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Abstract
Disentanglement of latent representations into
content and style spaces has been a commonly
employed method for unsupervised text style
transfer. These techniques aim to learn the dis-
entangled representations and tweak them to
modify the style of a sentence. In this paper,
we propose a counterfactual-based method to
modify the latent representation, by posing
a ‘what-if’ scenario. This simple and disci-
plined approach also enables a fine-grained
control on the transfer strength. We conduct
experiments with the proposed methodology
on multiple attribute transfer tasks like Senti-
ment, Formality and Excitement to support our
hypothesis.

1 Introduction

Counterfactual Reasoning (Bottou et al., 2013) is
leveraged in structured data analysis and econo-
metrics towards generation of alternatives and es-
timation of alternate scenarios. Counterfactuals
describe a causal situation of the form ‘If X would
have (not) occurred, Y would have (not) occurred’
(Molnar, 2019). In interpretable machine learning,
counterfactuals have been used to explain predic-
tions of individual instances across various types
of datasets and tasks (Neal et al., 2018; Martens
and Provost, 2014; Wachter et al., 2017). Laugel
et al.(2018) and Neal et al.(2018) use counterfac-
tuals towards generating training data. Counter-
factual reasoning also provides us with a unique
ability to generate explanations and make causal
analysis on the latent space. However, this tech-
nique has never been explored in natural language
generation tasks. Here, we plug-in the concept of
counterfactuals to the text-style transfer task, to
enable the manipulation of latent spaces towards
controlled transfer of style.

∗Work done while authors were at Adobe Research.

Existing works in text style transfer focus on
transferring a specific target attribute. Unsuper-
vised methods based on adversarial attacks (Fu
et al., 2018; she), back translation (Prabhumoye
et al., 2018), learning disentangled representa-
tions(John et al., 2019) have been popular in this
domain. Other techniques include deletion of style-
specific words and conditionally generate sentences
in the target style (Li et al., 2018; Sudhakar et al.,
2019). However, all of them fail to provide a con-
trol over the target style strength i.e. a clever ma-
nipulation of the latent space is non-trivial.

Recent works on controlled text generation in-
clude (Wang et al., 2019), which brings in a
transformer-based model that modifies the gradient
functions leading to controlled generation in the
output space. Jin et al.(2019) is an unsupervised ap-
proach integrated during end-to-end model training.
The drawback in all these efforts is the lack of a
prefixed logic towards controlling the latent space.
Our proposed method of counterfactuals fills in this
gap and provides a logical method to control the
latent spaces for enabling a smooth style transfer.

Our approach is based on the premise of disen-
tangled representation spaces inspired from John
et al.(2019). Separating out the style and content
representations introduce an opportunity to fine-
tune, resulting in the ability to control the output
sentences specific to style. We introduce a coun-
terfactual reasoning module for controlling la-
tent disentangled spaces for style transfer. Fig-
ure 1 shows an illustrative example for the variants
generated through our approach. To the best of
our knowledge, this is the first work leveraging
such a concept towards controlled text generation.
Through extensive quantitative and qualitative ex-
periments, across attributes and datasets, we con-
clude that the proposed approach is effective in
providing control over the style strength and also
shows that the best transfer performance is on par
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Figure 1: Example Counterfactuals showing the grad-
ual ‘control’ introduced in the text style transfer.

with the existing baseline style-transfer techniques.

2 Approach

Figure 2 illustrates our proposed approach, that
incorporates counterfactual reasoning to latent dis-
entangled representations for manipulating style
in text. It consists of (1) A Variational Autoen-
coder (VAE) model to learn the disentangled style
and content representations for different stylistic
attributes, (2) A Counterfactual Reasoning Module
to control the latent representations for generating
style variants.

Figure 2: Proposed approach with Counterfactual Rea-
soning Module for Style Transfer

2.1 Learning Disentangled Representations
We adopt the model described in (John et al., 2019)
for learning the disentangled content and style rep-
resentations. Here, a VAE with an encoder-decoder
is used to encode a sentence x into a latent distri-
bution H = qE(h|x), guided by the loss function:

JV AE(θE , θD) = JREC + λklKL[qE(h|x) ‖ p(h)]

where, θE and θD are the encoder and decoder pa-
rameters respectively. The first term encourages re-
construction, while the second term regularizes the
latent space to a prior distribution p(h) (N (0, 1)).
We experiment with some variations of this archi-
tecture, which are detailed in section 3.

