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Abstract

Prior work infers the causation between events
mainly based on the knowledge induced from
the annotated causal event pairs. However, ad-
ditional evidence information intermediate to
the cause and effect remains unexploited. By
incorporating such information, the logical law
behind the causality can be unveiled, and the
interpretability and stability of the causal rea-
soning system can be improved. To facilitate
this, we present an Event graph knowledge en-
hanced explainable CAusal Reasoning frame-
work (ExCAR). ExCAR first acquires addi-
tional evidence information from a large-scale
causal event graph as logical rules for causal
reasoning. To learn the conditional probabilis-
tic of logical rules, we propose the Conditional
Markov Neural Logic Network (CMNLN) that
combines the representation learning and struc-
ture learning of logical rules in an end-to-end
differentiable manner. Experimental results
demonstrate that ExCAR outperforms previ-
ous state-of-the-art methods. Adversarial eval-
uation shows the improved stability of Ex-
CAR over baseline systems. Human evaluation
shows that ExCAR can achieve a promising
explainable performance.

1 Introduction

Causal reasoning aims at understanding the gen-
eral causal dependency between the cause and ef-
fect (Luo et al., 2016). Causality is commonly ex-
pressed by humans in the text of natural language,
and is of great value for various Artificial Intelli-
gence applications, such as question answering (Oh
et al., 2013), event prediction (Li et al., 2018), and
decision making (Sun et al., 2018).

Previous work mainly learns causal knowledge
from manually annotated causal event pairs, and
achieves promising performances (Luo et al., 2016;
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Figure 1: (a) Without the evidence event i, we can hardly
reveal the implicit causation between a and b. (b) The
absent of evidence events may restrict the performance
of event-pair based methods. (c) Given an event pair,
the ExCAR framework obtains evidence events from
an event graph and conducts causal reasoning using the
additional evidence events. (d) The causal strength (cs)
of the same rule can vary with different antecedents. We
define such phenomenon as superimposed causal effect.

Xie and Mu, 2019a; Li et al., 2019). However, re-
cent works have questioned the seemingly superb
performance for some of these studies (McCoy
et al., 2019; Poliak et al., 2018; Gururangan et al.,
2018). Specifically, training data may contain ex-
ploitable superficial cues that are correlative of the
expected output. The main concern is that these
works have not learned the underlying mechanism
of causation so that their inference models are not
stable enough and their results are not explainable.

While we notice that there is plentiful evidence
information outside the given corpus that can pro-
vide more clues for understanding the logical law
of the causality. Figure 1 (a) exemplifies two clues
I1 : Excess Liquidity and I2: Invest Demand In-
crease for explaining how a: Quantitative Easing
gradually leads to b: House Price Increases.

Without these important evidence information,
on the other hand, as illustrated in Figure 1 (b),
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the causal relationship between 〈a, d〉 and between
〈c, b〉 could not be deducted from the known causa-
tion between 〈a, b〉 and between 〈c, d〉. In contrast,
with intermediate event I in hand, according to
the transitivity of causality (Hall, 2000), the logic
chain of 〈a ⇒ i ⇒ d〉 and 〈c ⇒ i ⇒ b〉 could
be naturally derived from the observed logic chain
〈a⇒ i⇒ b〉 and 〈c⇒ i⇒ d〉.

To fully exploit the potential of the evidence
information, we present an Event graph knowl-
edge enhanced explainable CAusal Reasoning
(ExCAR) framework. In particular, as illustrated
in Figure 1 (c), given an input event pair 〈C,E〉,
ExCAR firstly retrieves external evidence events
such as I1, I2 from a large-scale causal event graph
(CEG, a causal knowledge base constructed by us),
and defines the causation between C, I1, I2, E as
a set of logical rules (e.g., ri = (Ei ⇒ Ii)), which
rules are useful representations for the causal rea-
soning task because they are interpretable and can
provide insight to inference results.

