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Abstract

We present Retriever-Transducer-Checker
(ReTraCk), a neural semantic parsing frame-
work for large scale knowledge base question
answering (KBQA). ReTraCk is designed
as a modular framework to maintain high
flexibility. It includes a retriever to retrieve
relevant KB items efficiently, a transducer to
generate logical form with syntax correctness
guarantees and a checker to improve the
transduction procedure. ReTraCk is ranked
at top1 overall performance on the GrailQA
leaderboard1 and obtains highly competitive
performance on the typical WebQuestionsSP
benchmark. Our system can interact with
users timely, demonstrating the efficiency of
the proposed framework.2

1 Introduction

Knowledge base question answering (KBQA) is
an important task in natural language processing
that aims to satisfy users’ information needs based
on factual information stored in knowledge bases.
Over the years, it has attracted a great deal of re-
search attention from academia and industry. Early
KBQA systems are generally rule-based. They
rely on predefined rules or templates to parse ques-
tions into logical forms (Cabrio et al., 2012; Abu-
jabal et al., 2017), suffering from coverage and
scalability problems. Recently, researchers usu-
ally focus more on neural semantic parsing ap-
proaches. These data-driven parsing methods (Yih
et al., 2015; Jia and Liang, 2016; Dong and La-
pata, 2016; Liang et al., 2017; Gu et al., 2021)
significantly improve the state-of-the-art (SOTA)
performance on KBQA tasks.

∗The first three authors contributed equally. This work
was conducted during Shuang and Qian’s internship at Mi-
crosoft Research Asia.

1https://dki-lab.github.io/GrailQA/
2https://aka.ms/ReTraCk
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Figure 1: The Retriever-Transducer-Checker (Re-
TraCk) framework.

Although various neural semantic parsing meth-
ods have been proposed for KBQA, there are few
works investigating how to leverage the advantages
of SOTA models to build a comprehensive system,
and how to fit the system with practical applica-
tion purpose (e.g., balancing effectiveness and effi-
ciency). To investigate, we identify two key issues
hindering the development of KBQA systems.

On the one hand, there is a lack of a generic
and extensible framework for KBQA. For exam-
ple, the popular SEMPRE3 toolkit (Berant et al.,
2013) provides infrastructures to develop statis-
tical semantic parsers for KBQA with rich fea-
tures, but its performance and scalability are in-
ferior to recent neural semantic parsing methods.
The TRANX toolkit4 (Yin and Neubig, 2018) em-
ploys a transition-based neural semantic parser to
model the logical form generation procedure as a

3https://github.com/percyliang/sempre
4https://github.com/pcyin/tranX

https://dki-lab.github.io/GrailQA/
https://aka.ms/ReTraCk
https://github.com/percyliang/sempre
https://github.com/pcyin/tranX
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sequence of tree-constructing actions under gram-
mar specification. However, TRANX does not in-
clude the essential retriever components used in
grounding, and thus does not support KBQA by
now.

On the other hand, recent neural semantic pars-
ing methods mostly emphasize performance on
benchmark datasets while neglecting the efficiency
(speed) dimension. This limits the understanding of
how designed approaches fit into real applications.
For example, the popular query graph generation
methods generate and rank a set of query graphs
(Yih et al., 2015; Maheshwari et al., 2019; Lan
and Jiang, 2020). Since all query graph candidates
keep in line with the knowledge base (KB) struc-
ture, these methods take full advantage of the KB.
However, they suffer from poor efficiency due to
the large number of candidates and heavily query-
ing on KB. To verify that, we performed a prelim-
inary study on available SOTA models5,6,7,8,9,10.
According to our study, these models either have
difficulties in supporting interactive online services,
or limit the candidate space for specific datasets,
which makes them difficult to apply in practice.

To this end, we present ReTraCk, a practical
framework for large scale KBQA. We hope Re-
TraCk can help standardize the KBQA model de-
sign process and lower the barrier of entry for new
practitioners. ReTraCk is designed with the follow-
ing principles in mind:

• Flexibility ReTraCk employs a modular architec-
ture, which decouples the dependencies among
components as much as possible to enable quick
integration of novel components. For exam-
ple, our system supports two different kinds
of schema retrievers, namely dense schema re-
triever and neighbor schema retriever11.