Additionally, Multi-Task (Jmul(s), Jmul(c)) and
Adversarial losses (Jadv(s), Jadv(c)) are imposed on
the latent space h to disentangle the embeddings
into representing content c and style s, i.e., h =
[s; c], where [; ] denotes concatenation. These four
losses ensure that the style and content information
are present in, and only in their respective style(s)
and content(c) embeddings.

Once we have the disentangled representations,
our basic idea is to feed the generative model with
the same content and a different style embedding
to produce sentences of altering style. In (John
et al., 2019), the average style embeddings of the
target style is fed to the decoder. Intuitively, chang-
ing these style embeddings will produce different
variants of target style sentences, but a disciplined
approach to generate smooth style variants of the
sentence is missing. We propose the counterfactual
reasoning for this purpose.

2.2 Counterfactual Reasoning Module
Counterfactuals (CF) are used for gradually chang-
ing the style representation along the target-style
axis. A counterfactual explanation of an outcome
Y takes the form ‘if X had not occurred, Y would
not have occurred’. We leverage this notion here. A
Multi-layer Perceptron (MLP) classifier is trained
on the disentangled style latent representations
learnt by the VAE, such that every instance of style
embedding s, predicts a target style (T ) of a sen-
tence. Now, the aim is to find s′ such that it is close
to s in the latent space but leads to a different pre-
diction T ′, i.e. the target class. The CF generation
loss is given by,

Jcfactual=L(s′|s)=λ(ft(s
′)−pt)2+L1(s

′,s),

where t is the desired target style class for s′, pt is
the probability with which we want to predict this
target class (perfect transfer would mean pt = 1),
ft is the model prediction on class t and L1 is the
distance between s′ and s. The first term in the loss
guides towards finding an s′ that changes the model
prediction to the target class and use of the L1 dis-
tance ensures that minimum number of features are
changed in order to change the prediction. λ is the
weighting term. The resulting set of CFs are ob-
tained by optimizing (Wachter et al., 2017) the fol-
lowing equation:argmins′ maxλ L(s′|s), subject
to |ft(s′ − pt)| ≤ ε (tolerance parameter).

The CF generator is generalizable across differ-
ent stylistic attributes. To generate multiple vari-
ants for a target style, CFs are generated varying
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(a) Accuracy (b) Bleu-S (c) Cosine Similarity (CP)

Figure 3: Performance of the counterfactual model on multiple datasets. Style transfer accuracy (ACC) increases
and the content preservation (BLEU-S, CP) decreases with increasing transfer strength.

the probability of target specific generation (or con-
fidence), pt. This results in different sentence vari-
ants with a similar target style but varied degrees
for transfer strength. Finally, the disentangled rep-
resentations enable finer control over the style di-
mensions with no risk of content loss during the
counterfactual reasoning stage (as the content rep-
resentations are retained).

3 Experiments

3.1 Proposed models

The VAE model adapted from (John et al., 2019),
with RNN encoder-decoder blocks is R-VAE. We
experiment with a variation by replacing RNNs
with the transformer blocks (T-VAE). T-VAE-
CF uses counterfactuals for generating variants,
while models with -AVG use average style embed-
ding of the target style to enable transfer. For T-
VAE, we experimented with different loss combina-
tions.-1,-2,-3,-4 refers to the inclusion of Jmul(s),
Jmul(s) + Jadv(s), Jmul(s) + Jadv(s) + Jmul(c,
Jmul(s) + Jadv(s) + Jmul(c) + Jadv(c), respectively
along with JV AE in the overall loss function.

3.2 Baselines

We compare our best transfer models (with pt ≈ 1)
against standard unsupervised style-transfer ap-
proaches. CrossAligned (CA)(Fu et al., 2018)
aligns the hidden representations of original and
style transferred sentences. T-D and T-DRG (Sud-
hakar et al., 2019) models delete attribute related
words and conditionally generate words with the
target style through transformer architecture.

