani et al. 2017 27.69 27.93 31.88 28.15 29.59 25.66 26.76 18.4 M 172 min
Sundararaman et al. 2019 29.53 29.67 33.11 29.42 30.89 27.09 27.78 28.9 M 1418 min
Clinchant et al. 2019

(bert freeze)
30.31 30.00 34.20 30.04 31.26 27.50 27.88 18.0 M 212 min

Aspect Augmented
+IWSLT asp. vectors

29.03 29.17 33.42 29.58 30.63 26.86 27.83 18.9 M 214 min

Aspect Augmented
+WMT asp. vectors

31.22 30.82 34.79 30.29 32.34 27.71 28.40 18.9 M 211 min

c) WMT† wmt val nt2014 nt2015 nt2016 nt2017 nt2018 nt2019 #param runtime∗

Vaswani et al. 2017 28.96 26.91 26.93 31.42 28.07 33.56 29.77 68.7 M 35 h
Sundararaman et al. 2019 28.56 27.80 26.93 30.44 28.63 33.87 30.48 93.8 M 258 h
Clinchant et al. 2019

(bert freeze)
28.63 27.54 27.15 31.69 28.30 33.89 31.48 69.1 M 33 h

Aspect Augmented
+WMT asp. vectors

28.98 28.05 27.58 32.29 29.07 34.74 31.48 70.3 M 46 h

Table 4: Evaluated cased BLEU score (calculated using mteval-v14.pl script) results on M30k, IWSLT, and
WMT datasets. #param represents the number of trainable parameters (size of BERT model parameters [110.5M]
has not been added to the model size for the aspect augmented and bert-freeze models since BERT is not trained in
these settings). runtime is the total time the training script has ran and includes time taken for reading the data
and training the model from scratch (iterating over the instances for all the epochs).
All the baseline results are achieved using our re-implementation of the mentioned papers.
∗ We have used a single GeForce GTX 1080 GPU for M30k experiments and a single Titan RTX GPU for IWSLT
and WMT experiments.
† Each experiment was repeated three times, and we report the average in this table.

5 Conclusion and Future Work
In this paper, we proposed a simple method of ex-
tracting linguistic information from BERT contex-
tual embeddings and integrating them into neural
machine translation framework. We showed that
the linguistic aspect vectors provide the translation
models with out-of-domain knowledge which not
only improves the translation quality but also helps
the model to better deal with out-of-vocabulary
words. In the future, we would like to reconsider
the integration module as a multi-head attention
module, except that it will attend to different lin-
guistic aspects of the current sub-word or sub-word
tokens of a single word. Increasing the number
of linguistic aspects (especially the use of syntac-
tic dependencies and morphology) and studying

the effects of the aspect vector size on the qual-
ity of generated translations are other directions
of future research. We would also like to examine
the effectiveness of aspect vectors trained on large
out-of-domain data in low-resource settings and ex-
plore the effects of using linguistic aspect vectors
in tasks other than machine translation.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments. The research was
partially supported by the Natural Sciences and
Engineering Research Council of Canada grants
NSERC RGPIN-2018-06437 and RGPAS-2018-
522574 and a Department of National Defence
(DND) and NSERC grant DGDND-2018-00025.

2780

Source Ihm werde weiterhin vorgeworfen, unerlaubt geheime Informationen weitergegeben zu haben.
Reference He is still accused of passing on secret information without authorisation.

Vaswani et al. 2017 He has also been accused of having illegally passed on secret information.
Clinchant et al. 2019 He continues to be accused of fraudulently passing on secret information.

Sundararaman et al. 2019 He is also accused of having pass unauthorised secret information on.
Aspect Augmented NMT He is still accused of passing on illegal secret information.

Source Auto und Traktor krachen zusammen: Frau stirbt bei schrecklichem Unfall
Reference Car and tractor crash together: woman dies in terrible accident

Vaswani et al. 2017 Car and traktor cranes together: women die in the event of a terrible accident.
Clinchant et al. 2019 Cars and tractors are killing women in the event of a terrible accident.

Sundararaman et al. 2019 Auto and tractor are blowing together: woman dies when the terrible accident occurs.
Aspect Augmented NMT Car and tractor crash together: woman dies in terrible accidents.

Table 5: Examples of improved translation quality of WMT data where part-of-speech aspect vectors have helped
the model choose better words both syntactically and semantically.

Source Bucht die besten Hostels in Ouarzazate über Hostelsclub.
Reference Book the best hostels in Ouarzazate with Hostelsclub.

Vaswani et al. 2017 Book the best hostels in ouarzazazate with Hostelsclub.
Clinchant et al. 2019 Book the best hostels in Ouarzate with Hostelsclub.