• Efficiency ReTraCk falls into the transduction
family, which is fast during the generation pro-
cess. Besides, we retrieve entities and relevant
schema items (relations and types) in parallel
by leveraging the recent advance of entity link-
ing (Orr et al., 2021) and dense retrieval (Wu

5http://github.com/nju-websoft/SPARQA
6http://github.com/lanyunshi/Multi-hopComplexKBQA
7http://github.com/OceanskySun/GraftNet
8https://github.com/scottyih/STAGG
9https://github.com/guoday/Dialog-to-Action

10https://github.com/dongpobeyond/Seq2Act
11This module is implemented in our codebase. The de-

tailed analysis is in the Appendix.

et al., 2020; Karpukhin et al., 2020). Our system
can interact with users timely, demonstrating the
efficiency of the proposed ReTraCk framework.

• Effectiveness ReTraCk is designed to enhance
the controllability of transduction-based meth-
ods in both syntax level and semantic level. It
first employs a grammar based decoder (Yin and
Neubig, 2018) to guarantee the syntax correct-
ness. Then it leverages a checker to alleviate the
semantic inconsistency issues. Inspired by pre-
vious work, four checking mechanisms are pro-
posed and implemented in the checker: instance-
level checking (Liang et al., 2017), ontology-
level checking (Chen et al., 2018), real execu-
tion (Wang et al., 2018) and the novel virtual
execution. The experimental results verify the
significant effectiveness of our proposed checker.
Notably, the checker is also flexible enough to be
easily extended with new mechanisms. Finally,
ReTraCk achieves state-of-the-art performance
on GrailQA and achieves highly competitive per-
formance on WebQuestionsSP.

2 ReTraCk Framework

Given an input question q, ReTraCk parses the
question into a logical form which can be determin-
istically converted into a SPARQL query to retrieve
answers from the knowledge base K. Generally K
consists of two parts: an ontologyO ⊆ T ×R×T ,
which defines the schema structure, and the fact
triples F ⊆ E ×R× (E ∪ T ∪ L). Here, T is the
set of types,R is the set of relations, E is the set of
entities, and L is the set of literals.

As shown in Fig. 1, ReTraCk consists of three
components: retriever, transducer and checker. The
retriever consists of an entity linker, which links
explicit entity mentions to corresponding entities,
and a schema retriever, which retrieves relevant
schema items (types and relations) mentioned either
explicitly or implicitly in the question. Given the
retrieved KB items (entities, types, and relations),
the transducer employs a grammar-based decoder
to generate the logical form with syntax correctness
guarantees. Meanwhile, the transducer interacts
with the checker to discourage generating programs
that are semantically inconsistent with KB.

To make ReTraCk more accessible and inter-
pretable for end users, we build a user interface.
As shown in Fig. 2, users can type a question in
the text box. The interface then displays retrieved

http://github.com/nju-websoft/SPARQA
http://github.com/lanyunshi/Multi-hopComplexKBQA
http://github.com/OceanskySun/GraftNet
https://github.com/scottyih/STAGG
https://github.com/guoday/Dialog-to-Action
https://github.com/dongpobeyond/Seq2Act
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(c) Predict logic form & SPARQL query(a) Users type a question

(b) Entity linker and Schema Retriever

(d) Obtain answers by querying KB

Figure 2: The main user interface of ReTraCk.

KB items, a graph visualization of predicted logi-
cal forms, generated SPARQL query and predicted
answer (s). The schema items selected by our trans-
ducer are shaded. Besides, users can refer to more
information of any KB item by clicking on the sub-
sequent “Detail”. Next, we will introduce each
component in detail.

2.1 Retriever

Entity Linker The entity linker used in this work
follows the entity linking pipeline described in
Gu et al. (2021). It firstly detects entity men-
tions using a BERT-based NER system, then gener-
ates candidate entities along with their prior score
based on an alias map mined from the KB and
FACC1 (Gabrilovich et al., 2013). As for entity dis-
ambiguation, we implement a prior baseline which
selects the most popular entity based on the prior
score. Besides, we also implement an alternative
model by leveraging BOOTLEG (Orr et al., 2021)
enriched with the prior features12. Due to space
limitations, the model details and its comparison
with the entity linker used in Gu et al. (2021) are
put in the Appendix.