Pearl (2001) pointed out that the underlying
logic of causality is a probabilistic logic. The ad-
vantage of using a probabilistic logic is that by
equipping logical rules with probability, one can
better model statistically complex and noisy data.
However, learning such probabilistic logical rules
in the causal reasoning scenario is quite difficult
—- it requires modeling the superimposed causal
effect for each logical rule. Different from first-
order logical rules induced from some knowledge
graphs, the probability of the logical rule (i.e. the
causal strength of the cause-effect pair) in causal
reasoning is uncertain, which varies with different
antecedents. For example, as shown in Figure 1 (d),
with the antecedent A: Catch a cold, a fever can
hardly lead to life danger. While if fever is caused
by the antecedent B: Septicemia, it can result in
life danger with a high probability.

To address this issue, we further propose
a Conditional Markov Neural Logic Network
(CMNLN) for learning the conditional causal de-
pendency of logical rules in an end-to-end fashion.
Specifically, CMNLN first decomposes the logical
rules set derived from the CEG into several distinct
logic chains and learns a distributed representation
for each logic chain in an embedding space. Subse-
quently, CMNLN estimates the conditional proba-
bility of each logical rule by an antecedent-aware
potential function. Then CMNLN computes the
probability of each logic chain by multiplying the

probabilities of logical rules in the chain. Finally,
CMNLN predicts the causality score of the input
event pair based on the disjunction of chain-level
causality information.

Experimental results show that our approach can
effectively utilize the event graph information to
improve the accuracy of causal reasoning by more
than 5%. Adversarial evaluation and human eval-
uation show that ExCAR can achieve stable and
explainable performance. The code is released at
https://github.com/sjcfr/ExCAR.

2 Background

2.1 Task Formalization

In this paper, both the COPA (Luo et al., 2016) and
the C-COPA causal reasoning task are defined as a
multiple-choice task. Specifically, as the following
example shows, given a premise event, one needs
to choose a more plausible cause (effect) from two
hypothesis events.
Example:

Premise: The company lost money.

Ask-for: Cause

Hypothesis 1: Its products received favorable comments.

Hypothesis 2: Some of its products were defective.

Therefore, the causal reasoning task could be
formalized as a prediction problem: given a cause-
effect event pair 〈C,E〉 composed by the premise
event and one of the hypothesis events, the predic-
tion model is required to predict a score measuring
the causality of the event pair.

2.2 Causal Event Graph

CEG is a large-scale causal knowledge base con-
structed by us, from which we can retrieve a set of
additional evidences for a given cause-effect event
pair 〈C,E〉. Formally, CEG is a directed acyclic
graph and can be denoted as G = {V,R}, where
V is the node set, R is the edge set. Each node
Vi ∈ V corresponds to an event, while each edge
Rij ∈ R denotes that there is a causal relationship
between the ith event and jth event.

2.3 Rule-based Reasoning Using Markov
Logic Network

In this paper, to enhance the explainability and sta-
bility of causal reasoning, we cast the causal reason-
ing problem as a rule based reasoning task. Specif-
ically, given an input causal event pair 〈C,E〉, we
retrieve a set of evidence events from the CEG. The
evidence events together withC andE further form
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Figure 2: Illustration of the ExCAR framework and the architecture of CMNLN.

into a set of causal logical rules, where a rule de-
scribes the causal relationship between two events.
Formally, a rule ri = (ei1 ⇒ ei2), where⇒ is a
logical connective indicating the causal relation-
ship between two events ei1 and ei2 . With regard
to these causal logical rules, the causal mechanism
can be revealed and the causal reasoning can be
conducted in an explainable way.

However, the underlying logic is a probabilis-
tic logic. Markov Logic Network (MLN) (Pearl,
1988) can model such uncertainty by assigning
each causal rule a causal strength, which mea-
sures the probability that this rule holds true. Let
P (ri) denote the causal strength of rule ri. MLN
estimates P (ri) using a potential function φ(ri).
Thereafter, the causality score Y is predicted by
simply multiplying the causal strength of obtained
rules:

P (Y ) =
1

Z

∏
i

P (ri) =
1

Z

∏
i

φ(ri), (1)

where 1
Z is a normalization constant.