Sundararaman et al. 2019 Book the best hostels in ouarzazazate with Hostelsclub.
Aspect Augmented NMT Book the best hostels in Ouarzazate with Hostelsclub.

Source Die Deutsche Bahn will im kommenden Jahr die Kinzigtal-Bahnstrecke verbessern.
Reference The Deutsche Bahn hopes to improve the Kinzigtal railway line in the coming year.

Vaswani et al. 2017 The German Railway wants to improve the Kinzig valley railway line next year.
Clinchant et al. 2019 Christian Deutsche Bahn intends to improve the Kinzig valley railway next year.

Sundararaman et al. 2019 The German Railway wants to improve the kinziggia railway line next year.
Aspect Augmented NMT Deutsche Bahn wants to improve the Kinzig valley railway in the coming year.

Table 6: Examples of improved translation quality of WMT data where word-shape and sub-word position aspect
vectors have helped the model choose a better sequence of sub-words when it faces out-of-vocabulary tokens.

a) M30k† German to English German to French
val test2016 val test2016

Vaswani et al. 2017 37.20 36.56 53.22 52.58
Sundararaman et al. 2019 38.14 37.13 54.18 54.37
Clinchant et al. 2019

(bert freeze) 38.44 37.42 55.10 54.50

Aspect Augmented
+M30k asp. vectors 39.22 38.17 56.21 56.40

Aspect Augmented
+WMT asp. vectors 38.90 38.57 56.12 55.98

b) IWSLT† dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015
Vaswani et al. 2017 31.82 31.99 34.57 32.65 32.49 30.65 31.13
Sundararaman et al. 2019 32.91 32.95 35.35 33.10 33.17 31.32 31.90
Clinchant et al. 2019

(bert freeze) 33.34 32.78 35.42 33.12 33.20 31.22 31.45

Aspect Augmented
+IWSLT asp. vectors 32.86 32.86 35.38 33.43 33.23 31.37 31.87

Aspect Augmented
+WMT asp. vectors 33.78 33.56 36.14 33.51 33.98 31.86 32.37

c) WMT† wmt val nt2014 nt2015 nt2016 nt2017 nt2018 nt2019
Vaswani et al. 2017 30.65 33.80 33.70 37.10 34.44 37.81 36.05
Sundararaman et al. 2019 29.23 31.57 31.61 34.05 31.87 35.18 33.60
Clinchant et al. 2019

(bert freeze) 30.39 33.46 33.20 36.13 33.73 37.24 35.68

Aspect Augmented
+WMT asp. vectors 30.61 33.97 33.99 37.01 34.71 38.17 36.48

Table 7: Evaluated METEOR score (calculated using the tool provided by Alon Lavie (https://www.cs.cmu.edu/
∼alavie/METEOR/; version 1.5)) results on M30k, IWSLT, and WMT datasets.
† Each experiment was repeated three times, and we report the average in this table.

https://www.cs.cmu.edu/~alavie/METEOR/download/meteor-1.5.tar.gz
https://www.cs.cmu.edu/~alavie/METEOR/download/meteor-1.5.tar.gz

2781

References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Confer-
ence of the European Association for Machine Trans-
lation (EAMT), pages 261–268, Trento, Italy.

Ying-Hong Chan and Yao-Chung Fan. 2019. BERT
for question generation. In Proceedings of the 12th
International Conference on Natural Language Gen-
eration, pages 173–177, Tokyo, Japan. Association
for Computational Linguistics.

Stephane Clinchant, Kweon Woo Jung, and Vassilina
Nikoulina. 2019. On the use of BERT for neu-
ral machine translation. In Proceedings of the 3rd
Workshop on Neural Generation and Translation,
pages 108–117, Hong Kong. Association for Com-
putational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual corpora.
Computational Linguistics, 19(1):75–102.

Mercedes Garcı́a-Martı́nez, Loı̈c Barrault, and Fethi
Bougares. 2016. Factored neural machine transla-
tion architectures. In HAL archives ouvertes.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Yoav Goldberg. 2019. Assessing bert’s syntactic abil-
ities. Computation and Language Research Reposi-
tory, arXiv:1901.05287. Version 1.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Kenji Imamura and Eiichiro Sumita. 2019. Recycling a
pre-trained BERT encoder for neural machine trans-
lation. In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 23–31, Hong
Kong. Association for Computational Linguistics.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507, Geneva,
Switzerland. COLING.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
pages 14014–14024.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163, Valencia,
Spain. Association for Computational Linguistics.

Alexander Rush. 2018. The annotated transformer.
In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 52–60, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149–5152. IEEE.

https://cris.fbk.eu/retrieve/handle/11582/104409/4358/WIT3-EAMT2012.pdf
https://cris.fbk.eu/retrieve/handle/11582/104409/4358/WIT3-EAMT2012.pdf
https://doi.org/10.18653/v1/W19-8624
https://doi.org/10.18653/v1/W19-8624
https://doi.org/10.18653/v1/D19-5611
https://doi.org/10.18653/v1/D19-5611
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/J93-1004
https://www.aclweb.org/anthology/J93-1004
https://hal.archives-ouvertes.fr/hal-01433161/document
https://hal.archives-ouvertes.fr/hal-01433161/document
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://www.cs.toronto.edu/~hinton/absps/distillation.pdf
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P18-1132
https://doi.org/10.18653/v1/P18-1132
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://papers.nips.cc/paper/9551-are-sixteen-heads-really-better-than-one.pdf
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://doi.org/10.18653/v1/W18-2509
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37842.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37842.pdf

2782

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation: Volume 1, Research Papers, pages 83–
91, Berlin, Germany. Association for Computational
Linguistics.

George Smith et al. 2003. A brief introduction to the
tiger treebank, version 1. Potsdam Universität.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-
infused transformer and bert models for machine
translation and natural language understanding.
Computation and Language Research Repository,
arXiv:1911.06156. Version 1.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW),
pages 1–5. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Rongxiang Weng, Heng Yu, Shujian Huang, Shanbo
Cheng, and Weihua Luo. 2019. Acquiring knowl-
edge from pre-trained model to neural machine
translation. AAAI.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. Computation and Language Research Reposi-
tory, arXiv:1910.03771. Version 1.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. Computation and Lan-
guage Research Repository, arXiv:1609.08144. Ver-
sion 2.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Towards making the most of bert in neural machine
translation. AAAI.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557–1566, Berlin,
Germany. Association for Computational Linguis-
tics.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020. Incorporating bert into neural machine trans-
lation. ICLR 2020.

A Appendices

A.1 Implementation Details
In this section, we provide implementation details
that could not be placed in the main write-up due
to space limitations, but we believe are quite help-
ful for replication of our work. We divide this
section into two parts, one focused on linguistic
aspect vector extraction (Section 4.2) and the other
on linguistic aspect integrated machine translation
(Section 4.4).

A.1.1 Linguistic Aspect Vector Extraction
Implementation Details

The pre-trained spaCy tagger that we used in our
experiments is trained on the word-level while the
pre-trained BERT operates on sub-word level23.
The two sequences need to be aligned, so we can
assign aspect attributes to BERT sub-word tokens.
Inspired by Gale and Church (1993), we align the
two sequences using a heuristic divide-and-conquer
monotonic alignment technique which finds the
parts of the two sequences that are certainly equal
and aligns the parts in between using recursive calls
to itself24.

Next, we explain how we implement the aspect
extractors. We implement our aspect extractors
using PyTorch framework and initialize them us-
ing Xavier initialization (Glorot and Bengio, 2010).
We perform backpropagation using SGD (initial
learning rate of 0.05, momentum value of 0.9, gra-
dient clip norm of 5.0). To cope with inequality
in the frequency of the different tags in each as-
pect tag set (ta, see §3.1), we practice weighted

23The alignment is non-trivial e.g. “hadn’t” is tokenized
to “hadn” and “’t” by spaCy and to “had” and “n’t” by
BERT, causing many-to-many alignments.

24https://github.com/sfu-natlang/SFUTranslate/translate/
readers/sequence alignment.py

https://doi.org/10.18653/v1/W16-2209
https://doi.org/10.18653/v1/W16-2209
https://www.ims.uni-stuttgart.de/documents/ressourcen/korpora/tiger-corpus/annotation/tiger_introduction.pdf
https://www.ims.uni-stuttgart.de/documents/ressourcen/korpora/tiger-corpus/annotation/tiger_introduction.pdf
http://arxiv.org/abs/1911.06156
http://arxiv.org/abs/1911.06156
http://arxiv.org/abs/1911.06156
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://ieeexplore.ieee.org/document/7133169
https://ieeexplore.ieee.org/document/7133169
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://aaai.org/Papers/AAAI/2020GB/AAAI-WengR.7823.pdf
https://aaai.org/Papers/AAAI/2020GB/AAAI-WengR.7823.pdf
https://aaai.org/Papers/AAAI/2020GB/AAAI-WengR.7823.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://aaai.org/Papers/AAAI/2020GB/AAAI-YangJ.7695.pdf
https://aaai.org/Papers/AAAI/2020GB/AAAI-YangJ.7695.pdf
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
https://openreview.net/pdf?id=Hyl7ygStwB
https://openreview.net/pdf?id=Hyl7ygStwB
https://github.com/sfu-natlang/SFUTranslate/blob/master/translate/readers/sequence_alignment.py#L51
https://github.com/sfu-natlang/SFUTranslate/blob/master/translate/readers/sequence_alignment.py#L51