Schema Retriever As schema items are not al-
ways mentioned explicitly in the question and their
vocabularies are much fewer than entities13, we
leverage the dense retriever framework (Mazaré
et al., 2018; Humeau et al., 2020; Wu et al., 2020)

12In our demo system, we choose the prior baseline method
since it is more memory efficient than the BOOTLEG (Orr et al.,
2021) method.

13In the latest version of Freebase, there are more than 120
million entities, 16k types and 20k relations.

to obtain the related types and relations. To be spe-
cific, we train a bi-encoder architecture (Wu et al.,
2020) such that related schema items are close to
the question embedding. This architecture allows
for fast real-time inference, as it is able to cache
the encoded candidates.

We use two independent BERT-base encoders
(Devlin et al., 2019) to represent the input question
eq and candidate schema items es by extracting
the upper most layer representation corresponding
to the [CLS] token. The matching score for each
pair (qg, si) is calculated by the dot-product:

s(qg, si) = eqg · esi . (1)

Given a question q, we retrieve the top k schema
items with the highest scores during inference time.

2.2 Transducer

Following previous work (Guo et al., 2018, 2019)
- especially the s-expression design principle (Gu
et al., 2021), we design a set of grammar rules for
the logical form. As shown in Table 1, there are two
kinds of grammars in our definition: knowledge-
agnostic grammar and knowledge-specific gram-
mar. To incorporate these predefined grammar
rules, we introduce a question encoder and a
grammar-based decoder (Liu et al., 2020).

Question Encoder To capture contextual infor-
mation in a question, we apply a Bidirectional Long
Short-Term Memory Neural Network (BiLSTM)
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) as our question encoder. For each
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Grammar Rule Description

root→ set | num start of the grammar rule sequence
set→ and(set1, set2) set1 ∩ set2
set→ joinent(rel, ent) {e1 | (e1, ent) ∈ rel}
set→ joinset(rel, set) {e1 | (e1, e2) ∈ rel and e2 ∈ set}
set→ argmax(set, rel) {e1 | (e1, e2) ∈ rel and e2 is the largest}
set→ argmin(set, rel) {e1 | (e1, e2) ∈ rel and e2 is the smallest}
set→ gt(rel, num) {e1 | (e1, e2) ∈ rel and e2 > num}
set→ ge(rel, num) {e1 | (e1, e2) ∈ rel and e2 ≥ num}
set→ lt(rel, num) {e1 | (e1, e2) ∈ rel and e2 < num}
set→ le(rel, num) {e1 | (e1, e2) ∈ rel and e2 ≤ num}
rel→ joinrel(rel1, rel2) {(e1, e2) | (e1, e) ∈ rel1 and (e, e2) ∈ rel2}
rel→ reverse(rel) {(e1, e2) | (e2, e1) ∈ rel}
num→ count(set) number of entities in set
rel→ relation instantiate a relation in I
set→ type instantiate a type in I
ent→ entity | literal instantiate an entity or literal in I
num→ literal instantiate a grammar rule for any literal in I

Table 1: Knowledge-agnostic (Top) and knowledge-
specific (Bottom) grammar rule definitions used in our
grammar-based decoder. Knowledge-specific grammar
rules change with the retrieved KB items I. Here, set
denotes a set of entities, rel denotes the set of (head,
tail) entity tuples.
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Figure 3: Decoding procedure of the example in Fig. 1.

token qi in q, we obtain its contextual representa-
tion as hE

i = [h
−→
E
i ;h

←−
E
i ], where the forward hidden

state h
−→
E
i is computed by passing the word embed-

ding of qi into a forward LSTM. The backward
hidden state is computed similarly.

Grammar-based Decoder Once the question
representation is prepared, the grammar-based de-
coder starts to produce the target logical form step
by step with attention on the question. Our decoder
regards each logical form as a structure and outputs
its corresponding grammar rule/action 14 sequence
a = (a1, · · · , aK).

At each decoding step, a nonterminal (e.g., set)
is expanded using one of its valid grammar rules.
For example, at time step k, the LSTM decoder
LSTM

−→
D accepts the embedding of the previous

output φa(ak−1) as input and updates its hidden
state as:

h
−→
D
k = LSTM

−→
D
(
[φa(ak−1); ck−1],h

−→
D
k−1

)
, (2)

14We use grammar rule and action interchangeably.

where ck−1 is the context vector obtained by attend-
ing on each encoder hidden state hE

i . As for φa, it
behaves differently for knowledge-agnostic gram-
mar rules and knowledge-specific grammar rules.
For knowledge-agnostic grammar rules, φa returns
a trainable global embedding. For knowledge-
specific grammar rules, φa returns its related KB
item representation, obtained by averaging over all
word representations.

