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Abstract

This paper describes the DeepMind submis-
sion to the Chinese→English constrained data
track of the WMT2020 Shared Task on News
Translation. The submission employs a noisy
channel factorization as the backbone of a doc-
ument translation system. This approach al-
lows the flexible combination of a number of
independent component models which are fur-
ther augmented with back-translation, distilla-
tion, fine-tuning with in-domain data, Monte-
Carlo Tree Search decoding, and improved un-
certainty estimation. In order to address per-
sistent issues with the premature truncation of
long sequences we included specialized length
models and sentence segmentation techniques.
Our final system provides a 9.9 BLEU points
improvement over a baseline Transformer on
our test set (newstest 2019).

1 Introduction

The WMT2020 Shared Task on translating news
data from Chinese into English provides a chal-
lenging test for machine translation systems and
an ideal domain for researchers to evaluate new
techniques. The DeepMind submission to the con-
strained data track is based on the modular noisy
channel document translation architecture advo-
cated by Yu et al. (2020). In this formulation, the
posterior probability of a translation is the product
of the unconditional probability of the output doc-
ument (the language model) and the conditional
probability of the translation from the output to
source (the channel model). By assuming sentences
within a document are independently translated, we
can train the channel model using readily available
parallel sentences, rather than being reliant on less
numerous parallel documents, and the language
model on monolingual documents. This modular
approach allows the components of the system to be

∗*Equal contribution.

implemented and optimized independently while
at inference time, when we reason over the pos-
terior distribution of translations given the source
document, conditional dependencies between trans-
lations are induced by the language model prior.

The core of our document-level translation ar-
chitecture is the noisy channel reranker. It requires
proposal, channel, and language models, each of
which is optimized separately using different tech-
niques and approaches. For the proposal and chan-
nel models we use Transformer models (Vaswani
et al., 2017) (§4.1) with data augmentation (§4.2),
such as back translation (Edunov et al., 2018), dis-
tillation (Kim and Rush, 2016; Liu et al., 2016),
and forward-translated parallel documents. We fur-
ther improve these sequence-to-sequence (seq2seq)
models by fine-tuning them with in-domain data
(§4.3). To improve the robustness of the reranker
we apply adversarial training and contrastive learn-
ing methods for uncertainty estimation (§4.4). Fi-
nally, we include candidate translations generated
by Monte-Carlo Tree Search (MCTS) (§B) in order
to improve the diversity of the candidate pool for
the reranker. Our language models are based on
the Transformer-XL architecture (Dai et al., 2019)
and optimized with distillation and fine-tuning with
in-domain data (§5).

During development, we observed weaknesses in
our system’s translations for long sentences, largely
due to premature truncations. We developed several
techniques to mitigate this issue such as sentence
segmentation (breaking sentences into logical com-
plete segments) and training specialized models
with synthetically constructed long sequences to
generate additional proposals for our reranker (§A).

Experiments show that the aforementioned tech-
niques are very effective: our system outper-
forms the Transformer baseline by 9.9 BLEU
points on our test set (newstest2019). Our final
system achieves a BLEU score of 35.4 on the
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Chinese→English news test set of WMT2020.

2 Document Translation via Bayes’ Rule

Following Yu et al. (2020), we model document
translation via Bayes’ rule. We define X =
(x1,x2, . . . ,xI) as the source document with I
sentences, and similarly, Y = (y1,y2, . . . ,yJ) as
the target document with J sentences, where xi

and yj denote the ith sentence in the source docu-
ment and the jth sentence in the target document
respectively. We assume that I = J .

The translation of a document X is determined
by finding the document Ŷ , where p(Ŷ | X) is
maximal.

Ŷ = argmax
Y

p(Y |X)

= argmax
Y

p(X | Y )︸ ︷︷ ︸
channel model

× p(Y )︸ ︷︷ ︸
language model

. (1)

We further assume that sentences are independently
translated, and that the sentences within a docu-
ment admit a left-to-right factorization according
to the chain rule. Therefore, we have

Ŷ ≈ argmax
Y

|Y |∏
i=1

p(xi | yi)× p(yi | Y <i), (2)

where Y <i = (y1, . . . ,yi−1) denotes a document
prefix consisting of the first i− 1 target sentences.