3.3 Implementation

The counterfactual module has a linear classifier
with a sigmoid activation, taking input dim. of

16 (s) and a output dim. 2 (style label). It is
trained with Adam optimizer and 0.001 learning
rate is used to minimize CCE loss. The trans-
fer strength in CF-module, pt, is varied from
0 to 1. Experiments with the following values
(0.2, 0.3, 0.5, 0.5, 0.8, 0.9, 0.95, 1.0) are reported.*

3.4 Datasets
We experiment with varied style attributes using 5
datasets. YELP is used for sentiment. Human gold
standard references of these datasets from (Sud-
hakar et al., 2019) are used for evaluation. GYAFC
dataset (Rao and Tetreault, 2018) is used for For-
mality and a new dataset GYAFC-excite with cus-
tom annotations for excitement is created†. POLIT-
ICAL (Voigt et al., 2018) and GENDER (Reddy and
Knight, 2016)(similar to (Prabhumoye et al., 2018))
are used for the respective styles. The train-dev-test
split as defined by original authors are used for all
experiments.

3.5 Evaluation criteria
Style transfer accuracy (ACC) is measured by
a dataset-specific Fasttext style classifier (Joulin
et al., 2017). The classifiers report a % accu-
racy of 93.6, 87.6, 82.5, 78.3, 93.5 on the Yelp,
GYAFC, GYAFC-Excite, Gender and Political
datasets. Content preservation is measured through
BLEU(Papineni et al., 2002) scores calculated
against the source sentences(BLEU-S) and human
references (BLEU-H), if available. We compute the
cosine similarity (CP) to measure the vector-space
similarity‡. Language fluency (PPL) is reported by

*Other implementation details, hyper-parameters, com-
pute setup, and training times are provided in the appendix

†We cannot share the GYAFC-excitement dataset due to
its license

‡Sentence embeddings for CP are calculated by concate-
nating the min, max, and mean of its word embeddings, ex-
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Attribute−→ Formality Sentiment Excitement
Direction−→ Formal−→ Informal Informal−→ Formal Positive−→ Negative Negative−→ Positive Less−→More More−→ Less

Source it is another way to
say that they don’t
like you

hell yeah for the first
answer that girl an-
swered for me

i always have a great
dish here to eat

the wine was very average
and the food was even less

it is a small enjoy-
able club

wonderful venue
for tiff

O
ur

A
pp
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h
(C

F
St
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ng

th
)

0.3 it is way to say it yeah girl answer that
question

i always have a great
dish here to eat

the wine was very average
and the food was even good

it ’s a good club wonderful venue

0.5 you don’t like it but it
is way

yeah you should answer
your question

i always have a bad dish
here to eat .

the wine was very average
and the food was even better

it ’s a great club great venue for
tiff

0.8 you can say it to you oh girl answer that ques-
tion

i always have n’t been a
though to go to order

the wine had very unique and
the food was excellent too

it ’s a great club good venue for
tiff

0.9 you don’t like it but it
is way

oh my answer is yes i always do n’t have
a reviews here to eat
something .

the wine was very reasonable
and the food was even perfect

it’s a great club in
vegas

nice venue

0.95 u can say it to u oh my answer is to an-
swer that question

i always have a bad dish
to eat here .

the wine had very authentic
and the food was also good

it’s a great club in
vegas

good venue

1.0 u can say u r a way oh my answer is to an-
swer that question

i do n’t always be hav-
ing a review to go here

the wine had very unique and
the food was excellent

absolutely loved
this club

good venue

Base Avg just say that way you
don’t know

answer the book for
him , because i love that
is what

i always do n’t get
home from a reviewer
here

the wine was top notch and
the food was even more

it is a small club
and a fantastic
museum

venue for wonder-
ful for the after
ballet

Table 1: Examples for Formality, Sentiment and Excitement with varying CF Strength using our framework.