2783

Dataset WMT IWSLT M30k
N 6 6 4
dmodel 512 256 256
dff 2048 512 512
h 8 4 4
opt factor 1 2 1
opt warmup 4000 8000 2000
grad accumulation 8 2 1
batch size∗ 4096 4096 2560
epochs 7 20 20

Table 8: The transformer model settings for each
dataset given the training data size. “N” is the num-
ber of layers in both encoder and decoder. Please see
§2 for more information about model parameters.
∗The maximum number of sub-word tokens per batch.

backpropagation with weights proportional to the
inverse frequency of each tag. We decay learning
rate with a factor of 0.9 when the loss value stops
improving.

A.1.2 Linguistic Aspect Integrated Machine
Translation Implementation Details

We implement our baseline transformer model us-
ing the guidelines suggested by Rush (2018) in our
translation toolkit SFUTranslate and extend it for
implementing the aspect-augmented model as well
as the syntax-infused transformer and transformer
with bert-freeze input setting. Table 8 provides the
configuration settings for each of the models used
in our experiments.

We use the pre-trained WordPiece25 (Schus-
ter and Nakajima, 2012) tokenizer packaged and
shipped with BERT (containing 31,102 sub-word
tokens for German language) to tokenize the source
side data, and tokenize the target side data with
MosesTokenizer26 followed by the same Word-
Piece tokenizer model, trained on target data, to
split the target tokens into sub-tokens. We set the
target side WordPiece vocabulary size to 30,000
sub-words for English and French. Our mod-
els share the vocabulary and embedding mod-
ules of both source and target (Press and Wolf,
2017) since both source and target are trained in
sub-word space. The shared vocabulary sizes of
M30k (German to English), M30k (German to
French), IWSLT, and WMT are 16645, 16074,
40807, 47940, respectively.

We generate target sentences using beam search
with beam size 4 and length normalization factor

25https://github.com/huggingface/tokenizers
26https://github.com/alvations/sacremoses

(Wu et al., 2016) of 0.6. We merge the Word-
Piece tokens in the generated sentences (a post-
processing step to create words) and use Moses-
Detokenizer27 to detokenize the generated outputs.
We use Moses recaser28 to produce cased transla-
tion outputs. We use mteval-v14.pl script for
cased BLEU evaluation.

For all models, we set positional encoding max
length to 4096, dropout to 0.1, loss prediction
smoothing to 0.1, and initialize the models using
Xavier initialization (Glorot and Bengio, 2010). We
train all models using NoamOpt optimizer (Rush,
2018) and perform the gradient accumulation trick
(Ott et al., 2018) with one update per a number
of batches (Table 8; grad accumulation) to
simulate larger batch sizes on a single GPU.

A.2 Additional Analysis of Linguistic Aspect
Integrated Machine Translation Results

In this section, we analyze the results of our aspect
integrated translation experiments. We provide our
analysis in two parts, one for small and medium
sized datasets and the other for large ones.

For smaller datasets (containing a few hundred
thousand sentence pairs or less), the broader per-
spective of BERT knowledge is helpful in limiting
the search space for the model. So using our tech-
nique, the translation model receives more infor-
mation regarding the general use cases of (locally)
rare words. Linguistic aspect vectors also help the
model better understand less familiar (in compari-
son to what is frequent in its limited size training
data) syntactic structures in input sentences. This
is why we believe aspect vectors can be helpful in
low-resource settings.

Improving models with large amounts of data
(with several million sentence pairs) is a challeng-
ing task. The best practice in training neural trans-
lation models is to initialize the embedding module
with small random values and let the model search
through the parameter space to find the optimal
parameter settings. Extracted aspect vectors, as an
external source of monolingual knowledge on the
source side, are a more reasonable starting point
for large models than random initialization. Inte-
grating aspect vectors thus helps these models find
a better path towards the optimal point(s) and in-
creases the chances of the model ending up in a
more desirable point in search space.

27https://github.com/alvations/sacremoses
28https://github.com/moses-smt/mosesdecoder

https://github.com/huggingface/tokenizers
https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
https://github.com/moses-smt/mosesdecoder/tree/master/scripts/recaser