The advantages of this formulation is that dur-
ing training the translation models can be learned
from parallel sentences and monolingual docu-
ments which are vastly available in practice un-
like parallel documents. During test time, when a
source document is observed, conditional depen-
dencies between the translation of the source sen-
tences are created in the posterior.

2.1 Reranking

Because of the global dependencies in the poste-
rior distribution, decoding in the aforementioned
document translation model is computationally ex-
pensive. Following Yu et al. (2020), we use an aux-
iliary proposal model q(y | x), that approximates
the posterior distribution using a direct model, to
focus our search on promising parts of the output
space. We then carry out the reranking process
using an iterative beam search, over candidates
generated by the proposal model q, to optimize the

objective:

O(X,Y <i,yi) = λ1 log pPM(yi | xi)+

λ2 log pAM(yi | xi)+

λ3 log pCM(xi | yi)+

log pLM(yi | Y <i)+

λ4|yi|+
O(X,Y <i−1,yi−1), (3)

where pPM is the proposal probabilities model, pAM
is the adversarially trained proposal model (§4.4.1),
pCM is the channel model (§4.4.2), pLM is the lan-
guage model (§5.1), and |y| denotes the number of
tokens in the sentence y. The weights of compo-
nent models (λs) are hyperparameters to be tuned
in experiments.

In practice, we generate for each source sentence
xi in the document X , a series of candidates yi,
using the proposal model q. As all of the terms in
the objective, except for pLM, only involve indepen-
dent target sentences, they can be computed ahead
of time in a scoring phase. The scored candidates
are then passed to the reranker, where the language
model is evaluated on the successive prefixes ex-
plored by the search, and which outputs the final
document Ŷ .

Iterative beam search The algorithm starts with
k complete documents using randomly selected
candidates for each of the source sentences. We
then iterate through every source sentence xi, re-
placing the randomly picked initial candidate with
every available candidate yi. We pick the top k
scoring complete documents and continue iterat-
ing over the document. Unlike traditional beam
search used by Yu et al. (2020), we go through
every sentence in the document multiple times, un-
til the top 1 translation converges (usually 2 to 4
full iterations). This allows for context from latter
sentences in the document to inform the choice of
earlier candidates.

Iterative beam search found improvements in
the model objective over traditional beam search
in 63% of the documents in our test set. Improve-
ments in objective did not translate in a stable im-
provement in BLEU or META scores (Eqn. 4) –
in fact those scores were slightly reduced for a
number of documents. Nevertheless, an informal
human evaluation of translated documents showed
preference for iterative beam search.

Selection of the hyperparameters λ We per-
form a grid search over the hyperparameters λ to
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maximize a metric on the validation set. The metric
we use is the following META score, combining
corpus-level BLEU, TER, METEOR, and the 0.1-
quantile of per-document BLEU, such that:

(1−META)4 =TER×
(1− BLEU)×
(1−METEOR)×
(1− q0.1(BLEU)). (4)

When several configurations of hyperparameters
achieve values of META very close to the maxi-
mum (within 0.02), we pick the one maximizing
BLEU and/or minimizing the L2 norm of the λs,
considered as a vector. This corresponds to an
intuitive prior towards giving more weight to the
language model.

3 Training Data

To train all of the models used in our system, we
made use only of the constrained data provided to
shared task participants. In this section, we discuss
the preprocessing and normalization techniques
we carried out in an attempt to reduce spurious
uncertainty in the modeling problem.

Text preprocessing We carried out the following
text normalization steps prior to use in any models:

• Text normalization. Unicode canonicalization
(NKFD from), replacement of common mul-
tiple encoding errors present in training data,
standardization of quotation marks into “direc-
tional” variants, conversion of any traditional
Chinese characters into simplified forms. Re-
placement of non-American spelling variants
with American spellings using the aspell li-
brary.1

• Segmentation into words. Chinese was seg-
mented into word-like units using the Jieba
segmentation tool.2 Punctuation was split
from English words using a purpose-built li-
brary. These processes were not completely
invertible, but they could be undone with sim-
ple rules so as to generate presentation-ready
English and Chinese.