MODEL SENTIMENT(YELP) FORMALITY EXCITEMENT

Acc↑ Bleu-S↑ Bleu-H↑ CP↑ PPL↑ Acc↑ Bleu-S↑ CP↑ PPL↑ Acc↑ Bleu-S↑ CP↑ PPL↑
CA 76.6 47.95 37.15 0.92 -19.97 55.27 24.83 0.90 -19.08 78.25 33.43 0.87 -10.68
T-D 85.7 71.03 54.08 0.96 -20.12 46.55 70.96 0.95 -24.95 83.85 69.04 0.94 -13.52
T-DRG 77.4 70.60 54.00 0.96 -21.08 41.23 68.12 0.95 -26.91 74.15 63.65 0.94 -15.68
R-VAE-AVG 88.4 34.00 31.10 0.91 -15.08 69.02 32.78 0.90 -15.18 71.3 41.22 0.90 -9.63
R-VAE-CF 77.5 34.74 31.35 0.91 -15.04 62.17 32.47 0.91 -16.98 53.75 42.27 0.90 -9.83
T-VAE-AVG 76.9 34.39 29.19 0.88 -21.25 61.79 35.41 0.88 -23.05 52.55 42.36 0.89 -15.33
T-VAE-CF 89.8 34.61 29.49 0.88 -22.58 74.64 21.72 0.85 -23.74 68.6 17.57 0.83 -14.60

Table 2: Style Transfer Accuracy. Values for best performing models are reported in -CF variants.[For YELP pt =:
(T-VAE-4-CF,0.9); For FORMALITY(T-VAE-1-CF,1.0); For EXCITEMENT(T-VAE-1-CF,1.0)]‡‡

MODEL GENDER POLITICAL

Acc Bleu-S CP PPL Acc Bleu-S CP PPL
T-D 50.6 82.50 0.97 -39.05 74.0 79.40 0.94 -46.74
R-VAE-AVG 52.65 50.42 0.92 -12.57 100.0 10.56 0.86 -26.65
T-VAE-AVG 58.75 37.48 0.87 -18.22 92.4 33.25 0.88 -30.91
T-VAE-CF 62.55 39.99 0.88 -18.53 73.20 43.90 0.90 -30.17

Table 3: Gender & Political [For GENDER, pt: (T-VAE-
2-CF,0.9) .For POLITICAL:(T-VAE-2-CF,1.0)]

the perplexity of trigram KL-smoothed language
model(Kneser and Ney, 1995), trained on the same
corpus.

4 Results and Analysis

Transfer Control. Figure 3 shows the perfor-
mance of CF variants across metrics for different
styles. The CF generated variants from T-VAE-CF
(solid lines) are compared against the reference val-
ues which take avg. embeddings (T-VAE-AVG) for
target style (dotted lines). To recollect, the higher
the CF transfer confidence (strength), the closer is
the generated variant to the target attribute. Thus,
the ideal performance is to have the highest accu-
racies for the highest CF confidence values (see
figure 3(a)). Note that CF strength = 1 alludes to
perfect transfer. This is difficult to achieve as CF
in the representation space may not be generated

cluding stopwords(Fu et al., 2018)

for such a strict target. Hence, the variants gener-
ated with near perfect transfer target (CF strength
= 0.8,0.9,0.95) show the best performance across
metrics. The low transfer accuracies for models
with low CF confidence establishes the ability of
the model to stay near the source when the tar-
get strength is low. All models implemented with
transfer control report improved performance w.r.t
BLEU scores establishing the utility of the alterna-
tives generator.

Table 2, 3 compares baselines with the proposed
models. Note that the evaluation metrics for text
style-transfer cannot be compared in isolation.
There is always a trade-off between content
preservation and transfer accuracy. Amongst
the baselines, we observe that T-D and T-DRG
report high content preservation with some loss in
accuracy, but these models only cater to generating
a single output sentence and there is no provision
to generate the variants. Note that in most style
dimensions, T-VAE based models show highest
performance in transfer accuracy with good
content preservation (CP), but, lower BLEU-S
score. The lower BLEU-S scores indicates the
ability of our model to generate variants that are
not mere repetition of the input samples. R-VAE

models show impressive perplexity values. For the
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political dataset, R-VAE baseline shows very high
transfer accuracy but takes a tremendous hit in
content preservation (BLEU), which is improved
with the use of counterfactuals. Examples in Table
1 illustrate the gradual changes introduced by
T-VAE-CF across different styles.

Human Evaluation: We conducted a crowd-
sourcing based experiment (through Amazon Me-
chanical Turk) to understand both - (A) How base-
lines compare to the generated text and (B) The
interpretation of control as seen by human annota-
tors. For the first experiment, the annotators were
presented with sentences generated by our model,
baselines and ground truth to evaluate and rank.
Specifically, they were asked to score each of the
output sentences on a Likert scale of range 1-5
across three aspects - transfer strength, content
preservation and fluency. The key takeaways high-
light that the sentences generated by our model are
at par in terms of grammar and fluency and are
better in terms of transfer control. As against text
generated by baselines, the text generated by our
proposed models is preferred by humans 70% of
times (inter-annotator agreement 0.42).

