
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1259–1264
Barcelona, Spain (Online), December 12, 2020.

1259

IIT Gandhinagar at SemEval-2020 Task 9: Code-Mixed Sentiment
Classification Using Candidate Sentence Generation and Selection

Vivek Srivastava, Mayank Singh
Indian Institute of Technology Gandhinagar

Gujarat India
{vivek.srivastava, singh.mayank}@iitgn.ac.in

Abstract

Code-mixing is the phenomenon of using multiple languages in the same utterance of a text or
speech. It is a frequently used pattern of communication on various platforms such as social
media sites, online gaming, product reviews, etc. Sentiment analysis of the monolingual text is
a well-studied task. Code-mixing adds to the challenge of analyzing the sentiment of the text
due to the non-standard writing style. We present a candidate sentence generation and selection
based approach on top of the Bi-LSTM based neural classifier to classify the Hinglish code-mixed
text into one of the three sentiment classes positive, negative, or neutral. The proposed approach
shows an improvement in the system performance as compared to the Bi-LSTM based neural
classifier. The results present an opportunity to understand various other nuances of code-mixing
in the textual data, such as humor-detection, intent classification, etc.

1 Introduction

Code mixing is one of the most frequent styles of communication in multilingual communities, such as
India. This pattern of communication on various platforms such as social media, online gaming, online
product reviews, etc. makes it difficult to understand the sentiment of the text. Sentiment classification
of the code-mixed text is useful in the scenarios of socially or politically driven discussions, fake news
propagation, etc. Some of the major challenges with the text in the code-mixed language are:
• Ambiguity in language identification: is, me, to are some examples of the words that are ambiguous

to classify as English and Hindi without proper knowledge of context.
• Spelling variations: E.g., jaldi, jldi, jldiii,.. are some variations for the word hurry in English.
• Misplaced/ skipped punctuation: E.g., Aap kb se cricket khelne lage..never saw u bfr.

The sentence in the example misses a question mark(?) apart from other necessary modifications to
make the structure of the sentence correct.
• Missing context: E.g., Note kr lijiye.. Bandi chal rahi h ;) is a code-mixed sentence and demonetisa-

tion (notebandi) is the hidden context.
With the increasing popularity of using code-mixing on social media platforms, the interest to study the

various dynamics of code-mixing is seeking a boom. Multiple works on language identification (Barman
et al., 2014; Das and Gambäck, 2014), POS tagging (Vyas et al., 2014; Ghosh et al., 2016), named entity
recognition (Singh et al., 2018a; Singh et al., 2018b), etc. shows the challenges and the opportunities with
the code-mixed data. Pang et al. (2008) presents a survey of the approaches to understand the opinions
and sentiments on various platforms. Dos Santos and Gatti (2014) performs the sentiment analysis task of
the short text messages on two corpora from different domains and present their findings. Kouloumpis et
al. (2011) presents multiple experiments to understand the sentiment of Twitter messages using linguistic
features and lexical resources. Sentiment analysis of the code-mixed Tweets using a sub-word level
representation (Prabhu and Verma, 2016) in the LSTM can improve the performance of the system. Swami

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1260

et al. (2018) presents a corpus to understand and detect the sarcasm of 5250 code-mixed English-Hindi
tweets.

Contributions: We present a candidate sentence generation and selection based procedure on top of
the Bi-LSTM neural classifier. We observe the increase in the system performance by using the proposed
architecture as compared to the Bi-LSTM classifier.

2 Dataset

We use the dataset (Patwa et al., 2020) provided by the task organizers for building our system (Codalab
username: vivek IITGN). Each sentence in the dataset has a sentiment label as positive, negative, or
neutral. Table 1 shows the distribution of the sentences in the train, validation, and test dataset for each
class. We have 15131, 3000, and 3000 sentences in train, validation, and test set, respectively. On manual
inspection of the dataset, we observe ambiguity in the annotation of the sentences. To examine this further,
we extract the top 20 most frequently used words in the dataset. We remove the English stopwords, and
we set a threshold of 4 characters on the length of the tokens to filter out the Romanized Hindi stopwords.
Table 2 shows the percentage overlap of most frequent 20 words of length more than four characters in the
train, validation, and test set. The high percentage overlap of most frequent neutral words with positive
and negative words also indicates the presence of ambiguity as a challenge in the annotation. Ambiguity
in the label for the sentence is one of the major challenges for understanding the sentiment of the sentence.
Figure 1 shows some of the example sentences in training set with ambiguous sentiment label. There could
be multiple reasons for the ambiguity in the annotation of the sentences such as hidden sarcasm, targeting
individual or institution, unclear intent, etc. It leads to human bias due to the annotator’s perception of
the event or the individual in the sentence. To preprocess the dataset, we remove hyperlinks, mentions,
hashtags, emoticons, and special characters from the sentences. We lowercase the sentences. To identify
and remove the emoticons from the sentences, we use the emoji sentiment dataset1.

Train Validation Test
Positive Sentences 5034 982 1000
Negative Sentences 4459 890 900
Neutral Sentences 5638 1128 1100

Table 1: Distribution of the sentences in the train, validation, and test set.

Training Set Validation Set Test Set
Positive Negative Neutral Positive Negative Neutral Positive Negative Neutral

Positive - 20 55 - 20 50 - 15 40
Negative 20 - 55 20 - 45 15 - 40
Neutral 55 55 - 50 45 - 40 40 -

Table 2: Percentage overlap of the most frequent 20 words of length more than 4 characters in the training,
validation, and test set.