• True-casing. Words containing only an ini-
tial capital letter that occurred at the start of

1http://wordlist.aspell.net/
varcon-readme/

2https://github.com/fxsjy/jieba

a sentence were replaced with the capitalized
variant that occurred most frequently in other
positions of the English monolingual training
data. Thus, in the previous sentence the ini-
tial token would have been words rather than
Words.

Subword units To encode text into sub-word
units, we used the sentencepiece tool (Kudo
and Richardson, 2018). For seq2seq models (i.e.,
the channel model and proposal models), we
trained the segmentation model on the first 10 mil-
lion sentences of the parallel training corpus,3 us-
ing joint source and target unigram (Kudo, 2018)
subword segmentation algorithm with a target vo-
cabulary of 32K tokens and minimum character
coverage of 0.9995, which resulted in 32,768 word
pieces.4 For the language model, we used the En-
glish side alone with the same vocabulary size and
a character coverage of 1.0.

4 Proposal and Channel Models

The proposal model, used to generate candidate
translations, and the scoring models (proposal
probability model, adversarially-trained proposal
model, channel model), used to compute features
for the reranker, are seq2seq models. We describe
here how we train and use them.

4.1 Sequence-to-Sequence Model

All our models are based on the Transformer ar-
chitecture (Vaswani et al., 2017). We increased
the inner dimension of the feed-forward network
from 4,096 to 8,096 and decreased the model size
(dmodel) from 1,024 to 512, which allowed us to
use 12 layers with 16 attention heads each. Addi-
tionally, we tied the source and target embedding
layers. Following (Vaswani et al., 2018), we ap-
plied layer normalization to the input of every sub-
layer as opposed to its original placement after the
element-wise residual addition. We used different
dropout values for different components: 0.1 for
the multi-head attention, 0.05 in the feed-forward
network, and finally 0.3 after the sub-layer. Learn-
ing rate schedule and dropout were found using
the Batched Gaussian Process Bandits (Desautels
et al., 2014) algorithm as implemented by Vizier
(Golovin et al., 2017). All other hyperparameters

3NC followed by CWMT, WikiTitles and UN.
4We tried both larger vocabulary sizes and separate vo-

cabularies but neither of these led to an improvement for our
system.
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were decided upon using grid search. During train-
ing, we used a maximum sequence length of 96.
For decoding, we used beam search with beam size
6, and set the length penalty alpha to 0.8, and a
maximum decoding length of 384. Multi model
ensembling was done via softmax output averaging
as described in (Freitag et al., 2017).

4.2 Data Augmentation

In this section, we introduce how we augment data
based on the given bilingual data and monolingual
data. When we train the proposal and channel
models, we use all the augmented data along with
the original bilingual data.

Back-translation We perform back-translation
from monolingual English data using fine-tuned
channel models (English→Chinese) with top-k
sampling following (Edunov et al., 2018) with
k = 50 during decoding. We used the same in-
domain monolingual data as described in §5.2. We
score the back-translated data with fine-tuned pro-
posal (Chinese→English) models, and filter them
based on the quantiles of length ratios, sequence
log-probability and cross-entropy between one-hot
empirical translations and logits from the scorer
model. The filtering helped to reduce the size of
data from 43.4M to 29.9M paired sentences.

Forward translation to generate synthetic par-
allel documents We applied a version of our sys-
tem to monolingual Chinese documents from Gi-
gaword to get synthetic English documents. We
only kept documents having between 4 and 25 sen-
tences, we rejected outliers according to their prob-
abilities under the language model, the channel
model, and to the overall objective. These were
then used to train subsequent versions of the for-
ward (Chinese→English) models.

Data distillation We use knowledge distillation
(Kim and Rush, 2016) to do distillation on the
original dataset. Specifically, we translate the
source-side of the bilingual data using previously
trained proposal models (including Right-to-Left
(Liu et al., 2016) and Left-to-Right models) and
generate distilled candidates. The generated sen-
tences are filtered if BLEU scores are below 30
(Wang et al., 2018; Sun et al., 2019). We then train
models on the filtered data along with the original
bilingual data and back-translation data. We repeat
this process three times using models trained on
newly generated data from the previous iteration.