However, there still remains two challenges for
rule-based causal reasoning using MLN: 1) MLN
defines potential functions as linear combinations
of some hand-crafted features; 2) MLN cannot
model the influence of antecedents of rules. Differ-
ent from MLN, in this paper, we propose a Condi-
tional Markov Neural Logic Network, which works
on the embedding space of logic rules to model the
conditional causal strength of rules.

3 Method

As shown in Figure 2, ExCAR consists of two
components. Given an event pair 〈C,E〉, ExCAR
employs an evidence retrieval module to retrieves
evidence events from a prebuilt causal event graph
to generate a set of logical rules. Then ExCAR con-
ducts causal reasoning based on the logical rules us-
ing a Conditional Markov Neural Logic Network.

3.1 Evidence Events Retrieval

Given an event pair 〈C,E〉 outside the causal event
graph, to obtain the evidences from the CEG, we
first locate the cause and effect in the CEG. Intu-
itively, semantically similar events would have sim-
ilar causes and effects, and share similar locations
in the CEG. To this end, we employ a pretrained
language model ELMo (Peters et al., 2018) to de-
rive the semantic representation for events in the
CEG, as well as the cause and effect event. Then
events in the CEG which are semantically similar to
the input cause and effect event can be found using
cosine similarity of the semantic representations.
These events can serve as anchors for locating the
cause and effect event. Then as Figure 2 shows,
taking the anchors of the cause event as start points,
and taking the anchors of the effect event as end
points, the evidence events can be retrieved by a
Breadth First Search (BFS) algorithm.

After the retrieving process, the cause, effect and
evidence events constitute a causal logical graph
(CLG) G∗ = {V ∗, R∗}, where V ∗ and R∗ is the
node set and edge set, respectively. Each node ei
within V ∗ is an event, each edge rj within R∗ de-
scribes the causal relationship between two events.
TakingG∗ as the input, the following causal reason-
ing process is equipped with a set of logical rules
for revealing the behind causal mechanism.

3.2 Conditional Markov Neural Logic
Network

3.2.1 Overview
Given the CLG, we can derive a set of causal
logical rules for supporting the causal reasoning
process. However, as Figure 1 (d) shows, the
causal strength of a rule may vary with different
antecedents, where the antecedent can be an event,
a simple rule or a complex of single rules. For
clarity, we denote the antecedent of a rule ri as
ANTEi. Influenced by a certain antecedent, the
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causal strength of a rule can be described by a con-
ditional probability P (ri|ANTEi).

As shown in Figure 2, a single rule derived from
the CLG can have multiple antecedents, and each
of these antecedents can have its own influence
on the causal strength of the rule. To address
this issue by exploiting the effectiveness of neural
models in representation learning, we propose the
CMNLN that works on the embeddings of logical
rules. To model the superimposed causal effect of
rules, CMNLN regards the CLG as a composition
of distinct causal logic chains {ρ1, · · · , ρm}, and
predicts causality score through combining infor-
mation of each causal logic chain. Hence, within
each causal logic chain, we can estimate a chain-
specific causal strength for each rule rjk ∈ ρ

j , us-
ing an antecedent-aware potential function. Then
CMNLN aggregates the intra-chain causation in-
formation and inter-chain causation information to
derive the causality score.

3.2.2 Logic Chain Generation
For supporting the following reasoning process, we
first explore the CLG to generate all possible causal
logic chains {ρ1, · · · , ρm}. As shown in Figure 2,
ρj = {rj1∧, · · · ,∧r

j
lj
} describes a serial of transitive

causal logical rules starting from the cause event C
and ending at the effect event E.

Considering that each rule rjk ∈ ρj is com-
posed by two events ejk−1 and ejk , a causal logic
chain ρj with lj rules contains totally lj + 1 events
{ej0, · · · , e

j
lj
} , where ej0 and ejlj are the cause event

C and the effect event E, respectively. Taking C
and E as the start and end point respectively, we
can enumerate all distinct causal logic chains in the
CLG using a Depth First Searching algorithm.

3.2.3 Event Encoding
A BERT-based encoder (Devlin et al., 2019) is em-
ployed to encode all events within each causal logic
chain into chain-specific distributed embeddings.

Specifically, for a causal logic chain ρj con-
taining lj+1 events {ej0, · · · , ejlj}, we first pro-
cess the event sequence into the form of:
[CLS] ej

0 · · · [CLS] ej
k · · · [CLS] ej

lj
.

After that, the processed event sequence is fed
into BERT. We define the final hidden state of the
[CLS] token before each event as the representa-
tion of the corresponding event. In this way, we
obtain an event embedding set H = {hj

0, · · · ,h
j
lj
},

where hj
k ∈ Rdis the embedding of the kth event

within the causal logic chain ρj . Note that, hj
0 is

the representation of the cause event C, and hj
lj

is
the representation of the effect event E.

3.2.4 Chain-specific Conditional Causal
Strength Estimation

Given one of the causal logic chains ρj =

(rj1∧, · · · ,∧r
j
lj
) and corresponding event represen-

tations H = {hj
0, · · · ,h

j
lj
}, CMNLN estimates the

chain-specific causal strength for each rule using
an antecedent-aware potential function.

For a rule rjk ∈ ρj , we define the chain-wise
antecedent of rjk as (rj1∧r

j
2∧, · · · ,∧r

j
k−1) , and denote

it as ANTEjk. Therefore, with regard to ANTEjk, we
can derive the chain-specific causal strength using
an antecedent-aware potential function as:

P (rjk|ANTE
j
k) = φa(rjk,ANTE

j
k). (2)

Considering that each logical rule rjkis composed
of two events ejk−1and ejk, the input of φa(·) is the
distributed representation of ANTEj

k, and the embed-
ding of ejk−1and ejk. We denote the representation
of ANTEj

kas sjk, and describe the specific process for
deriving sjk in the following section.

Given sjk, hj
k−1 and hj

k, to model the influence
of ANTEj

k, we first derive antecedent-aware repre-
sentations of ejk−1 and ejk using an MLP:

h′jk−1 =tanh(Wc[s
j
k||h

j
k−1] + bc), (3)

h′jk =tanh(We[s
j
k||h

j
k] + bc), (4)

where ·||· is the concatenate operation, and Wc,

We ∈ Rd×2d are two different weight matrix model-
ing the influence of sjk on ejk−1 and ejk, respectively.

Then based on the antecedent-aware event rep-
resentations h′jk−1 and h′jk, we calculate the condi-
tional causal strength of rjk as:

φa(rjk,ANTE
j
k) = σ(h′jk−1Wcsh′jk), (5)

where Wcs ∈ Rd×d are trainable parameters, and σ
is a sigmoid function.

Antecedent Representation Along with the es-
timation of conditional causal strength, the repre-
sentation of antecedents are also recursively up-
dated. Specifically, at the first reasoning step, we
initialize sj0 with hj

0. At the kth reasoning step, sjk
is obtained based on sjk−1, the conditional causal
strength P (rjk|ANTE

j
k), and the embedding of events

within rjk :

sjk = tanh(P (rjk|ANTE
j
k)Wu[h

j
k−1||h

j
k]) + sjk−1, (6)

where Wu ∈ Rd×2d is a parameter matrix.
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3.2.5 Intra-Chain Information Aggregation
We aggregate the intra-chain causality information
to derive a distributed representation and a chain-
level causal strength for each causal logic chain.

We notice that, in the conditional causal strength
estimation process, at the lj th reasoning step,
ANTEjlj+1 actually includes all the rules within ρj .
Hence, we utilize the representation of ANTEj

lj+1 as
the representation of ρj , which we denote as sj .

Given the chain-specific conditional causal
strength for each rule within ρj , we can calculate
a chain-level causal strength csj for ρj by multi-
plying the conditional causal strength of the rules:

csj =

lj∏
k=1

P (rjk|ANTE
j
k) =

lj∏
k=1

φa(r
j
k,ANTE

j
k). (7)

Then we normalize the chain-level causal
strengths as:

ĉsj = softmaxj(cs
j). (8)

3.2.6 Aggregating Chain-level Information
for Predicting Causality Score

Finally, we obtain the disjunction of chain-level
causality information to predict the causality score
Y . Intuitively, a causal logic chain with higher
causal strength should have a stronger influence on
Y . Therefore, we aggregate the chain-level infor-
mation through calculating a linear combination of
logic chain representations {s1 · · · , sm} using the
normalized causal strengths {ĉs1, · · · , ĉsm}:

u = Σj ĉs
j · sj (9)

where u ∈ R1×d is a final state carrying informa-
tion from the disjunction of {ρ1, · · · , ρm}.

The causality score Y is predicted based on u:

Y = softmax(Wyu + by), (10)

where Wy and by are trainable parameters.

3.3 Training

In the training process, we introduce a causal logic
driven negative sampling to improve the reliabil-
ity of conditional causal strength estimation. In
particular, if there exists a rule ri = (ei1 ⇒ ei2)
within the CLG, due to the unidirectionality of
causality, we can derive a corresponding false rule
rF = (ei2 ⇒ ei1). From the CLG, we can also gen-
erate a wrong antecedent for the false rule through
random sampling. Hence, ideally, the conditional
causal strength of these false rules should equal
0. In addition, we also combine the unidirection-

ality of causality with the transitivity of causality
to generate false rules with more complex patterns
(e.g.: if e1 ⇒ e2 ⇒ e3, then we can induce a
rF = (e3 ⇒ e1)). By sampling false rules and
training the potential functions of these false rules
φa(rF ,ANTEF ) to be zero, the reliability of condi-
tional causal strength estimation can be enhanced.

With regard to the causal logic driven negative
sampling process, the loss function of CMNLN is
defined as:

L = LCausality Score + λLConditional CS, (11)

where both LCausality Score and LConditional CS are
cross entropy loss, measuring the difference be-
tween the predicted and ground truth causality
score, and between the predicted and the ideal con-
ditional causal strength, respectively; λ is a balance
coefficient.

4 Experiments

4.1 Construction of C-COPA Dataset
To evaluate the robustness of the ExCAR frame-
work, we build an additional Chinese common-
sense causal reasoning dataset C-COPA.

The C-COPA dataset is built upon a large-scale
web news corpus SogouCS (Wang et al., 2008) by
human annotation. We start the annotation process
from manually extracting causal event pairs from
raw texts within the corpus. Given a causal event
pair, we first randomly generate an ask-for indica-
tor, where ask-for ∈ [“effect”, “cause”]. Then the
ask-for indicator are used to decide whether the
cause or effect event to be the premise or plausible
hypothesis. Given the premise, an implausible ef-
fect (cause) events is generated by a human annota-
tor. As a result, the same as the COPA dataset, each
instance within the C-COPA consists a premise
event p, a plausible and an implausible hypothesis
event h+ and h−, and an ask-for indicator a.

Three Chinese volunteers are enlisted for validat-
ing the dataset. Agreement between volunteers is
high (Cohen’s K = 0.923). Instances with diverged
results between volunteers are removed from the
dataset. After the annotation process, a total of
3,258 instances are left and we randomly split these
instances into two equal-sized parts as the develop-
ment set and the test set, respectively.

4.2 Construction of Causal Event Graph
Before constructing the CEG, we have to collect
a sufficient number of causal event pairs. To this



2359

end, we harvest English causal event pairs from
the CausalBank Corpus (Li et al., 2020), which
contains 314 million commonsense causal event
pairs in total. While the Chinese causal event pairs
are collected from a raw web text corpus crawled
from multiple websites date from 2018 to 2019,
and filtered with keywords. More details could be
found in the Appendix.

Then an English and a Chinese CEG are build
based on the corresponding causal event pair cor-
pus. To balance the computation burden and cov-
erage of the event graph, we build the English and
the Chinese CEG based on 1,500,000 Chinese and
1,5000,000 English causal event pairs randomly
sampled from the whole corpus, respectively.

4.3 Experimental Settings
Given a cause or effect event, we find three most
textually similar events from the causal event graph,
and employ them as the anchors. In the evidence re-
trieving process, we limit the maximum searching
depth of BFS to 3, and restrict the size of evidence
event set to be no more than 8. We employ the
pre-trained BERT-base model as the event encoder,
which encodes each input event to a 768-dimension
vector. On both datasets, for each instance, 5 nega-
tive rules are sampled to facilitate the estimation of
conditional causal strength. Model is trained with
the balance coefficient λ of 0.1.

4.4 Baselines
Statistical-based Methods
These methods estimate words or phrase level
causality from large-scale corpora. Then the causal-
ity of an input event pair could be obtained through
synthesizing the word or phrase level causality.
• PMI (Jabeen et al., 2014) measures the word-

level causality using Point Mutual Information.
• PMI EX (Gordon et al., 2011) is an asymmet-

ric word-level PMI which takes the directionality
of causal inference into consideration.
• CS (Luo et al., 2016) measures word-level

causality through integrating both the necessity
causality and sufficiency causality.
• CS MWP (Sasaki et al., 2017) measures the

causality between words and prepositional phrases
using the CS score.

Pre-trained-model-based Methods
• BERT Wang et al. [2019a] and Li et al. [2019]

finetune BERTbase with different hyper parameters
to predict the causality of each 〈C,E〉 pair.

ExCAR-based Methods

Methods COPA C-COPA
PMI (Jabeen et al., 2014) 58.8 56.2
PMI EX (Gordon et al., 2011) 65.4 62.3
CS (Luo et al., 2016) 70.2 68.9
CS MWP (Sasaki et al., 2017) 71.2 -
BERT (Wang et al., 2019a) 70.4 72.8
BERT (Li et al., 2019) 73.4 74.5
ExCAR (with CMNLN) 78.8 81.5
-w/ MLN 76.3 78.0
-w/ fixed-cs 75.0 76.9
-concat 75.4 77.1

Table 1: Accuracy (%) of causal reasoning on the test
set of COPA and C-COPA.

We replace the CMNLN layer of ExCAR frame-
work with different reasoning modules and get:
• ExCAR-w/ MLN refers to substitute the

CMNLN layer by a classical Markov Logic Net-
work layer.
• ExCAR-w/ fix-cs arbitrarily assign a fixed

causal strength 0.5 for each logical rule.
• ExCAR-concat flattens the causal logical graph

into a single event sequence and takes the event
sequence as input.

4.5 Quantitative Analysis

We list the results on both the COPA dataset and
C-COPA dataset in Table 1. We find that:

(1) Statistical-based methods, such as CS (Luo
et al., 2016) and CS MWP (Sasaki et al., 2017)
achieve comparable performances with BERT-
based methods, this is mainly because they har-
vest causal knowledge with elaborate patterns from
large-scale corpus sized up to 10TB. Training
BERT with such causal knowledge may provide
potential space for improvement, which is left for
future work.

(2) Compared to causal pair based BERT, Ex-
CAR related methods show improved performance.
This indicates that incorporating additional evi-
dences from the event graph can be helpful for
revealing the causal decision mechanism and then
improve the accuracy of causal reasoning.

(3) ExCAR-w/ MLN and ExCAR -w/ CMNLN
outperforms ExCAR-concat, which flats the CLG
into an event sequence. This shows that exploiting
the complex causal correlation patterns between
logical rules can be helpful for the causal reasoning
task.

(4) ExCAR-w/ MLN and ExCAR -w/ CMNLN
shows improved performance compared to ExCAR
-w/ fixed-cs. This confirms that neuralizing rules to
account for the uncertainty of the logical rules is
helpful for the causal reasoning task.
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Methods COPA C-COPA
BERT (Li et al.,
2019)

61.5 (∆ = −9.9) 62.7 (∆ = −10.1)

ExCAR
-w/ CMNLN 78.2 (∆ = −0.6) 80.7 (∆ = −0.8)
-w/ MLN 76.1 (∆ = −1.8) 76.4 (∆ = −1.6)
-w/ fixed-cs 74.3 (∆ = −0.7) 75.9 (∆ = −1.0)
-concat 73.9 (∆ = −1.5) 76.0 (∆ = −1.1)

Table 2: Prediction accuracy (%) after adversary attack.

Fixed-cs MLN CMNLN
Avg. Explainability Score 0.95 1.25 1.43

Table 3: Average explainability score of CMNLN, MLN
and unified causal strength on C-COPA.

(5) ExCAR-w/ CMNLN further improves the
prediction accuracy compared to ExCAR-w/ MLN,
suggesting that by incorporating the antecedent-
aware potential function CMNLN can model the
conditional causal strength of logical rules for
causal reasoning.

4.6 Stability Analysis

In this paper, we propose to enhance the stability
of our approach through introducing additional ev-
idence information. We investigate the specific
influence of these evidences on the stability of
our approach through an adversarial evaluation.
Following Bekoulis et al. [2018] and Yasunaga
et al. [2018], we attack the reasoning systems by
adding a perturbation term on the word embedding
of inputs. The perturbation term is derived using a
gradient-based method FGM (Miyato et al., 2016).

Table 2 shows the prediction accuracy after ad-
versary attack, and ∆ denotes the change of per-
formance brought by adversary attack. For exam-
ple, ∆ = -9.9 means a 9.9% decrease of prediction
accuracy after the adversary attack. We find that,
compared with event pair based BERT, ExCAR can
significantly improve the stability of the prediction
accuracy. These results show that by incorporating
additional evidence events, ExCAR could reveal
the behind causal mechanism to increase the stabil-
ity of prediction results.

4.7 Human Evaluation for Explainability

We analyze the explainability of our approach quan-
titatively through human evaluations. In particu-
lar, we randomly sample 200 instances from the
test set of C-COPA and make prediction using Ex-
CAR. Then we employ three experts to give an
explainability score belonging to {0, 1, 2} to evalu-
ate whether the causality strengths derived by our

Figure 3: Example of causal reasoning result made by
ExCAR.

approach are reasonable, where 0 stands for un-
explainable, 1 stands for moderately explainable
and 2 stands for explainable. For comparison, we
further introduce two baselines: (1) Markov Logic
Network (MLN); (2) Fixed-cs.

The average explainability scores are shown in
Table 3, from which we can observe that: (1) The
average explainability scores of CMNLN and MLN
are higher than that of fixed-cs. This is because,
through neuralizing the logical rules and equipping
the logical rules with probability, CMNLN and
MLN can better model the potential noise in the
retrieved evidences, as well as the uncertainty of
rules. (2) The explainability score of CMNLN is
further higher than that of MLN. This indicates that,
CMNLN can model the conditional causal strength
of logical rules using the antecedent-aware poten-
tial function, and then increase the reasonability of
causal strength estimation.

4.8 Case Study

Figure 3 provides an example of causal reasoning
made by ExCAR on C-COPA. Given a cause event
Reduction of grain production, E: Rise of Inflation
Rate is more likely to be the effect of the cause.
However, it is difficult to directly infer the effect E:
Rise of Inflation Rate directly from the cause event
C:Reduction of grain production. Correspondingly,
given C and E, ExCAR can obtain evidence events
such as I1: Food prices increase and I2: Grain
prices out of control from the causal event graph.
These results show that ExCAR can obtain relevant
evidences and hence choose the correct effect event
in an explainable manner.

We also examined the estimated causal strengths.
As shown in Figure 3, the causal strength between
I1 and E is higher in the logic chain ρ2 compared
to ρ1. Intuitively, with the additional antecedent
I2: Grain prices out of control, I1: Food prices
increase could be more likely to lead to E: Rise of
Inflation Rate. These results indicate that CMNLN
can model the conditional causal strength of rules.
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Figure 4: Reasoning accuracy of ExCAR with different
number of evidence events on the test set of C-COPA.

4.9 Effect of the Number of Evidence Events

We compare the reasoning accuracy of ExCAR on
samples with different numbers of evidence events.
Experiments are conducted on the test set of C-
COPA. Results are shown in Figure 4. We can find
that, when the evidence events number increases
from 0 to 3, the reasoning accuracy increases in
general, since sufficient evidences are helpful for
the reasoning task. However, the accuracy starts to
decrease when evidence number exceeds 4. This in-
dicates that noisy evidence events may be obtained.
The inclusion of noisy evidence events emphasis
the necessity of neutralizing the logical rules, as the
symbolic logic based systems cannot accommodate
for the noise in the rules.

5 Related Work
5.1 Causal Reasoning

Causal reasoning remains a challenging problem
for today’s AI systems. Statistical-based methods
can provide strong baselines, as they can find some
useful cues from large-scale causal corpus. For ex-
ample, Gordon et al. (2011) measured the causality
between words using PMI, and estimated the PMI
based on a personal story corpus. While Luo et al.
(2016) and Sasaki et al. (2017) further introduced
direction information into a causal strength index.
Then through synthesizing the word-level causality,
the causality between events could be inferred.

Compared to statistical-based methods, deep
neural networks enable models to learn the causal-
ity between events considering the semantics of
events. To this end, Xie and Mu (2019b) devised
attention-based models to capture the word-level
causal relationships. While Wang et al. and Li et al.
(2019) finetuned the pretrained language model
BERT on causal event pairs corpus to learn the
pairwise causality knowledge between events.

In this paper, we argue that in addition to the
event pair itself, causal reasoning also needs to
involve more evidence information. To address
this issue, we propose a novel inference framework
ExCAR, which is able to incorporate the additional

evidence events from an event graph for supporting
the causal reasoning task.

5.2 Explainable Textual Inference

Explainability has been a long-pursued goal for
textual inference systems, as it can help to unveil
the decision making mechanism of black-box mod-
els and enhance the stability of reasoning, which
can be crucial for applications in various domains,
such as medical and financial domains. To intro-
duce interpretability in textural inference process,
previous studies can be mainly divided into two
categories: generating explainable information and
devising self-explaining mechanism.

Beyond the task related information, automated
generated textual explanations are helpful for justi-
fying the reliability of models. For example, Cam-
buru et al. (2018) and Nie et al. (2019) train mul-
titask learning models to learn to generate expla-
nations for textual entailment inference. On the
other hand, the incorporation of relevant external
knowledge can not only increase the model perfor-
mance compared to purely data-driven approaches,
but also can be helpful for understanding the model
behavior (Niu et al., 2019; Wang et al., 2019b).

Another line of work designs self-explaining
models to reveal the reasoning process of mod-
els. Attention mechanism was devised to explicitly
measure the relative importance of input textual
features. Hence, it has been widely employed to
enhance the interpretability of deep neural models.

In this paper, to conduct causal reasoning in an
explainable manner, we propose to induce a set of
logic rules from a pre-built causal event graph, and
explicitly model the conditional causal strength of
each logical rule. The probabilistic logical rules
can provide clues to explain the prediction results.

6 Conclusion

We devise a novel explainable causal reasoning
framework ExCAR. Given an event pair, ExCAR
is able to obtain logical rules from a large-scale
causal event graph to provide insight to inference
results. To learn the conditional probabilistic of log-
ical rules, we propose a conditional Markov neural
logic network that combines the strengths of rule-
based and neural models. Empirically, our method
outperforms prior work on two causal reasoning
datasets, including COPA and C-COPA. Further-
more, ExCAR is interpretable by providing expla-
nations in terms of probabilistic logical rules.
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