When predicting ak, the probability of selecting
the action γ follows:

P (ak=γ)∝exp
(
φa(γ) tanh([h

−→
D
k ;ck]W

o)
)
, (3)

where Wo is a learned matrix.

BERT Encoding Motivated by the success of
pretrained language models on cross-domain text-
to-SQL tasks (Hwang et al., 2019), we augment
our model with BERT (Devlin et al., 2019). First,
we concatenate the questions with all retrieved KB
items as input for BERT to strengthen the connec-
tion between them. Then, we replace the word
embeddings mentioned above with deep contex-
tual representations from the last layer of BERT of
each question token and each KB item, respectively.
In a case where the total number of words in the
retrieved KB items exceeds the maximum length
constraint of BERT, we split these KB items into
different blocks and encode them with the question
separately (Gu et al., 2021).

2.3 Checker

Inspired by previous work (Liang et al., 2017; Chen
et al., 2018; Wang et al., 2018), we design a plug-
gable module named checker to improve the decod-
ing process by leveraging semantics of KB.

Instance-level Checking relies on the KB link-
age information at the instance level (i.e., enti-
ties and their connected relations), which means
that instance-level checking only deals with cases
where the current action is a child node of action
set→ joinent(rel, ent) in the abstract syntax tree
(AST). As illustrated in Fig. 4, when expanding the
nonterminal ent, any retrieved KB entity can re-
turn a valid grammar rule such as ent→m.04bmk or
ent→m.04vd3. However, only m.04vd3 can pass
the instance-level checking, since other candidates
do not share direct links with the decoded relation
tv.tv episode segment.subjects.
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Figure 4: The illustration of four checking mechanisms in the check given the question “What was the subject of
the TV show with the most number of episodes and featured on killer joke?”

Ontology-level Checking performs checking
with the help of KB linkage information at
the ontology level (i.e., types and bridging
relations). Taking the right subtree presented
in Fig. 4 as an example, when expanding the
second rel, we employ ontology-level checking
to determine its valid semantic scope. Ac-
cording to the semantics of the grammar rule
set→ joinrel(rel1, rel2), the type set of the head
entity in rel2 must overlap with the type set of
the tail entity in rel1, by which the candidate
rel→tv.tv program.number of episodes

is selected. Although ontology-level checking
applies to more situations than instance-level, it
is weaker in terms of checking effectiveness and
needs constraints of high coverage.

Real Execution When decoding reaches the end,
an action sequence can be converted into a logi-
cal form, and finally into a SPARQL query. As
depicted in Fig. 4, the real execution simply takes
the final SPARQL query and tries to execute it over
KB. If the query cannot be executed successfully,
or the result is empty, it means that the correspond-
ing action sequence cannot meet the executable re-
quirement. In practice, we utilize the real execution
to check all complete action sequence candidates
searched by the beam search procedure, until an
action sequence passes checking.

Virtual Execution The real execution cannot in-
tervene in the middle of program generation, which
leads to candidates of low quality in the final beam
(e.g., no candidate can be executed). Meanwhile,
since real execution relies on SPARQL, it is rela-
tively slow as SPARQL queries are executed over
tremendous (e.g., millions) entities with multi-hop

relations. Instead, we propose virtual execution to
alleviate these issues. As illustrated in Fig. 4, when
a sub-program (i.e., shaded in purple) is fully pro-
duced, virtual execution is triggered to run bottom-
up and check if the virtual answer set is empty. If
so, the action sequence is removed from the beam.
At each node, this virtual execution performs ac-
cording to the program function semantics at the
ontology-level. Taking rel→ reverse(rel) as an
illustration, the virtual answer is obtained by revers-
ing each tuple (head entity type, end entity type) in
rel. Such virtual execution is very fast since the
ontology only contains thousands of relations and
types. Meanwhile, it can prune programs earlier;
before the real execution.15

3 Experiments

3.1 Datasets and Metrics

GrailQA (Gu et al., 2021) is a challenging crowd-
sourced KBQA dataset containing 64,331 ques-
tions involving up to 4 relations. This dataset is
created to evaluate three levels of generalization
scenarios in KBQA: i.i.d., compositional, and zero-
shot, which account for 25%, 25%, and 50% of the
test set, respectively. We refer readers to Gu et al.
(2021) for more details.

WebQuestionsSP (WebQSP) (Yih et al., 2016)
is a popular KBQA dataset with 4,937 questions,
requiring up to 2-hop relation path inference. Orig-
inally it splits into 3,298 questions as train set and
1,639 questions as test set. We randomly sample
200 questions from the train set as a dev set.

On GrailQA, we use official evaluation metrics:
exact match accuracy (EM) and F1. Consistent

15More details are described in the Appendix.
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Overall I.I.D. Compositional Zero-shot

EM F1 EM F1 EM F1 EM F1

Query-Graph Generation methods
QGG (Lan and Jiang, 2020) − 36.7 − 40.5 − 33.0 − 36.6
GloVe + RANKING (Gu et al., 2021) 39.5 45.1 62.2 67.3 40.0 47.8 28.9 33.8
BERT + RANKING (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7

Transduction-based methods
GloVe + TRANSDUCTION (Gu et al., 2021) 17.6 18.4 50.5 51.6 16.4 18.5 3.0 3.1
BERT + TRANSDUCTION (Gu et al., 2021) 33.3 36.8 51.8 53.9 31.0 36.0 25.7 29.3

Ours 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
– Checker 41.6 44.2 73.2 74.5 43.4 48.3 26.2 28.4

Table 2: EM and F1 results on the hidden test set of GrailQA.

Method F1 Hits@1

IR-based methods
EmbedKGQA∗♥ (Saxena et al., 2020) − 72.5
EmbedKGQA∗ (Saxena et al., 2020) − 66.6
PullNet∗ (Sun et al., 2019) − 68.1
GRAFT-Net∗ (Sun et al., 2018) 62.8 67.8

Query-Graph Generation methods
GrailQA RANKING∗♥ (Gu et al., 2021) 67.0 −
STAGG♥ (Yih et al., 2015) 69.0 −
Topic Units♥ (Lan et al., 2019) 67.9 −
TextRay♥ (Bhutani et al., 2019) 60.3 −
QGG♥ (Lan and Jiang, 2020) 74.0 −
UHop (Chen et al., 2019) 68.5 −

Transduction-based methods
NSM♥ (Liang et al., 2017) 69.0 −

Ours∗ 74.7 74.6
– Checker 62.0 61.7

Ours 71.0 71.6
– Checker 56.9 57.4

Table 3: F1 and Hits@1 results on WebQSP. ∗ denotes
using oracle entity linking annotations. ♥ denotes us-
ing fixed number of hops assumption.

with previous work, we use F1 and Hits@1 as
evaluation metrics on WebQSP.

3.2 Implementation Details

We implemented our model based on PyTorch
(Paszke et al., 2019) and AllenNLP (Gardner et al.,
2018). With respect to BERT, we utilize the un-
cased BERT-base model from the Transformers li-
brary (Wolf et al., 2020). In training, we employed
the Adam optimizer (Kingma and Ba, 2015). The
learning rate is set to 1e-3, except for BERT, which
is set to 2e-5. Our model training time on a single
Tesla V100 is approximately 20h16.

As for dense retriever, on GrailQA dataset, we
retrieve top-100 type items and top-150 relation
items. On WebQSP dataset, we retrieve top-200

16Due to space limitation, we put the detailed hyper-
parameters setting in the Appendix.

type items and top-500 relation items.

3.3 Baseline Models
We compare our model with previous state-of-the-
art models on GrailQA (Lan and Jiang, 2020; Gu
et al., 2021) and WebQSP (Liang et al., 2017;
Sun et al., 2019; Saxena et al., 2020; Lan and
Jiang, 2020). Notably, both TRANSDUCTION and
RANKING models proposed by Gu et al. (2021) on
GrailQA can be based on either GloVe (Pennington
et al., 2014) or BERT (Devlin et al., 2019). We
compare with them under all settings.

3.4 Results
We test ReTraCk with two configurations, with
or without Checker. As shown in Table 2, Re-
TraCk significantly outperforms the previous SOTA
model BERT + RANKING (F1 +7.3, EM +7.5 ) and
achieves an improvement (F1 +28.5, EM + 24.8)
over the previous best transduction-based model
BERT + TRANSDUCTION on GrailQA.

Table 3 shows model performance on WebQSP.
Given predicted entities, our model outperforms
previous models (except for QGG (Lan and Jiang,
2020)) and even outperforms these models with
oracle entities: GRAFT-Net, PullNet, and Embed-
KGQA. Given oracle entities, the performance of
our model further boosts to 74.7 F1, which shows
the potential gains with a better entity linker.

While most SOTA models constrain their answer
space by assuming a fixed number of hops, we
conduct experiments on both datasets without such
assumptions, which simulates real world scenarios.
QGG works well on WebQSP by accessing the KB
via SPARQL when generating the query graph at
each step. However, as noted in Gu et al. (2021),
extending QGG to consider 3-hops relations on
GrailQA will take a few months to train, which
is time consuming. It works poorly on GrailQA
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Example Right

Query: which journal did don slater serve as editor on the editor in chief?
Predict: (AND book.journal (JOIN book.periodical.editorial staff (AND (JOIN book.editoria

l tenure.editor m.05ws t6) (JOIN book.editorial tenure.title m.02wk2cy))))

X

Golden: (AND book.journal (JOIN book.periodical.editorial staff (AND (JOIN book.editoria

l tenure.editor m.05ws t6) (JOIN book.editorial tenure.title m.02wk2cy))))

Query: which exhibition has the same exhibition curator with venice biennale of architecture taiwan pavillion
2006?
Predict: (AND exhibitions.exhibition (JOIN exhibitions.exhibition.curators (JOIN ( R exhi

bitions.exhibition.curators) m.064dsyn)))

X

Golden: (AND exhibitions.exhibition (JOIN (R exhibitions.exhibition curator.exhibitions cu

rated) (JOIN exhibitions.exhibition curator.exhibitions curated m.064dsyn)))

Query: how is surface density measured in international system of units?
Predict: (AND measurement unit.unit of density (JOIN measurement unit.unit of density.measure

ment system m.0c13h))

×

Golden: (AND measurement unit.unit of surface density (JOIN measurement unit.unit of surface

density.measurement system m.0c13h))

Table 4: Case Study. Three examples from the development set of GrailQA dataset. Brown words denote semanti-
cally equivalent schema items. Red words denote inconsistent schema items.

under 2-hop assumption.
By removing the checker module, the perfor-

mance drops 21.1 and 14.1 F1 points on GrailQA
and WebQSP respectively, which demonstrates the
significant effectiveness of the checker. Except
for QGG mentioned above, GrailQA RANKING

model takes an average 115.5 seconds17 to process
one query, which is not applicable for online sys-
tems. In contrast, ReTraCk takes only 1.62 seconds
per query on average at its current implementation
which demonstrates its efficiency.

3.5 Case Study

To demonstrate ReTraCk’s capability, we show
three typical examples from the development set
of GrailQA dataset in Table 4. In the first case,
ReTraCk accurately links two mentions (don slater
and editor in chief ) in the query to correspond-
ing entities (m.05ws t6 and m.02wk2cy) in Free-
base. It also retrieves all necessary schema items
(three relations and one type) via schema retriever.
The transducer equipped with checker accurately
understands the meaning of query and compose
the complex logical form with five operators. The
predicted logical form is exactly the same as the
golden logical form. As for the second case, Re-
TraCk parses the query to a logical form which is
semantically equivalent to the golden logical form,
which demonstrates the existence of program alias.
As for the third case, ReTraCk ignores the seman-

17Data are derived from https://github.com/dki-lab/
GrailQA

tics conveyed by the word surface in the query, and
selects wrong schema item unit of density in-
stead of unit of surface density. This example
shows that our model sometimes only captures part
of the semantics in the query and misses some span
information.

4 Conclusion

We present ReTraCk, a semantic parsing frame-
work for KBQA. ReTraCk is flexible and efficient,
achieving strong results on two distinct KBQA
datasets. We hope that ReTraCk will be benefi-
cial for future research efforts towards developing
better KBQA systems.
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A Entity Linker

The entity linker used in this paper follows the
typical pipeline that consists of three sub-modules:
mention detection, candidate generation and entity
disambiguation. Following the previous work Gu
et al. (2021), we use a BERT-based NER system18

to detect the entity mentions and literals (e.g., nu-
merical values and datetime) in the question. Then
we generate candidate entities along with their prior
probability using an alias map mined from the KB
and FACC1 (Gabrilovich et al., 2013), a large entity
linking corpus.

For entity disambiguation, we adopt the state-of-
the-art neural entity disambiguation model BOOT-
LEG (Orr et al., 2021)19 which shows decent gen-
eralization performance over long-tail entities. In
BOOTLEG, each entity is represented with three
levels information: its unique entity embedding, at-
tached types’ embedding and relations’ embedding,
and leverage BERT (Devlin et al., 2019) to encode

18https://github.com/kamalkraj/BERT-NER
19http://ai.stanford.edu/blog/bootleg/

the context. Besides, we also combine the prior
score from the candidate generation step and the
context compatibility score from BOOTLEG with
two fully connected layers of 100 hidden units and
ReLU non-linearities. Note that existing KBQA
datasets do not provide the mention boundary an-
notations. We generated the distantly supervised
training data for both named entity recognition
and entity disambiguation by aligning the natural
language question with entities’ observed aliases
mined from the candidate generation step.

We evaluate the performance of our entity linker
on GrailQA dev set and WebQSP test set. We com-
pare its performance with the following baselines:
1) Aqqu (Bast and Haussmann, 2015) which is a
rule based entity linker using linguistic and entity
popularity features. 2) GrailQA (Gu et al., 2021)
which is a prior baseline. 3) Prior which is a prior
baseline implemented by us. 4) BOOTLEG (Orr
et al., 2021) which is trained using distantly aligned
question answering data. 5) BOOTLEG + Prior
which is the full disambiguation model used in this
paper.

As you can see from Table 5, our Prior performs
slightly better than the GrailQA (Gu et al., 2021)’s
Prior by 0.8 F1 points on GrailQA. What’s inter-
esting is that the BOOTLEG trained with GrailQA
data is even inferior than Prior baseline by 4.8 F1
points. However, BOOTLEG + Prior improves over
BOOTLEG and Prior by 4.4 F1 points and 9.2 F1
points respectively. The above experiment results
show that the prior feature is very important and
orthogonal to the BOOTLEG model in the question
entity linking. As shown in Table 6, similar conclu-
sions can be derived from the experiment results on
WebQSP dataset. Compared with experiments on
GrailQA, the performance of BOOTLEG is lower
with only 58.5 F1 score and the improvement of
BOOTLEG + Prior over Prior is reduced by 1.7 F1
points. This is mainly because the size of training
data of WebQSP (3,098 instances) is much smaller
than GrailQA (44,337 instances) which limits the
learning of BOOTLEG model.

B Dense Schema Retriever

In principle, the encoders can be implemented by
any neural networks (Karpukhin et al., 2020). We
use two independent BERT-base encoders (Devlin
et al., 2019).

Training The goal of training the encoders is
to create a vector space such that relevant schema

https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
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Overall I.I.D. Com Zero

Aqqu (Bast and Haussmann, 2015) 14.5 − − −
GrailQA (Test set ) (Gu et al., 2021) 75.2 − − −
GrailQA (Dev set) (Gu et al., 2021) 72.2 − − −
Prior 73.0 78.6 74.9 69.7
BOOTLEG 68.2 78.6 70.6 62.5
BOOTLEG + Prior 77.4 86.6 81.3 71.9

Table 5: F1 scores of various Entity linking models on GrailQA dev set.

Precision Recall F1

Prior 81.2 81.7 81.4
BOOTLEG 58.3 58.6 58.5
BOOTLEG + Prior 82.8 83.3 83.1

Table 6: Entity linking performance (set level metric
P/R/F1) on WebQSP test set.

items get higher scores with the given question. For
each pair of question and schema item (qi, si) in a
batch of size B, the loss is computed as:

L(qi,si)=−s(qi, si)+log

B∑
j=1

exp(s(qi, sj)). (4)

In-batch negatives have shown to be effective
for learning a bi-encoder architecture (Karpukhin
et al., 2020). To use in-batch negatives, we separate
relevant schema items of the same question into
different mini-batches. In this way, there are B
training instances in each batch and B− 1 negative
candidates for each question.

Dense Schema Retriever v.s. Neighbor Schema
Retriever To prune the decoding vocabulary
space, Gu et al. (2021) retrieves schema items
that are reachable by anchor entities within 2-hops
in KB, which is named after neighbor schema re-
triever. In this section, we compare the perfor-
mance of dense schema retriever proposed in this
work with the neighbor schema retriever. Fig. 5
shows the recall of the schema items with respect
to top-k retrieved candidates on GrailQA dev set.
Neighbor schema retriever obtains 69.2% type re-
call with an average of 112.1 candidate items while
dense schema retriever achieves 73.3% recall with
only 2 candidates and 98.5% recall with 100 can-
didates. Similar trends can be found in the rela-
tion recall curve in Fig. 5. Dense schema retriever
not only improves the recall of schema items, but
also reduces the candidate size, which benefits the
downstream transducer model.

1 50 100 150 200 250 300
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Figure 5: Top-k recall of schema retriever on GrailQA
dev set.

C Checking Procedure

The usage of 4 functions (instance checking,
type checking, virtual execution and
real execution) are explained in the paper.
Here we present an algorithm to introduce the
checking procedure better, as show in Algorithm
1.

D Detailed Hyper-parameter Setting

Entity Linker For the BERT-based NER model,
we use the uncased BERT-base model from the
Transformers library trained with AdamW opti-
mizer (learning rate: 5e-5) for 5 epochs. For
the entity disambiguation model, we use the de-
fault parameters from BOOTLEG. On GrailQA
dataset, we use the uncased BERT-base model
trained with SparseDenseAdam optimizer imple-
mented by BOOTLEG (learning rate: 1e-4) for 5
epochs. We add two fully connected layers of 100
hidden units and ReLU non-linearities to combine
BOOTLEG and the prior score feature. The entity
embedding size is set to 256, type and relation
embedding size is set to 128. The entity embed-
ding mask percentage is set to 0.8. On the smaller
dataset WebQSP, except training with a larger num-
ber of epochs (50), and the embedding size is set
to 64 to avoid overfitting, everything is the same as
the model on GrailQA. Through our experiments,
we select the best model based on the F1 score on
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Algorithm 1 Checking Process
Input: valid action candidates C, decoded logical form beam
L, knowledge base K
Output: logical form beam for the next step L̂
Algorithm:
L̂ = /O
Procedure static checking(C,L,K)

for each action sequence s in L do
for each valid action candidate c in C do

if not instance checking(s, c) then
continue

if not ontology checking(s, c) then
continue

. novel checking techniques can be added here
ŝ ←〈s1, s2, · · · , s|s|, c〉
L̂ ← L̂ ∪ {ŝ}

L̂ = kbest beam(L̂, k) . keep top k scoring candidates in L̂
Procedure dynamic checking(L̂)

for each action sequence ŝ in L̂ do
τ = ŝ|ŝ|
While τ corresponds to a full sub-program do
r = virtual execution(τ)
if not r then
L̂ ← L̂ remove ŝ
break

τ ← parent node of τ in AST tree
if ŝ arrives at the end then
r = real execution(ŝ)
if r then
L̂ ← {ŝ} . only keep the first executable ŝ
break

return L̂

dev set of each dataset. We pass top-3 and top-5
candidate entities per entity mention to the down-
stream transducer model on GrailQA and WebQSP
dataset respectively.

Dense Schema Retriever We use the uncased
BERT-base model from the Transformers library
trained with AdamW optimizer (learning rate: 1e-
5) for 10 epochs. We select the best model based
on the recall of schema items on the dev set of each
dataset. On GrailQA dataset, we retrieve top-100
type items and top-150 relation items. On WebQSP
dataset, we retrieve top-200 type items and top-500
relation items.

Parser We implement our model based on Py-
Torch and AllenNLP. With respect to BERT, we use
the uncased BERT-base model from Transformers
library. In training, we employ the Adam optimizer.
The learning rate of our model is set to 1e-3, except
for BERT, which is set to 2e-5. The training time of
our model on single Tesla V100 is approximately
20 hours. We select the best model based on the ex-
act match ratio between the predicted logical form
and golden logical form.