We empirically do not find Right-to-Left models
significantly differ from Left-to-Right models in
performance. Qualitatively we find that distilled
data correct few errors in the original bilingual data.

4.3 Fine-tuning

Fine-tuning with in-domain data has been an ef-
fective approach for improving translation quality
as shown by existing work (Sun et al., 2019; Ng
et al., 2019). After training the proposal models
with the mix of real and synthetic parallel data, we
fine-tuned the models with CWMT and a subset
of newstest2017 and newstest2018 which were not
used for validation.

4.4 Improving Uncertainty Estimation

To improve the robustness of noisy channel rerank-
ing, we explore two approaches for improving un-
certainty estimation of the seq2seq scoring models.

4.4.1 Adversarially Trained Proposal Models
To simulate different wordings and noises in source
and candidate sentences, we follow Cheng et al.
(2019) to train the models on noisy adversarial
inputs and targets. We use bidirectional language-
models to provide the noisy candidates and select
the candidates with highest loss (i.e., adversarial
source-target inputs). During the training, we op-
timize the original loss with clean source-target
pairs, the language model losses for source and tar-
get sides, and the adversarial loss using adversarial
source-target inputs. In the final scoring, we use
an ensemble of eight adversarially trained models
with few differences from Cheng et al. (2019): (a)
We explore training with and without the language
model losses. Though the models trained without
the language model loss generate quite noisy sen-
tences, we empirically find this approach still helps
the overall performance. (b) In addition to using
the clean hard-labels for the noisy source-target
pairs for the adversarial loss as in the original work,
we explore a variation using a KL loss between
the adversarial source-target logits and the clean
source-target logits. We find this variant also im-
proves the overall performance.

4.4.2 Contrastive Channel Models
When scoring candidates, we want the channel
models to be sensitive to translation noise (dropped
words, permutation, or blanked words) (Edunov
et al., 2018). Hence, we develop contrastive train-
ing (Yang et al., 2019; Welbl et al., 2020) to train
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the models such that it will be more robust in esti-
mating the channel probabilities. Specifically, we
use n-gram Transformers (Chelba et al., 2020) with
the contrastive loss:

max {log p(x̃ | y) + η − log p(x | y), 0} , (5)

where x̃ denotes a noisy version (random word
deletion, blank, or permutation) of x, and p(x̃ | y)
is the perturbed loss term. We ensemble 8 models
with a few variants for final channel model scoring.
These variants consist of the followings: (1) We use
η = {0.01, 0.001}. (2) We use n-gram transformer
with n = 2, 8. (3) We use models with perturbing
source sentences p(x̃ | y) and models with perturb-
ing target sentences p(x | ỹ). (4) Instead of using
the contrastive loss, we include two models trained
to minimize the perturbed loss terms directly. (5)
Unlike Yang et al. (2019), where the authors firstly
train with the maximum likelihood objective and
then finetune with the contrastive loss, we find it
empirically works better to train models with lin-
early increased weights (increasing from 0 to 1
during training) to the contrastive loss (Eq. (5))
along with the original negative log likelihood loss.

4.5 Filtering Candidate Translations
After obtaining candidate translations from strong
proposal models, we filter out candidates with
length ratio outside of [e−1, e1], or which do not
end with end-of-sentence punctuation when the
source does, or with more than 4 consecutive iden-
tical tokens, or which are excessively compressible,
indicating repeated contents, according to the fol-
lowing. We learn a piece-wise linear ordinary least
squares model of the zlib-compressed length of
true English sentences from their uncompressed
length in UTF-8, using the English side of the
training data. We then reject candidates the actual
compressed length of which is more than 12 stan-
dard deviations below their predicted compressed
length.

5 Language Model

In this section, we describe the architecture of the
language models we used and how we trained them.