For the second experiment to evaluate the con-
trol, we presented the sentence variants generated
through different CFs (by varying pt) and asked the
annotators to rank them from best to worst based
on their transfer strength. On an average, 60% indi-
viduals could grade the gradual control as intended
by the model. If we bucket the sentences into low
(with pt < 0.4) and high groups (with pt > 0.7),
the annotators’ preference for bucketing the out-
put into the right confidence goes up to 73% on
average (68% for low, and 81% for high), hence,
confirming our hypothesis towards using CF for
controlled generation.

5 Conclusion

We introduce the use of counterfactual reasoning
towards controlling the latent disentangled repre-
sentations for text style transfer. Experiments not
only establish the superiority of the proposed mod-
els across standard metrics for a multitude of styles
but also illustrate the utility of the gradual con-
trol variable in this model. We further validate
the use for CF via a human evaluation establishing
improved text attribute transfer.
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Léon Bottou, Jonas Peters, Joaquin Quiñonero-
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A VAE Models - Further Details

RNN-based (R-VAE). We adopt the model de-
scribed in John et al.(2019) to disentangle the con-
tent and style representations with a recurrent neu-
ral network (RNN)-based VAE. The RNN encoder
with Bi-GRUs (Cho et al., 2014) learns the hid-
den representation qE(h|x) by reading the input
x = (x1, x2, ..., xn) sequentially. The RNN de-
coder, then decodes sequentially over time, pre-
dicting the probabilities of each token conditioned
on the previous tokens and the latent representa-
tion. The reconstruction loss, which is the key loss
for the generation objective, is the negative-log-
likelihood loss as follows:

JREC = Eh∼qE(h|x)[−
n∑
t=1

logP ],

where P = p(xt|h, x1, ..., xt−1)

The hidden space, h, is separated into 2 spaces
while disentangling the style (s) and content (c)
representations. Disentanglement is achieved using
well-defined auxilliary losses.
Transformer-based (T-VAE). Transformers
(Vaswani et al., 2017) have gained popularity for
text generation due to their robust architectures.
We introduce a transformer-based VAE inspired
from Wang et al.(2019). The transformer en-
coder has a multi-headed self-attention block fol-
lowed by a feed forward network (FFN). The de-
coder is similar to the encoder with an additional
encoder-decoder attention block. Given an input
sentence x = (x1, x2, ..., xn), the transformer en-
coder, Etrans learns a hidden word representation
(z1, z2, ..., zn). They are pooled to get a sentence
representation z, which is further encoded into a
probabilistic latent space qE(h|x). A sample from
this latent representation is given as an input to
the encoder-decoder attention block in the decoder.
The decoder reconstructs the input sentence x with
condition on h. We adopt the label smoothing reg-
ularization (Li et al., 2020) while training, for per-
formance improvement. The reconstruction loss

(JREC) is :

Eh∼qE(h|x)[−
|x|∑

((1−ε)
v∑
i=1

p̄ilog(pi)+

ε

v

v∑
i=1

log(pi))]

where, v is the vocabulary size, ε is the label
smoothing parameter, pi and p̄i are the predicted
and the ground truth probabilities over the vocabu-
lary at every time step for word-wise decoding.

Figure 4: Transformer-based: T-VAE

KL Annealing. We also use an Adam optimiser
and KL cost annealing technique (Bowman et al.,
2016) to train our model. KL cost annealing refers
to slow increase in the weight of the KL term (λkl)
in the loss function from 0 to 1. This aids the
training process as the model is warm-started to
minimize the reconstruction loss in the initial itera-
tions, followed by a gradual inclusion of KL loss
term in the subsequent iterations.

A.1 Loss Functions

Auxiliary loss functions are used to achieve the text
rewriting objectives. Note that the reconstruction
loss is the primary loss generation but this does not
take into consideration the style or the controlled
generation.

We use Multi-task and Adversarial losses on the
latent space h to disentangle the embeddings into
representing content c and style s (i.e., h = [s; c],
where [; ] denotes concatenation) separately.
Style-oriented losses. Multitask Loss ensures that
the style space s is discriminative for the style. We
train a style classifier on s jointly with the autoen-
coder loss.

Jmul(s)(θE ; θmul(s)) = −
∑

l∈labels
ts(l) log(ys(l))

https://proceedings.neurips.cc/paper/2019/file/8804f94e16ba5b680e239a554a08f7d2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8804f94e16ba5b680e239a554a08f7d2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8804f94e16ba5b680e239a554a08f7d2-Paper.pdf
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Dataset Style #train #dev #test Source

Yelp
Positive 270K 2000 500

https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/data/yelp
Negative 180K 2000 500

GYAFC
Formal 48K 2000 950

https://github.com/raosudha89/GYAFC-corpus
Informal 48K 2000 1250

GYAFC-excitement
Exciting 36K 1990 1000

NA
Non-Exciting 36K 1990 1000

Political
Democrat 270K 2000 28K

http://tts.speech.cs.cmu.edu/style models/political data/
Republican 270K 2000 28K

Gender
Male 1.34M 2250 267K http://tts.speech.cs.cmu.edu/style models/gender data/

Female 1.34M 2250 267K

Table 4: Datasets

where θmul(s) are the parameters for style multitask
classifier, ys is the style probability distribution
predicted by the classifier and ts is the ground truth
style distribution.
Adversarial loss for style is introduced to ensure
that the content space c is not-discriminative of
the style. An adversarial classifier is trained, that
deliberately discriminates the true style label using
the content vector c, with the following loss.

Jdis(s)(θdis(s)) = −
∑

l∈labels
ts(l)log(y

′
s(l))

where θdis(s) are the parameters for style adversary,
y
′
s is the style probability distribution predicted by

the classifier on the content space.The encoder is
then trained to learn a content vector space c, from
which its adversary cannot predict style informa-
tion. The objective is to maximize the cross entropy
H(p) = −

∑
i∈labels pilog(pi) with:

Jadv(s)(θE) = H(y
′
s|c; θdis(s))

Content-oriented losses. Multi-task loss aims to
ensure that all content information is in the con-
tent space c. We define the content information
using a bag-of-words (BoW) concept. Here, part-
of-speech tags , i.e. nouns are used. (Liu et al.,
2020; DBL) argue nouns in the text are considered
as attribute-independent content. This definition
allows a generic content loss for all style dimen-
sions as against the previous work where content
is defined as bag-of-words in a sentence, exclud-
ing stopwords and specific style (sentiment) related
lexicon. The content multitask loss is analogical to
style multitask loss as follows:

Jmul(c)(θE ; θmul(c)) = −
∑

w∈content
tc(w) log(yc(w))

Adversarial loss for content ensures that the style
space does not contain content information. A clas-
sifier (content adversary), is trained on the style

space to predict the content (BoW) features. Then
similar to style, encoder is trained to learn s, from
which this adversary cannot predict content infor-
mation.

Jdis(c)(θdis(c))=−
∑

w∈content
tc(w)log(yc

′(w))

Jadv(c)(θE)=H(yc
′|s;θdis(c)),

Training with these losses along with reconstruc-
tion loss ensures that the latent space is disentan-
gled, resulting in the final loss given by,

Jtotal = JV AE + λmul(s)Jmul(s) − λadv(s)
Jadv(s) + λmul(c)Jmul(c) − λadv(c)Jadv(c)

B Dataset details

The brief descriptions for datsets are as follows:
YELP: Reviews from Yelp. Each review is labeled
with a sentiment class - positive or negative. The
task is to change the label while rewriting.
GYAFC: Corpus created from a subset of Yahoo
Answers. Each sample is tagged either formal or
informal. The task is to switch the label.
GYAFC-Excitment: The task here is to convert
the sentences from ‘exciting’ to ‘non-exciting’. We
create a subset of the GYAFC data where annota-
tors (using Amazon Mechanical Turk), were asked
to tag the sentence to be either showing excitement
or not. Excitement follows the definition as given
by (Aaker, 1997). We follow annotation scheme
provided by Rao(2017).
POLITICAL: Comments from Facebook posts
from United States Senate and House members.
Each comment is labelled is with either Republican
or Democrat tag. Task is to interchange between
the two.
GENDER: Reviews from Yelp for food businesses.
Each review is labeled with either male or female
based on the author of the review. Task is to switch
between the two.

Table 4 refers to the number of sentences in train-
dev-test split available for each dataset. The URL

https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/data/yelp
https://github.com/raosudha89/GYAFC-corpus
http://tts.speech.cs.cmu.edu/style_models/political_data/
http://tts.speech.cs.cmu.edu/style_models/gender_data/
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link to the data files are also provided for each of
them.

C Implementation details

The dimensions of c and s are set to 128 and 16
respectively. The posterior probability distributions
(µ, σ) learnt for the respective content and style
also have the same dimensions. The learnt hidden
state representation is converted to 128 (c) and 16
(s) with a linear layer.

For R-VAE, hidden state dimension is set to 256.
For the T-VAE, the embedding size, latent layer
and the self-attention layers all are set to 256. The
inner dimension of FFN in the transformer is set to
1024. Each of the encoder and decoder is stacked
with two layers of transformer blocks. We used
the Adam optimizer for the VAE and the RMSProp
optimizer for the discriminators, following stability
tricks in adversarial training (Arjovsky and Bottou,
2017). Each optimizer has an initial learning rate
of 10−3. Models are trained for 50 epochs. Figure
4 illustrates the architecture of T-VAE.

Word embeddings initiated with word2vec
(Mikolov et al., 2013) are trained on respective
training sets. Both, the autoencoder and the dis-
criminators are trained once per mini batch with
λmul(s), λmul(c), λadv(s), and λadv(c) = 1. The la-
bel smoothing parameter in the transformer loss ε is
set to 0.1. The KL-Divergence penalty is weighted
by λkl(s) and λkl(c) on style and content, respec-
tively. During training, we also used the sigmoid
KL annealing schedule

The hyper-parameter weights in the loss function
λmul(s), λmul(c), λadv(s), and λadv(c) are chosen to
be 1, as the values were Observed to be converging
over iterations.

We implement our model based on Pytorch
0.4. We trained our models on a machine with
4 NVIDIA Tesla V100-SXM2-16GB GPUs. On
a single GPU, our transformer model with all the
losses (T-VAE-4) took approximately 0.4 s to train
for one step with a batch of size 128. It takes
around 10 hours to train our model on 1 GPU. Ta-
ble 5 depicts the runtime details for all the model
variations.

For our counterfactual generator model, we use
the counterfactual model from Alibi library in
Python§. On an average it takes 3 seconds to gener-
ate a counterfactual for a given input representation
and transfer strength (pt).

§Alibi Counterfactual Module

Dataset Model Batch Size #batches in 1 epoch Runtime for 1 epoch

Yelp
T-VAE-1 128 2375 247.32s
T-VAE-2 128 2375 373.75s
T-VAE-4 128 2375 1108.34s

Formality
T-VAE-1 32 3157 667.85s
T-VAE-2 32 3157 944.97s

Excitement
T-VAE-1 64 1200 580.61s
T-VAE-2 64 1200 602.99s

Gender
T-VAE-1 32 3156 333.58s
T-VAE-2 32 3156 492.12s

Political
T-VAE-1 128 4233 751.92s
T-VAE-2 128 4233 1050.30s

Table 5: Runtime details of model variations across dif-
ferent datasets

Dataset Model
Counterfactual Module

MLP Classifier
CCE Loss

(Validation)
Accuracy

(Validation)

Yelp
T-VAE-1 0.05 99.25
T-VAE-2 0.04 99.31
T-VAE-4 0.04 99.37

Formality
T-VAE-1 0.36 94.09
T-VAE-2 0.33 97.43

Excitement
T-VAE-1 0.34 96.73
T-VAE-2 0.22 96.87

Gender
T-VAE-1 0.11 96.17
T-VAE-2 0.12 96.56

Political
T-VAE-1 0.005 99.992
T-VAE-2 0.003 99.998

Table 6: Validation loss and accuracy for MLP classi-
fier in counterfactual

Further details of our model summary
and generated sentences are present here :
https://bit.ly/34DYHP5

https://docs.seldon.io/projects/alibi/en/stable/api/alibi.explainers.counterfactual.html
https://bit.ly/34DYHP5