3 Experiments

The availability of code-mixed embedding is a challenging task due to the scarcity of large scale code-
mixed corpora. We are using the Glove embedding (Pennington et al., 2014) for the English words, and
we train the embedding on the PHINC dataset (Srivastava and Singh, 2020) for the Romanized Hindi
words. We are using the code-mixed sentences from PHINC to train the code-mixed embedding.

Initially, we train the system using Bi-LSTM based neural architecture. The architecture of the Bi-
LSTM classifier has the embedding layer followed by the Bi-LSTM layer and then two dense layers and,
finally, the softmax prediction for the three sentiment classes. For prediction on the test set, we pre-filter

1https://www.kaggle.com/thomasseleck/emoji-sentiment-data



1261

CODE-MIXED SENTENCE: Twitter k baghair apna roza mumkin nahi hota ? Apna chutiyaap
dusron per thopna band karo Bhai ! https // t . co / APKD4G8lh0
ORIGINAL LABEL: Positive
CODE-MIXED SENTENCE: @ JDeepDhillonz Ha ha ha isko issi baat ka darr the tabhi Congi se
alliance ke peechey pada hua tha !
ORIGINAL LABEL: Negative
CODE-MIXED SENTENCE: @ Shaan pathan 14 @ DwivediAnukriti Ikk toh sarkar job ni de rhi
or upper se apne india ke log kaam karna nahi chahat . . . https // t . co / zfkm4obLd6
ORIGINAL LABEL: Neutral

Figure 1: Example sentences from the training set with ambiguous labels.

the sentence based on the list of abusive words. If a sentence contains any words from this list, we label
that sentence as negative. In the pre-filtering process, we identify 123 sentences in the test set containing
one or more of the abusive words from the list. Post pre-filtering step, we generate 15 candidate sentences
for each of the remaining test instance using the Candidate Sentence Generation (CSG) procedure. We
then select the best sentiment prediction for the sentence using the Candidate Sentence Selection (CSS)
procedure. Algorithm 1 shows the CSG procedure. Algorithm 2 shows the CSS procedure. Figure 2
shows the flow diagram of the proposed approach. In the CSG procedure, we try to confuse the model
with nearly similar sentences with additional phrases. We generate five similar sentences to the original
code-mixed sentence for each of the three buckets (positive, negative, and neutral). We detect the degree
of confusion in the sentiment prediction using the CSS procedure. We also keep track of the degree of
confusion by sentences in each bucket. If the degree of confusion is significantly higher, we change the
previous prediction by the model using the rules (as discussed in Algorithm 2).

Figure 2: Flow diagram of the proposed approach.

Phrases

Positive

good enough, sure thing, undoubtedly, theek hai, even so, indubitably, tathaastu, of course, savaida, certainly,
sakaaraatmak, gladly, affirmative, apanee marjee, abhee to, sabase adhik aashvast, amen, good, yakeenan, bahut achchha,

theek, precisely, by all means, beyond a doubt, surely, yeah, unquestionably, very well, exactly, positively, khushee se,
har tarah se, most assuredly, definitely, achchha

Negative
nowhere, nahin kar sakate, koee bhee nahin, nahin, wouldn’t, won’t, nahin hai, nahin karana chaahie, nahin kiya ja saka,

kabhee naheen, never, don’t, neither, couldn’t, nothing, doesn’t, koee nahin, barely, mushkil se, kuchh bhee to nahin, wasn’t,
shouldn’t, scarcely, nahin karata hai, hardly, nahin hoga, kaheen bhee nahin, no, not, na, nobody, can’t, shaayad hee, no one, none

Table 3: List of positive and negative phrases.

4 Results and Analysis

To evaluate the system performance, we use accuracy, precision, recall, and f-score as the evaluation
metric. Table 4 shows the distribution of the successfully and unsuccessfully modified sentences for the



1262

Algorithm 1 Candidate Sentence Generation (CSG) procedure
1: procedure CSG(CM sent)
2: Load the set of positive and negative phrases P. Table 3 shows the set P.
3: Set bcket1=[], bcket2=[], and bcket3=[]
4: for i=1→5 do
5: Create a set spotspos={sp1, sp2, ...} of randomly selected spots in CM sent
6: Create a set spotsneg={sn1, sn2, ...} of randomly selected spots in CM sent
7: Create a set spotsne={s1, s2, ...} of randomly selected spots in CM sent
8: Set sentpos=CM sent, sentneg=CM sent, and sentne=CM sent
9: for each spot spj in spotspos do

10: Randomly select a positive phrase ppos from the set P
11: Replace the phrase ppos at spot spj in sentpos
12: Add the new sentence sentpos in the list bcket1
13: for each spot snj in spotsneg do
14: Randomly select a negative phrase pneg from the set P
15: Replace the phrase pneg at spot snj in sentneg
16: Add the new sentence sentneg in the list bcket2
17: for each spot sj in spotsne do
18: Alternatively select phrase ppos and pneg from the set P
19: Replace alternatively the phrase ppos and pneg at spot sj in sentne
20: Add the new sentence sentne in the list bcket3
21: Return bcket1, bcket2, and bcket3

Algorithm 2 Candidate Sentence Selection (CSS) procedure
1: procedure CSG(pred sent, pred bcket1, pred bcket2,pred bcket3)
2: Set predƒ n=[]
3: if pred sent is Positive then
4: if most frequent prediction in pred bcket1 is Positive then
5: Set predƒ n= