
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2238–2249

August 1–6, 2021. ©2021 Association for Computational Linguistics

2238

Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval
Zijing Ou1, Qinliang Su1∗, Jianxing Yu2, Bang Liu3,

Jingwen Wang4, Ruihui Zhao4, Changyou Chen5 and Yefeng Zheng4

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China,
2School of Artificial Intelligence, Sun Yat-sen University, Guangdong, China,
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Abstract
With the need of fast retrieval speed and small
memory footprint, document hashing has been
playing a crucial role in large-scale informa-
tion retrieval. To generate high-quality hash-
ing code, both semantics and neighborhood
information are crucial. However, most ex-
isting methods leverage only one of them or
simply combine them via some intuitive cri-
teria, lacking a theoretical principle to guide
the integration process. In this paper, we
encode the neighborhood information with a
graph-induced Gaussian distribution, and pro-
pose to integrate the two types of information
with a graph-driven generative model. To deal
with the complicated correlations among doc-
uments, we further propose a tree-structured
approximation method for learning. Under the
approximation, we prove that the training ob-
jective can be decomposed into terms involv-
ing only singleton or pairwise documents, en-
abling the model to be trained as efficiently as
uncorrelated ones. Extensive experimental re-
sults on three benchmark datasets show that
our method achieves superior performance
over state-of-the-art methods, demonstrating
the effectiveness of the proposed model for si-
multaneously preserving semantic and neigh-
borhood information.1

1 Introduction

Similarity search plays a pivotal role in a variety
of tasks, such as image retrieval (Jing and Baluja,
2008; Zhang et al., 2018), plagiarism detection
(Stein et al., 2007) and recommendation systems
(Koren, 2008). If the search is carried out in the
original continuous feature space directly, the re-
quirements of computation and storage would be
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1Our code is available at https://github.com/J-zin/SNUH.
The MindSpore code will also be released soon.

extremely high, especially for large-scale applica-
tions. Semantic hashing (Salakhutdinov and Hin-
ton, 2009b) sidesteps this problem by learning a
compact binary code for every item such that simi-
lar items can be efficiently found according to the
Hamming distance of binary codes.

Unsupervised semantic hashing aims to learn
for each item a binary code that can preserve the
semantic similarity information of original items,
without the supervision of any labels. Motivated by
the success of deep generative models (Salakhutdi-
nov and Hinton, 2009a; Kingma and Welling, 2013;
Rezende et al., 2014) in unsupervised representa-
tion learning, many recent methods approach this
problem from the perspective of deep generative
models, leading to state-of-the-art performance on
benchmark datasets. Specifically, these methods
train a deep generative model to model the underly-
ing documents and then use the trained generative
model to extract continuous or binary representa-
tions from the original documents (Chaidaroon and
Fang, 2017; Shen et al., 2018; Dong et al., 2019;
Zheng et al., 2020). The basic principle behind
these generative hashing methods is to have the
hash codes retaining as much semantics informa-
tion of original documents as possible so that se-
mantically similar documents are more likely to
yield similar codes.

In addition to semantics information, it is widely
observed that neighborhood information among the
documents is also useful to generate high-quality
hash codes. By constructing an adjacency ma-
trix from the raw features of documents, neighbor-
based methods seek to preserve the information
in the constructed adjacency matrix, such as the
locality-preserving hashing (He et al., 2004; Zhao
et al., 2014), spectral hashing (Weiss et al., 2009; Li
et al., 2012), and etc. However, since the ground-
truth neighborhood information is not available
and the constructed one is neither accurate nor
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complete, neighbor-based methods alone do not
perform as well as the semantics-based ones. De-
spite both semantics and neighborhood information
are derived from the original documents, different
aspects are emphasized in them. Thus, to obtain
higher-quality hash codes, it has been proposed to
incorporate the constructed neighborhood informa-
tion into semantics-based methods. For examples,
Chaidaroon et al. (2018) and Hansen et al. (2020)
require the hash codes can reconstruct neighboring
documents, in addition to the original input. Other
works (Shen et al., 2019; Hansen et al., 2019) use
an extra loss term, derived from the approximate
neighborhood information, to encourage similar
documents to produce similar codes. However, all
of the aforementioned methods exploit the neigh-
borhood information by using it to design differ-
ent kinds of regularizers to the original semantics-
based models, lacking a basic principle to unify
and leverage them under one framework.

To fully exploit the two types of information, in
this paper, we propose a hashing method that uni-
fies the semantics and neighborhood information
with the graph-driven generative models. Specif-
ically, we first encode the neighborhood informa-
tion with a multivariate Gaussian distribution. With
this Gaussian distribution as a prior in a generative
model, the neighborhood information can be natu-
rally incorporated into the semantics-based hash-
ing model. Despite the simplicity of the modeling,
the correlation introduced by the neighbor-encoded
prior poses a significant challenge to the training
since it invalidates the widely used identical-and-
independent-distributed (i.i.d.) assumption, mak-
ing all documents correlated. To address this issue,
we propose to use a tree-structured distribution
to capture as much as possible the neighborhood
information. We prove that under the tree approx-
imation, the evidence lower bound (ELBO) can
be decomposed into terms involving only single-
ton and pairwise documents, enabling the model
to be trained as efficiently as the models without
considering the document correlations. To capture
more neighborhood information, a more accurate
approximation by using multiple trees is also devel-
oped. Extensive experimental results on three pub-
lic datasets demonstrate that the proposed method
can outperform state-of-the-art methods, indicating
the effectiveness of the proposed framework in uni-
fying the semantic and neighborhood information
for document hashing.

2 Preliminaries

Semantics-Based Hashing Due to the similar-
ities among the underlying ideas of these meth-
ods, we take the variational deep semantic hashing
(VDSH) (Chaidaroon and Fang, 2017) as an exam-
ple to illustrate their working flow. Given a docu-
ment x , {wj}|x|j=1, VDSH proposes to model a
document by a generative model as

p(x, z) = pθ(x|z)p(z), (1)

where p(z) is the prior distribution and is chosen to
be the standard Gaussian distribution N (z;0, Id),
with Id denoting the d-dimensional identity matrix;
and pθ(x|z) is defined to be

pθ(x|z) =
∏
wi∈x

pθ(wi|z) (2)

with

pθ(wi|z) ,
exp(zTEwi + bi)∑|V |
j=1 exp(zTEwj + bj)

, (3)

in which wj denotes the |V |-dimensional one-hot
representation of the j-th word, with |x| and |V |
denoting the document and vocabulary size, respec-
tively; and E ∈ Rd×|V | represents the learnable
embedding matrix. For a corpus containing N doc-
uments X = {x1,x2, · · · ,xN}, due to the i.i.d.
assumption for documents, it is modelled by simply
multiplying individual document models as

p(X,Z) =

N∏
k=1

pθ(xk|zk)p(zk), (4)

whereZ , [z1; z2; · · · ; zN ] denotes a long vector
obtained by concatenating the individual vectors zi.
The model is trained by optimizing the evidence
lower bound (ELBO) of the log-likelihood function
log p(X). After training, outputs from the trained
encoder are used as documents’ representations,
from which binary hash codes can be obtained by
thresholding the real-valued representations.

Neighborhood Information The ground-truth
semantic similarity information is not available for
the unsupervised hashing task in practice. To lever-
age this information, an affinity N ×N matrixA
is generally constructed from the raw features (e.g.,
the TFIDF) of original documents. For instances,
we can construct the matrix as

aij=

 e−
||xi−xj||2

σ , xi∈Nk (xj)
0, otherwise

(5)
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where aij denotes the (i, j)-th element of A; and
Nk(x) denotes the k-nearest neighbors of docu-
ment x. Given the affinity matrixA, some methods
have been proposed to incorporate the neighbor-
hood information into the semantics-based hashing
models. However, as discussed above, these meth-
ods generally leverage the information based on
some intuitive criteria, lacking theoretical supports
behind them.

3 A Hashing Framework with Unified
Semantics-Neighborhood Information

In this section, we present a more effective frame-
work to unify the semantic and neighborhood in-
formation for the task of document hashing.

3.1 Reformulating the VDSH
To introduce the neighborhood information into the
semantics-based hashing models, we first rewrite
the VDSH model into a compact form as

p(X,Z) = pθ(X|Z)pI(Z), (6)

where pθ(X|Z) =
∏N

k=1 pθ(xk|zk); and the prior
pI(Z) =

∏N
k=1 p(zk), which can be shown to be

pI(Z) = N (Z;0, IN ⊗ Id) . (7)

Here, ⊗ denotes the Kronecker product and the
subscript I indicates independence among zk. The
ELBO of this model can be expressed as

L=Eqφ(Z|X)[log pθ(X|Z)]︸ ︷︷ ︸
L1

−KL(qφ(Z|X)||pI(Z))︸ ︷︷ ︸
L2

where KL(·) denotes the Kullback-Leibler (KL)
divergence. By restricting the posterior to indepen-
dent Gaussian form

qφ(Z|X) =
N∏
k=1

N
(
zk;µk, diag(σ

2
k)
)︸ ︷︷ ︸

qφ(zk|xk)

, (8)

the L1 can be handled using the reparameteriza-
tion trick. Thanks to the factorized forms assumed
in qφ(Z|X) and pI(Z), the L2 term can also be
expressed analytically and evaluated efficiently.

3.2 Injecting the Neighborhood Information
Given an affinity matrixA, the covariance matrix
IN+λA can be used to reveal the neighborhood in-
formation of documents, where the hyperparameter
λ ∈ [0, 1) is used to control the overall correlation

strength. If two documents are neighboring, then
the corresponding correlation value in IN + λA
will be large; otherwise, the value will be zero.
To have the neighborhood information reflected
in document representations, we can require that
the representations zi are drawn from a Gaussian
distribution of the form

pG(Z) = N (Z;0, (IN + λA)⊗ Id) , (9)

where the subscript G denotes that the distribution
is constructed from a neighborhood graph. To
see why the representations Z ∼ pG(Z) have
already reflected the neighborhood information,
let us consider an example with three documents
{x1,x2,x3}, in which x1 is connected to x2,
x2 is connected to x3, and no connection exists
between x1 and x3. Under the case that zi is a
two-dimensional vector zi ∈ R2, we have the
concatenated representations [z1; z2; z3] follow a
Gaussian distribution with covariance matrix of

z1 z2 z3


z1

1 0 λa12 0 0 0
0 1 0 λa12 0 0

z2
λa21 0 1 0 λa23 0

0 λa21 0 1 0 λa23

z3
0 0 λa32 0 1 0
0 0 0 λa32 0 1

From the property of Gaussian distribution, it can
be known that z1 is strongly correlated with z2
on the corresponding elements, but not with z3.
This suggests that z1 should be similar to z2, but
different from z3, which is consistent with the
neighborhood relation that x1 is a neighbor of x2,
but not of x3.

Now that the neighborhood information can be
modeled by requiring Z being drawn from pG(Z),
and the semantic information can be reflected in the
likelihood function pθ(X|Z). The two types of in-
formation can be taken into account simultaneously
by modeling the corpus as

p(X,Z) = pθ(X|Z)pG(Z). (10)

Comparing to the VDSH model in (6), it can
be seen that the only difference lies in the em-
ployed priors. Here, a neighborhood-preserving
prior pG(Z) is employed, while in VDSH, an in-
dependent prior pI(Z) is used. Although only
a modification to the prior is made from the per-
spective of modeling, significant challenges are
posed for the training. Specifically, by replac-
ing pI(Z) with pG(Z) in the L2 of L, it can be
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shown that the expression of L2 involves the ma-
trix

(
(IN+λA)⊗Id

)−1. Due to the introduced
dependence among documents, for example, if the
corpus contains over 100,000 documents and the
representation dimension is set to 100, the L2 in-
volves the inverse of matrices with dimension as
high as 107, which is computationally prohibitive
in practice.

4 Training with Tree Approximations

Although the prior pG(Z) captures the full neigh-
borhood information, its induced model is not prac-
tically trainable. In this section, to facilitate the
training, we first propose to use a tree-structured
prior to partially capture the neighborhood infor-
mation, and then extend it to multiple-tree case for
more accurate modeling.

4.1 Approximating the Prior pG(Z) with a
Tree-Structured Distribution

The matrix A represents a graph G , (V, E),
where V = {1, 2, · · · , N} is the set of document
indices; and E = {(i, j)|aij 6= 0} is the set of
connections between documents. From the graph
G, a spanning tree T = (V, ET ) can be obtained
easily, where ET denotes the set of connections on
the tree.2 Based on the spanning tree, we construct
a new distribution as

pT (Z) =
∏
i∈V

pG(zi)
∏

(i,j)∈ET

pG(zi, zj)

pG(zi)pG(zj)
, (11)

where pG(zi) and pG(zi, zj) represent one- and
two-variable marginal distributions of pG(Z), re-
spectively. From the properties of Gaussian distri-
bution, it is known that

pG(zi)=N(zi;0, Id),
pG(zi, zj)=N([zi;zj ];0,(I2+λAij)⊗Id) , (12)

where Aij ,

[
0 aij
aji 0

]
. Because pT (Z) is de-

fined on a tree, as proved in (Wainwright and Jor-
dan, 2008), it is guaranteed to be a valid probabil-
ity distribution, and more importantly, it satisfies
the following two relations: i) pT (zi) = pG(zi);
ii) pT (zi, zj) = pG(zi, zj) for any (i, j) ∈ ET ,
where pT (zi) and pT (zi, zj) denote the marginal
distributions of pT (Z). That is, the tree-structured

2We assume the graph is connected. For more general
cases, results can be derived similarly.

distribution pT (Z) captures the neighborhood in-
formation reflected on the spanning tree T. By us-
ing pT (Z) to replace pI(Z) of L2, it can be shown
that L2 can be expressed as the summation of terms
involving only one or two variables, which can be
handled easily. Due to the limitation of space, the
concrete expression for the lower bound is given in
the Supplementary Material.

4.2 Imposing Correlations on the Posterior
The posterior distribution qφ(Z|X) in the previous
section is assumed to be in independent form, as
the form shown in (8). But since a prior pT (Z)
considering the correlations among documents is
used, assuming an independent posterior is not ap-
propriate. Hence, we follow the tree-structured
prior and also construct a tree-structured posterior

qT (Z|X)=
∏
i∈V
qφ(zi|xi)

∏
(i,j)∈ET

qφ (zi, zj |xi,xj)

qφ(zi|xi)qφ(zj |xj)
,

where qφ(zi|xi) is the same as that in (8); and
qφ (zi, zj |xi,xj) is also defined to be Gaussian,
with its mean defined as [µi;µj ] and covariance
matrix defined as[

diag(σ2
i ) diag(γij�σi�σj)

diag(γij�σi�σj) diag(σ2
j )

]
, (13)

in which γij ∈ Rd controls the correlation strength
between zi and zj , whose elements are restricted
in (−1, 1) and � denotes the Hadamard product.
By taking the correlated posterior qT (Z|X) into
the ELBO, we obtain

LT =
∑
i∈V

Eqφ[log pθ(xi|zi)]−KL(qφ(zi)||pG(zi))

−
∑

(i,j)∈ET

(
KL (qφ(zi, zj |xi,xj)||pG(zi, zj))

−KL(qφ(zi)||pG(zi))−KL(qφ(zj)||pG(zj))
)
,

where we briefly denote the variational distribu-
tion qφ(zi|xi) as qφ(zi). Since pG(zi), pG(zi, zj),
qφ(zi|xi) and qφ(zi, zj |xi,xj) are all Gaussian
distributions, the KL-divergence terms above can
be derived in closed-form. Moreover, it can be seen
that LT involves only single or pairwise variables,
thus optimizing it is as efficient as the models with-
out considering document correlation.

With the trained model, hash codes can be ob-
tained by binarizing the posterior mean µi with
a threshold, as done in (Chaidaroon and Fang,
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2017). However, if without any constraint, the
range of mean lies in (−∞,+∞). Thus, if we
binarize it directly, lots of information in the orig-
inal representations will be lost. To alleviate this
problem, in our implementation, we parameterize
the posterior mean µi by a function of the form
µi = sigmoid(nn(xi)/τ), where the outermost
sigmoid function forces the mean to look like bi-
nary value and thus can effectively reduce the quan-
tization loss, with nn(·) denoting a neural network
function and τ controlling the slope of the sigmoid
function.

4.3 Extending to Multiple Spanning Trees
Obviously, approximating the graph with a span-
ning tree may lose too much information. To alle-
viate this issue, we propose to capture the similar-
ity information by a mixture of multiple distribu-
tions, with each built on a spanning tree. Specifi-
cally, we first construct a set of M spanning trees
TG = {T1,T2, · · · ,TM} from the original graph
G. Based on the set of spanning trees, a mixture-
distribution prior and posterior can be constructed
as

pMT (Z) =
1

M

∑
T ∈TG

pT (Z), (14)

qMT (Z|X) =
1

M

∑
T ∈TG

qT (Z|X), (15)

where pT (Z) and qT (Z|X) are the prior and pos-
terior defined on the tree T , as done in (11) and
(13). By taking the mixture distributions above into
the ELBO of L to replace the prior and posterior,
we can obtain a new ELBO, denoted as LMT . Ob-
viously, it is impossible to obtain a closed-form
expression for the bound LMT . But as proved in
(Tang et al., 2019), by using the log-sum inequality,
LMT can be further lower bounded by

L̃MT =
1

M

∑
T ∈TG

LT . (16)

Given the expression of LT , the lower bound of
L̃MT can also be expressed in closed-form and
optimized efficiently. For detailed derivations and
concrete expressions, please refer to the Supple-
mentary.

4.4 Details of Modeling
The parameters µi,µj ,σi,σj and γij in the ap-
proximate posterior distribution qφ(zi|xi) of (8)
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Figure 1: Illustration of how the proposed model pre-
serves the semantic and similarity information in the
representations, where the color and link represent se-
mantic similarity and neighborhood, respectively.

and qφ(zi, zj |xi,xj) of (13) are all defined as the
outputs of neural networks, with the parameters de-
noted as φ. Specifically, the entire model is mainly
composed of three components:

i) The variational encoder qφ(zi|xi), which
takes single document as input, and outputs
the mean and variance of Gaussian distribu-
tion, i.e., [µi;σ

2
i ] = fφ(xi);

ii) The correlated encoder, which takes pairwise
documents as input, and outputs the corre-
lation coefficient, i.e., γij = fφ(xi,xj).
Note that the correlation encoder is required
to be order-irrelevant, that is, fφ(xi,xj) =
fφ(xj ,xi), which is achieved in this paper as
fφ = 1

2

(
fφ(xi,xj) + fφ(xj ,xi)

)
;

iii) The generative decoder pθ(xi|zi), which
takes the latent variable zi as input and output
the document xi. The decoder is modeled by
a neural network parameterized by θ.

The model is trained by optimizing the lower bound
L̃MT w.r.t. φ and θ. After training, hash codes
are obtained by passing the documents through the
variational encoder and binarizing the outputs on
every dimension by a the threshold value, which is
simply set as 0.5 in our experiments.

To intuitively understand the insight behind our
model, an illustration is shown in Figure 1. We see
that if the two documents are neighbors and seman-
tically similar, the representations will be strongly
correlated to each other. But if they are not semanti-
cally similar neighbors, the representations become
less correlated. If they are neither neighbors nor
semantically similar, the representations become
not correlated at all. Since our model can simulta-
neously preserve semantics and neighborhood in-
formation, we name it as Semantics-Neighborhood
Unified Hahing (SNUH).
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5 Related Work

Deep generative models (Rezende et al., 2014)
have attracted a lot of attention in semantics-
based hashing, due to their successes in unsuper-
vised representation learning. VDSH (Chaidaroon
and Fang, 2017) first employed variational auto-
encoder (VAE) (Kingma and Welling, 2013) to
learn continuous representations of documents and
then casts them into binary codes. However, for
the sake of information leaky problem during bi-
narization step, such a two-stage strategy is prone
to result in local optima and undermine the perfor-
mance. NASH (Shen et al., 2018) tackled this is-
sue by replacing the Gaussian prior with Bernoulli
and adopted the straight-through technique (Ben-
gio et al., 2013) to achieve end-to-end training. To
further improve the model’s capability, Dong et al.
(2019) proposed to employ mixture distribution
as a priori knowledge and Zheng et al. (2020) ex-
ploited Boltzmann posterior to introduce correla-
tion among bits. Beyond generative frameworks,
AMMI (Stratos and Wiseman, 2020) achieved supe-
rior performance by maximizing the mutual infor-
mation between codes and documents. Neverthe-
less, the aforementioned semantic hashing methods
are consistently under the i.i.d. assumption, which
means they ignore the neighborhood information.

Spectral hashing (Weiss et al., 2009) and self-
taught hashing (Zhang et al., 2010) are two typical
methods of neighbor-based hashing models. But
these algorithms generally ignore the rich semantic
information associated with documents. Recently,
some VAE-based models tried to concurrently take
account of semantic and neighborhood informa-
tion, such as NbrReg (Chaidaroon et al., 2018),
RBSH (Hansen et al., 2019) and PairRec(Hansen
et al., 2020). However, as mentioned before, all
of them simply regarded the proximity as regu-
larization, lacking theoretical principles to guide
the incorporation process. Thanks to the virtue
of graph-induced distribution, we effectively pre-
serve the two types of information in a theoretical
framework.

6 Experiments

6.1 Experiment Setup

Datasets We verify the proposed methods on
three public datasets which published by VDSH3:

3https://github.com/unsuthee/VariationalDeepSemantic
Hashing/tree/master/dataset

i) Reuters25178, which contains 10,788 news docu-
ments with 90 different categories; ii) TMC, which
is a collection of 21,519 air traffic reports with 22
different categories; iii) 20Newsgroups (NG20),
which consists of 18,828 news posts from 20 dif-
ferent topics. Note that the category labels of each
dataset are only used to compute the evaluation
metrics, as we focus on unsupervised scenarios.

Baselines We compare our method with the fol-
lowing models: SpH (Weiss et al., 2009), STH
(Zhang et al., 2010), VDSH (Chaidaroon and Fang,
2017), NASH (Shen et al., 2018), GMSH(Dong
et al., 2019), NbrReg (Chaidaroon et al., 2018),
CorrSH (Zheng et al., 2020) and AMMI (Stratos
and Wiseman, 2020). For all baselines, we take the
reported performance from their original papers.

Training Details For fair comparisons, we fol-
low the same network architecture used in VDSH,
GMSH and CorrSH, using a one-layer feed-
forward neural network as the variational and the
correlated encoder. The graph G is constructed
with the K-nearest neighbors (KNN) algorithm
based on cosine similarity on the TFIDF features
of documents. In our experiments, the corre-
lation strength coefficient λ in (12) is fixed to
0.99. According to the performance observed
on the validation set, we choose the learning
rate from {0.0005, 0.001, 0.003}, batch size from
{32, 64, 128}, the temperature τ in sigmoid func-
tion from {0.1, 0.2, · · · , 1}, the number of treesM
and neighbors K both form {1,2,. . . ,20}, with the
best used for evaluation on the test set. The model
is trained using the Adam optimizer (Kingma and
Ba, 2014). More detailed experimental settings,
along with the generating method of spanning trees,
are given in the supplementary materials.

Evaluation Metrics The retrieval precision is
used as our evaluation metric. For each query doc-
ument, we retrieve 100 documents most similar to
it based on the Hamming distance of hash codes.
Then, the retrieval precision for a single sample is
measured as the percentage of the retrieved docu-
ments with the same label as the query. Finally, the
average precision over the whole test set is calcu-
lated as the performance of the evaluated method.

6.2 Performance and Analysis

Overall Performance The performances of all
the models on the three public datasets are shown in
Table 1. We see that our model performs favorably
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Method Reuters TMC 20Newsgroups Avg
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

SpH 0.6340 0.6513 0.6290 0.6045 0.6055 0.6281 0.6143 0.5891 0.3200 0.3709 0.3196 0.2716 0.5198
STH 0.7351 0.7554 0.7350 0.6986 0.3947 0.4105 0.4181 0.4123 0.5237 0.5860 0.5806 0.5443 0.5662

VDSH 0.7165 0.7753 0.7456 0.7318 0.6853 0.7108 0.4410 0.5847 0.3904 0.4327 0.1731 0.0522 0.5366
NbrReg n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.4120 0.4644 0.4768 0.4893 0.4249
NASH 0.7624 0.7993 0.7812 0.7559 0.6573 0.6921 0.6548 0.5998 0.5108 0.5671 0.5071 0.4664 0.6462
GMSH 0.7672 0.8183 0.8212 0.7846 0.6736 0.7024 0.7086 0.7237 0.4855 0.5381 0.5869 0.5583 0.6807
AMMI 0.8173 0.8446 0.8506 0.8602 0.7096 0.7416 0.7522 0.7627 0.5518 0.5956 0.6398 0.6618 0.7323
CorrSH 0.8212 0.8420 0.8465 0.8482 0.7243 0.7534 0.7606 0.7632 0.5839 0.6183 0.6279 0.6359 0.7355

SNUH 0.8320 0.8466 0.8560 0.8624 0.7251 0.7543 0.7658 0.7726 0.5775 0.6387 0.6646 0.6731 0.7474

Table 1: The precision on three datasets with different numbers of bits in unsupervised document hashing.

Ablation Study 16bits 32bits 64bits 128bits

Reuters SNUHind 0.7823 0.8094 0.8180 0.8385
SNUHprior 0.8043 0.8295 0.8431 0.8460

SNUH 0.8320 0.8466 0.8560 0.8624

TMC SNUHind 0.6978 0.7307 0.7421 0.7526
SNUHprior 0.7177 0.7408 0.7518 0.7528

SNUH 0.7251 0.7543 0.7658 0.7726

NG20 SNUHind 0.4806 0.5503 0.6017 0.6060
SNUHprior 0.5443 0.6071 0.6212 0.6014

SNUH 0.5775 0.6387 0.6646 0.6731

Table 2: The performance of variant models. SNUHind
and SNUHprior indicate the model without considering
any document correlations (independent) and only con-
sidering correlations in the prior, respectively.

to the current state-of-the-art method, yielding best
average performance across different datasets and
settings. Compared with VDSH and NASH, which
simply employ isotropic Gaussian and Bernoulli
prior, respectively, we can observe that our model,
which leverages correlated prior and posterior dis-
tributions, achieves better results on all the three
datasets. Although GMSH improves performance
by exploiting a more expressive Gaussian mixture
prior, our model still outperforms it by a substantial
margin, indicating the superiority of incorporating
document correlations. It is worth noting that, by
unifying semantics and neighborhood information
under the generative models, the two types of in-
formation can be preserved more effectively. This
can be validated by that our model performs sig-
nificantly better than NbrReg, which naively incor-
porates the neighborhood information by using a
neighbor-reconstruction regularizer. The superior-
ity of our unified method can be further corrobo-
rated in the comparisons with RBSH and PairRec,
which are given in the Supplementary since they
employed a different preprocessing method as the
models reported here. Comparing to the current
SOTA methods of AMMI and CorrSh, our method
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Figure 2: The precision of 64-bit hash codes with vary-
ing number of trees M and neighbors K.

is still able to achieve better results by exploit-
ing the correlation among documents. Moreover,
thanks to the benefit of correlation regularization,
remarkable gratuity can be acquired profitably in
64 and 128 bits.

Impact of Introducing Correlations in Prior
and Posterior To understand the influences of
the proposed document-correlated prior and pos-
terior, we further experiment with two variants of
our model: i) SNUHind: which does not consider
document correlations in neither the prior nor the
posterior distribution; ii) SNUHprior: which only
considers the correlations in the prior, but not in
the posterior. Obviously, the proposed SNUH rep-
resents the method that leverage the correlations in
both of the prior and posterior. As seen from Ta-
ble 2, SNUHprior achieves better performance than
SNUHind, demonstrating the benefit of considering
the correlation information of documents only in
the prior. By further taking the correlations into
account in the posterior, improvements of SNUH
can be further observed, which fully corroborates
the superiority of considering document correla-
tions in the prior and posterior. Another interest-
ing observation is that the performance gap be-
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Distance Category Title/Subject

query hockey NHL PLAYOFF RESULTS FOR GAMES PLAYED 4-21-93
1 hockey NHL PLAYOFF RESULTS FOR GAMES PLAYED 4-19-93

10 hockey NHL Summary parse results for games played Thur, April 15, 1993
20 hockey AHL playoff results (4/15)
50 forsale RE: == MOVING SALE ===
70 hardware Re: Quadra SCSI Problems?
90 politics.misc Re: Employment (was Re: Why not concentrate on child molesters?

Table 3: Qualitative analysis of the learned 128-bit hash codes on the 20Newsgroups dataset. We present the
documents with Hamming distance of 1, 10, 20, 50, 70 and 90 to the query.

tween SNUHind and SNUHprior becomes small as
the length of bits increases. This may be attributed
to the fact that the increased generalization ability
of models brought by large bits is inclined to alle-
viate the impact of priori knowledge. However, by
additionally incorporating correlation constraints
on posterior, significant performance gains would
be obtained, especially in large bits scenarios.

Effect of Spanning Trees For more efficient
training, spanning trees are utilized to approximate
the whole graph by dropping out some edges. To
understand its effects, we first investigate the im-
pact of the number of trees. The first row of Figure
2 shows the performance of our method as a func-
tion of different numbers of spanning trees. We
observe that, compared to not using any correlation,
one tree alone can bring significant performance
gains. As the tree number increases, the perfor-
mance rises steadily at first and then converges into
a certain level, demonstrating that the document
correlations can be mostly captured by several span-
ning trees. Then, we further explore the impact of
the neighbor number when constructing the graphs
using the KNN method, as shown in the second row
of Figure 2. It can be seen that more neighbors con-
tributes to better performance. We hypothesize that
this is partly due to the more diverse correlation
information captured by the increasing number of
neighbors. However, incorporating too many neigh-
bors may lead to the problem of introducing noise
and incorrect correlation information to the hash
codes. That explains why no further improvement
is observed after the number reaches a level.

Empirical Study of Computational Efficiency
We also investigate the training complexity by
comparing the training duration of our method
and VDSH, on Tesla V100-SXM2-32GB. On the
Reuters, TMC, 20Newsgroups datasets with 64-
bit hash codes, our method finishes one epoch of
training respectively in 3.791s, 5.238s, 1.343s and

(a) SNUH

atheism
graphics
windows.misc
hardware
hardware
windows.x
forsale
autos
motorcycles
baseball
hockey
crypt
electronics
sci.med
space
christian
guns
mideast
politics.misc
religion.misc

(b) AMMI

Figure 3: Visualization of the 64-dimensional latent se-
mantic embeddings learned by the proposed models for
the 20Newsgroups dataset.

VDSH in 2.038s, 4.364s, 1.051s. It can be seen
that our model, though with much stronger per-
formance, can be trained almost as efficiently as
vanilla VDSH due to the tree approximations.

Case Study In Table 3, we present a retrieval
case of the given query document. It can be ob-
served that as the Hamming distance increases, the
semantic (topic) of the retrieved document gradu-
ally becomes more irrelevant, illustrating that the
Hamming distance can effectively measure the doc-
ument relevance.

Visualization of Hash Codes To evaluate the
quality of generated hash code more intuitively,
we project the latent representations into a 2-
dimensional plane with the t-SNE (van der Maaten
and Hinton, 2008) technique. As shown in Figure
3, the representations generated by our method are
more separable than those of AMMI, demonstrat-
ing the superiority of our method.

7 Conclusion

We have proposed an effective and efficient seman-
tic hashing method to preserve both the seman-
tics and neighborhood information of documents.
Specifically, we applied a graph-induced Gaussian
prior to model the two types of information in a
unified framework. To facilitate training, a tree-
structure approximation was further developed to



2246

decompose the ELBO into terms involving only sin-
gleton or pairwise variables. Extensive evaluations
demonstrated that our model significantly outper-
forms baseline methods by incorporating both the
semantics and neighborhood information.
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Appendices

A Derivation of Formulas

Derivation of KL (qφ(Z|X)||pT (Z)) In the
main paper, we propose a tree-type distribution
to introduce partial neighborhood information so
that the L2 term can be expressed as the summa-
tion over terms involving only one or two variables.
Here, we provide the detail derivation.

KL (qφ(Z|X)||pT (Z))

=

∫
qφ(Z|X)log

∏
i∈V

qφ(zi|xi)∏
i∈V

pG(zi)
∏

(i,j)∈ET

pG(zi,zj)
pG(zi)pG(zj)

dZ

=
∑
i∈V

KL (qφ(zi|xi)||pθ(zi))

−
∑

(i,j)∈ET

Eqφ(zi,zj |xi,xj)

[
log

pG(zi)pG(zj)

pG(zi, zj)

]
.

Obviously, the KL divergence is decomposed into
the terms involving singleton and pairwise vari-
ables, which can be calculated efficiently.

Expressing LT in Analytical Form For sim-
plification, in the following, we use µ1,Σ1

to represent the mean and variance matrix of
qT (zi, zj |xi,xj), respectively, and represent those
of pG(zi, zj) as µ2,Σ2, respectively. Besides we
denote λaij as τij so we have τij = λaij = λaji.
By applying the Cholesky decomposition on the
covariance matrix of Σ1 and Σ2

Σ1=

[
σi 0d

γijσj

√
1− γ2

ijσj

][
σi γijσj

0d

√
1− γ2

ijσj

]
,

Σ2=

[
Id 0

τijId

√
1− τ2ijId

][
Id τijId

0
√
1− τ2ijId

]
,

where we omit diag(·) for simplifying, we have

KL (qφ(zi, zj |xi,xj)||pG(zi, zj))

=
1

2

d∑
n=1

{
log(1− τ2ij)

−
(
logσ2

in + logσ2
jn + log(1− γ2

ijn)
)
− 2

+
σ2
in+σ

2
jn−2τijγijnσinσjn+µ

2
in+µjn−2τijµinµjn

1− τ2ij

}
.
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Algorithm 1 Model Training Algorithm
Input: Document representationsX; edges list of spanning
trees E; batch size b.
Output: Optimal parameters (θ,φ).
1: θ,φ← Initialize parameters
2: repeat
3: VM←{x1, · · · ,xb}∼X . Sample nodes
4: EMT ←{e1, · · · , eb}∼E . Sample endges
5: g ← ∇φ,θL̃MMT (θ,φ;VM , EMT )
6: θ,φ ← Update parameters using gradients g (e.g.,

Adam optimizer)
7: until convergence of parameters (θ,φ)

Input document pair (xi; xj)

Variational Enc Correlated Enc

Encoder Linear(|V |, d) Linear(|V |, d) Linear(2|V |, d)
µ = f(·/τ) σ = g(·) γ = 2 ∗ f(·)− 1

Generator Linear(d, |V |)

Table 4: The neural network architecture of the pro-
posed model, in which f(·) and g(·) represent the sig-
moid and softplus function, respectively.

Then, we can express LT in an analytical form

LT =
∑
i∈V

(
Eqφ(zi|xi)[log pθ(xi|zi)]−

1

2

d∑
n=1

(µ2
in

+ σ2
in−1−2 logσin)

)
−
∑

(i,j)∈ET

(
1

2

d∑
n=1

{
log(1− τ2ij)

−
(
µ2
in + µ2

jn + σ2
in + σ2

jn + log(1− γ2
ijn)
)

+
σ2
in+σ

2
jn−2τijγijnσinσjn+µ

2
in+µjn−2τijµinµjn

1− τ2ij

})

Derivation of L̃MT With LMT , we extend the
single-tree approximation to multi-tree approxima-
tion. Although the KL divergence between the
mixture distributions does not have a closed-form
solution, we can obtain its explicit upper bound by
using the log-sum inequality as

LMT ≥
1

M

∑
T ∈TG

EqT (Z|X)[log pθ(X|Z)]

− 1

M

∑
T ∈TG

KL (qT (Z|X)||pT (X))

, L̃MT .

We can further express L̃MT in a more intuitive
form as∑
i∈V

(
Eqφ(zi|xi)[log pθ(xi|zi)]−KL(qφ(zi|xi)||pG(zi))

)
−

∑
(i,j)∈ET

wij

(
KL(qφ(zi, zj |xi,xj)||pG(xi,xj))

−KL(qφ(zi|xi)||pG(zi))−KL(qφ(zj |xj)||pG(zj))
)
,

Algorithm 2 Spanning Tree Generation Algorithm
Input: Graph G; number of trees n.
Output: Edges list of spanning trees E.
1: procedure TREEGEN(n) . Input: #tree n
2: E = [ ] . Initial edges list
3: for k ← 0, · · · , n− 1 do
4: V = [False]|V| . Visited node list
5: while False in V do
6: i← RC[V==False] . Choose node
7: Q = [i] . Initial queue
8: while len(Q) > 0 do
9: i← Q[0]

10: V [i]← True
11: N = ID[V [N (i)]==False]

12: if len(N) == 0 then
13: POP (Q,−1)
14: break
15: end if
16: j←RC[N ] . Choose neighbor
17: V [j]← True
18: APPEND(Q, j)
19: APPEND(E, [i, j])
20: end while
21: end while
22: end for
23: end procedure

where wij =
|{T ∈TG|(i,j)∈ET }|

M denotes the propor-
tion of times that the edge (i, j) appears. To opti-
mize this objective, we can construct an estimator
of the ELBO, based on the minibatch

L̃MT ' L̃MMT
=
∑
i∈VM

LVM (xi)−
∑

(i,j)∈EMT

wijLEMT (xi,xj),

where VM is the subset of documents, EMT is the
subset of edges and

LVM (xi) , Eqφ(zi|xi)[log pθ(xi|zi)]
−KL (qφ(zi|xi)||pG(zi)) ;

LEMT (xi,xj),KL(qφ(zi, zj |xi,xj)||pG(xi,xj))

−KL(qφ(zi|xi)||pG(zi))−KL(qφ(zj |xj)||pG(zj)) .

Then we can update the parameters by using the
gradient ∇φ,θL̃MMT . The training procedure is
summarized in Algorithm 1.

B Tree Generation Algorithm

Algorithm 2 shows the spanning tree generation al-
gorithm TreeGen(·) used in our graph-induced gen-
erative document hashing model. TreeGen(·) uti-
lizes a depth-first search (DFS) algorithm to gener-
ate meaningful neighborhood information for each
node. In this algorithm, RC[·] means randomly
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Datasets Methods 16bits 32bits 64bits 128bits

Reuters
RBSH 0.7740 0.8149 0.8120 0.8088

PairRec 0.8028 0.8268 0.8329 0.8468
SNUH 0.8063 0.8369 0.8483 0.8567

TMC
RBSH 0.7959 0.8138 0.8224 0.8193

PairRec 0.7991 0.8239 0.8280 0.8303
SNUH 0.7901 0.8145 0.8293 0.8329

NG20
RBSH 0.6087 0.6385 0.6655 0.6668

PairRec n.a. n.a. n.a. n.a.
SNUH 0.5679 0.6444 0.6806 0.7004

Table 5: The precision of variant models on three
datasets with different numbers of bits.

choosing one index according to the indicator func-
tion; ID[·] represents the set of node indexes sat-
isfying the indicator condition and N (i) denotes
the neighbors of node i. Due to the importance of
edges precision, when choosing a neighbor (line
16 in Algorithm 2), instead of using uniform sam-
pling, we exploit a temperature α to control the
trade-off between the precision and diversity of
edges. Specifically, the probability of sampling
neighbor j of node i is

exp(cos(xT
j xi)/α)∑

n∈N (i) exp(cos(x
T
nxi)/α)

.

We find the best configuration ofα on the validation
set with the values in {0.1, 0.2, · · · , 1} .

C Experiment Details

For fair comparisons, we follow the experimen-
tal setting of VDSH. Specifically, the vocabulary
size |V | is 7164, 20000, and 10000 for Reuters,
TMC and 20Newsgroups, respectively. The split
of training, validation, and test set is as follows:
7752, 967, 964 for Reuters; 21286, 3498, 3498 for
TMC and 11016, 3667, 3668 for 20Newsgroups,
respectively. Moreover, the KL term in Eq. (18) of
the main paper is weighted with a coefficient β to
avoid posterior collapse. We find the best config-
uration of β on the validation set with the values
in {0.01, 0.02, · · · , 0.1}. To intuitively understand
our model, we illustrate the whole architecture in
Table 4.

D Additional Experiments

Comparing with RBSH and PairRec As men-
tioned before, the reason we do not directly com-
pare our method with RBSH (Hansen et al., 2019)
and PairRec (Hansen et al., 2020) is that their data
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Figure 4: The precision of 64-bit hash codes on three
datasets with varying temperature τ and KL weight β.

processing methods are different from the main-
stream methods (e.g., VDSH, NASH, GMSH, Nbr-
Reg, AMMI and CorrSH). To further compare our
method with them, we evaluate our model on three
datasets that are published by RBSH4. The results
are illustrated in Table 5. We observe that our
method achieves the best performances in most
experimental settings, which further confirms the
superiority of simultaneously preserving the seman-
tics and similarity information in a more principled
framework.

Parameter Sensitivity To understand the robust-
ness of our model, we conduct a parameter Sensi-
tivity analysis of τ and β in Figure 4. Compared
with β = 0 (without using neighborhood informa-
tion), models with β 6= 0 improve performance
significantly, but gradually performs steadily as β
getting larger, which once again confirms the im-
portance of simultaneously modeling semantic and
neighborhood information. As for temperature co-
efficient τ used in variational encoder, our model
performs steadily with various values of τ in the
Reuters dataset. But in TMC and 20Newsgroups,
increasing τ would deteriorate the model perfor-
mance. Generally speaking, the model can achieve
better performance with smaller τ (i.e., steeper sig-
moid function). As we utilize 0.5 as the threshold
value, steeper sigmoid functions make it easier to
distinguish hash codes.

4https://github.com/casperhansen/RBSH