5.1 Model
The auto-regressive document language model is
a Transformer-XL (Dai et al., 2019), with atten-
tion memory length of 512. Following Rae and

Model Train Data Fine-tuning PPL

Transformer-XL Raw No 29.4
Transformer-XL In domain No 27.4
+ memory + BANN In domain No 26.7
+ memory + BANN In domain Yes 24.3

Table 1: Language model perplexities per token on the
validation set

Razavi (2020), we also used 4-layer blocks of
short and long (128-128-128-512) attention memo-
ries, capturing short-range correlations in the ear-
lier layers and long-range correlations in the later
ones. This led to a 20% speedup of training, and
helped the model generalize better to the valida-
tion set. We also used knowledge distillation in
our Transformer-XL model with a setup similar to
Born Again Neural Networks (BANN) (Furlanello
et al., 2018), where we regularize the original loss
function with term based on the cross-entropy be-
tween the new models outputs (student) and the
outputs of the original (teacher) model.

Let L denote cross entropy loss function, y one-
hot encoded label, s and t outputs of the student
and teacher model respectively, then the BANN
loss is defined as follows:

LBANN =
T∑
i=1

L(yi, si) + λ · L(ti, si). (6)

We trained our student network on the loss func-
tion in Eqn. 6 and found that λ = 1 had the best
validation perplexity.

5.2 Data
The English data used to train our language models
was prepared as described in §3.

In-domain document data for LM training
We found that training LMs on a subset of train-
ing data that was more closely aligned with the
validation set vastly improved the perplexity on
the validation and test sets (≈ 10%). To select
a well-aligned subset of training data, we ranked
the training data according to TF-IDF similarity
with each validation document and collected the
top 1,000 documents for each validation query to-
gether, to form our training data for the LM training.
We also tried mixing this sub-sampled in-domain
data with the raw data using different weights (es-
sentially equivalent to up-weighting the in-domain
data) and found that using purely in-domain data
outperformed all other mixing schemes in terms
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System BLEU

Big Transformer 28.1
+ Data augmentation (§4.2) 33.6
+ Fine-tuning (§4.3) 35.8
+ Ensembling (§4.1) 36.6
+ Reranking (§2.1) 37.2
+ Length-targeting improvements (§A) 38.0

Table 2: SacreBLEU scores on newstest2019 Chinese-
English.

of held-out perplexities and thus, the in-domain
data became our training dataset. As an auxiliary
benefit, the model trained on the in-domain dataset
(340K iterations) also converged much earlier than
the one trained on the raw dataset (500K iterations).

Similar to the sequence model fine-tuning out-
lined in §4.3, we also fine-tuned our trained lan-
guage model in order to align the model more
closely with the language constructs and domain
information in our test data. Table 1 shows the
perplexity numbers on the validation set obtained
by different train data and model variants described
above on the validation dataset.

6 Experiments and Results

We use the original Chinese subset of newstest2017
and newstest2018 as our validation set and new-
stest2019 as our test set.

The candidate translations for the reranker are
generated by 8 ensemble models (6 from each).

Table 2 presents the results of our models on
the test set. We report case-sensitive SacreBLEU
scores (Post, 2018). Both data augmentation and
fine-tuning significantly improve the performance.
Ensembling and noisy channel reranking gives
about 0.8 and 0.6 BLEU boost, respectively. Fi-
nally, our specialized methods for handling long
sequences (described in §A) yield a further 0.8
BLEU improvement.

In our final submitted system, we tune the
weights of component models and the hyperpa-
rameters of sentence segmentation models using
a combination of our validation set and test set.
For the candidate translations of the reranker, apart
from the existing 48 proposals generated by 8 en-
semble models, we include additional 48 proposals
generated by 8 ensemble models which are fine-
tuned with CWMT, newstest2017, newstest2018,
and newstest2019. We also include translations

generated by MCTS decoding (§B) in our non-
primary system. We find that adding a feature
marking the length of source sentences longer than
60 words helps the reranker handle long sentences
better. We therefore include this feature in addi-
tion to proposal probability, adversarial proposal
probability, channel probability, language model
probability, and length bonus (Eqn. 3).

Our system achieves a 35.4 BLEU score on new-
stest2020.

7 Conclusion

This paper describes the DeepMind submission to
the WMT2020 news Chinese-English translation
task. Using the noisy channel model (Yu et al.,
2020) as our core document translation system, we
optimized its component models using data aug-
mentation, fine-tuning with in-domain data, MCTS
decoding (§B), and knowledge distillation. We
also addressed premature termination in long sen-
tences by training specialized length expert mod-
els and segmenting long sentences into multiple
shorter sentences (§A). We have demonstrated the
marginal contributions of these methods in our anal-
ysis and our final system comprising all these meth-
ods outperforms the Transformer baseline by 9.9
BLEU points on newstest2019.
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In the appendix, we additionally include the de-
scription of our specialized methods for handling
long sequences and the MCTS decoding algorithm.
The candidate translations generated by MCTS de-
coding are added to the candidate pool of the noisy
channel reranker in our non-primary system.

A Length Considerations

The WMT Chinese evaluation data presents docu-
ments as a sequence of segments. These segments
are sentence-like units that were delimited in the
original article by either unambiguous structural
transitions, such as the end of a headline, or unam-
biguous end-of-sentence punctuation (.!?). How-
ever, in some contexts, a complete Chinese sen-
tence may be ended with a comma (Xue and Yang,
2011). This leads to disproportionately more seg-
ments in the evaluation data being multi sentence
than in the training data, which consists primarily
of paired sentences, phrases, and words. Since gen-
eralization from short sequences to longer ones is
a weakness of neural sequence to sequence mod-
els (Lake and Baroni, 2018), to ensure that our
candidate pool contains adequate translations of
long sentences, we had special handling for long
sequences.

A.1 Length Analysis

There is a strong linear relationship between the
number of Chinese words in the source segment
and the number of English words in the translation
(Figure 1 Left). The translations from our initial
system were able to match this relationship when
the source segment contained less than 60 words.
After this point, the translations became too short.
Inspection of these translations showed that the pri-
mary cause of failure was emitting the EOS token
too early. Since the translations were good up to the
point of truncation, we focused on methods to pre-
vent early termination. Our final pool consisted of
candidates from our original proposal models only
for sentences that had less than 80 words and the
rest were generated from the techniques outlined
here.

A.2 Length Experts

We trained a number of length expert models with
a sequence length of 384 tokens. As few (≤ 1%)
sentences in the training data were longer than our
default sequence length, we used a mixture of real
parallel data, synthetic data as described in §??, and

concatenation of consecutive synthetic sentences to
train these length experts. In addition, we also used
the original proposal models which were further
fine-tuned with long sequences(≥ 60 tokens) as
additional length experts. These specialized models
to handle longer sentences were used to generate
proposals for sentences between 60 and 100 words.

A.3 Sentence Segmentation

We found that a lot of the long (≥ 60 words) sen-
tences in our dataset had complete sentences con-
catenated with commas, semicolons, full-stops, ex-
clamations and question marks. While the latter
ones are all conclusive end of sentences, commas
are ambiguous as an end of sentence. Hence, we
built a comma classifier that distinguished com-
mas that signify end-of-sentence from the normal
commas. While training data for this classifier was
generated as outlined in (Xue and Yang, 2011), our
classification model had feed-forward layers on top
of the Transformer encoders (further fine-tuned on
this task) that we trained for our translation task.
During inference time, we recursively split every
sentence on standard end-of-sentence punctuation
and then semicolons followed by terminal com-
mas (as determined by the comma classifier), into
reasonably sized segments (10-60 words); Very
short segments (< 10 words) were merged with
their neighboring segments. After this first wave of
splits, if long segments (≥ 60 words) still persisted,
we further split them recursively on all colons, com-
mas and reverse commas into segments between
40-60 words. Each segment was then translated
independently using our translation models. This
segmentation procedure was used to generate pro-
posals for all sentences that had more than 60 space-
separated words.

Sentence remerging model For each split of a
sentence, we obtain a list of candidate translations,
and need to combine this. For n splits with k trans-
lations each, we have kn translations in total. Pro-
vided n and k are reasonable, we can enumerate
these, but it is still too many candidates to present
directly to our global reranker, so we need to have a
“local” reranker that will select the best k′ of these.

To select these, we define a reranking model in
terms of our usual features (language model log
probability for the remerged sentence to ensure co-
herence, channel log probabilities for the remerged
candidate, sum of the direct translation log proba-
bilities for each segment, and the total length). We
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Figure 1: Relationship between the number of white space separated words on normalized text translation pairs.
Left is the ground truth for our validation and test datasets. Middle is our initial candidate pool for this data while
Right is our pool including candidates from length expert models and our segmentation technique. The black line
is the maximum likelihood fit under |yi| ∼ N (β · |xi|, σ) with the dotted grey dashed lines representing the 3σ
bounds.

select the remerged candidates k′ maximizing an
approximate lower bound of the corpus-BLEU.

Approximation to BLEU The weights of the
features are learned so as to minimize an approx-
imation to the expected negative log BLEU score.
For the reference sentence y and hypothesis ŷ, the
negative expected log BLEU score is defined as:

L = −E
[
min{0, 1− |y|/|ŷ|}+
4∑

i=1

log ci(ŷ,y)− log ri(y)
]
,

where ci is a function that counts the clipped i-
gram matches against a reference, and ri counts
the i-grams in a reference (Papineni et al., 2002).

Although our model assigns probabilities inde-
pendently to sentences, BLEU is defined on an
entire corpus, and because of the nonlinear func-
tions in BLEU, we cannot compute this expectation
tractably. We therefore approximate it by moving
the expectations inside the nonlinear functions:

L ≈ −
[
min{0, 1− |y|/E[|ŷ|]}+
4∑

i=1

logE[ci(ŷ,y)]− log ri(y)
]
.

In this approximation, the corpus-level expecta-
tions for i-gram counts and the length can be com-
puted tractably using the linearity of expectation.
To obtain a learning algorithm, we differentiate
this quantity with respect to the weightings of the
scoring models and perform gradient descent.

Even with our small number of features, this
objective has many local optima and in practice we
run the optimizer starting from different positions
and find a solution that obtains a high BLEU score
and highly weights the language model (during
development, we noticed that a higher weight to
LM probabilities corresponded to noticeably more
fluent translations, even if there was little difference
in BLEU).

B MCTS Candidates

The candidate pool generated by the sequence to
sequence model optimize the search space that is
favorable according to those models and may fail
find certain translations that score poorly according
to sequence to sequence models, but receive high
scores from the noisy channel model. In order to in-
clude such translations into the candidate pool, we
employ Monte Carlo Tree Search (MCTS), to opti-
mize the noisy channel objective directly. MCTS
does not require a partial translation evaluation
function, as opposed to Beam Search, making it an
appropriate choice for decoding non-factorizable
objective functions.

We define the translation environment as a pro-
gressive left-to-right language generation process,
where each state sy defines a sequence of tokens
y, and each action aw appends a word type w at
the end of the sequence generating a new state sy′ .
When an action appends the end of sentence token,
a terminal state is generated. The reward R for
terminal states corresponds to a log-linear combi-
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nation of model scores φ ∈M as follows:

R(sy) = exp

(∑
i∈M

λiφi(y)

)
, (7)

where λ denotes the weights attributed to each of
the models. Our MCTS decoder is composed of
two optimization processes running simultaneously.
The former aims at finding the optimal state R(sy)
for each of the sentences in the validation and test
sets. The latter maximizes the correlation between
the BLEU score on the validation set by optimizing
the weights λ.

B.1 Monte Carlo Tree Search with Log
Linear Models

MCTS decodes a sentence by growing a search
tree. Each node in the tree corresponds to a state
but adds additional statistics in order to optimally
expand the search tree. Expansion is achieved by
applying actions to existing nodes in the tree, gen-
erating child nodes. The search process starts with
a tree with root node, which corresponds to an
empty translation, and gradually expands the tree
by append new words to existing nodes in the tree.

Each MCTS iteration performs the following
four steps: selection, expansion, simulation and
backpropagation.

The selection step aims at choosing the most
likely node in the tree to generate the optimal
translation. We employ a standard criteria UCT
(Upper Confidence Bounds for Trees (Kocsis and
Szepesvri, 2006)), which selects nodes recursively
starting from the root according to the following
criteria:

UCT(s) = Q(s) + b

√
2 lnN(s′)

N(s)
,

where s denotes the current node and s′ is the par-
ent node. N(s) denotes the number of times s
was traversed by the selection process and Q(s)
denotes the average reward obtained from s in the
N(s) traversals. b is a constant that quantifies the
trade-off between exploitation and exploration. We
set it to b = 1 in our experiments.

In general the average value Q(s) is computed
by accumulating the reward V (s) obtained one any
traversals containing s, then computing Q(s) =
V (s)
N(s) . However, as our reward function (Eqn. 7) is
concurrently updated by optimizing the weights λ,
we store the accumulative individual scores Vi(s)

of each of the models φi. Prior to a MCTS iteration,
we update λ and compute Q(s) as follows:

Q(s) =
exp(

∑
i∈M λiVi(s))

N
.

This allows changes to the weights to be directly
reflected in the entire search tree without the re-
computation of any tree statistics. As for models
M , we trained 9 proposal models and 7 channel
models with the architecture defined in §4.1, and 8
language models with the architecture defined in
§5.1.

Once a node s is selected, a new child s′ is added
to the tree in the expansion step.

The simulation step attempt to compute the ex-
pected reward for s′. This is generally accom-
plished by performing multiple random rollouts
starting from state s′, where actions are sampled
from an uniform distribution until a terminal state
is found. These states are then scored according to
Eqn. 7. The estimate of the expected reward of s′

is computed as the mean of the scores of different
rollouts. However, the sparsity underlying natural
language generation and the computational com-
plexity of the scoring function makes this practice
computationally challenging. Rather than perform-
ing multiple rollouts that sample from an uniform
distribution at each timestamp, we perform a single
rollout that runs greedy decoding starting from the
translation prefix defined from state s′. As it is
computationally expensive to perform decoding for
each MCTS iteration, use a light-weight proposal
model trained on the same data, but with a simpler
architecture. For this purpose, we reduce the archi-
tecture described in §4.1 into a single layer seq2seq
layer with 128 hidden units. While this network
underfits the data, we found that this trade-off is de-
sirable as it reduces the large dimensionality of the
vocabulary to the few examples that are sensible at
each prefix leading to a significant speed-up. The
quality of the found translation remains unaltered
as the reward is still computed with the full models.

Finally, each of the model scores Vi(s′) is prop-
agated to all nodes from the root to s′ in the back-
propagation step.

B.2 Pairwise Reranking Optimization

In order to optimize the weights λ in Eqn. 7, we
we employ the weight optimization method for
log-linear models described in (Hopkins and May,
2011), which allows us to optimize our log-linear
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model with respect to the non-differentiable objec-
tive function that is BLEU. This method, denomi-
nated as PRO, approximates the objective function
by training a binary classifier, such that two trans-
lations y and y′ respect the following equality:

g(y) > g(y′)⇔
∑
i∈M

λi(φi(y)− φi(y′)) > 0,

where g is the objective function, namely BLEU.
Thereby, this requires the generation of pairs y and
y′, where the LHS property holds. These samples
are then used as data to train the model defined in
the RHS.

We generate the data by sampling from the
MCTS tree for each sentence pair in the devel-
opment set. As Q(s) is the expected score of a
log-linear model with probabilities as components
φ, we expect that Q(s) is bounded in the [0, 1] in-
terval. Thus, at node s′, the probability of sampling
child s is given by Q(s)∑

c∈C(s′) Q(c) , where C(s) de-

notes all children of node s′. Once a leaf node
is found, if it’s terminal we sample its translation,
otherwise we sample the translation obtained from
its rollout.

Both MCTS search and PRO optimization are
executed in parallel, as the former needs optimal
weights in order to optimally grow the search tree,
and the latter needs the search tree to generate can-
didates. Thus, at each iteration, the PRO optimizer
samples from the most updated version of the tree
for each data point in the development set, and up-
dates the set of weights λ, which are then used in
the subsequent MCTS iterations.


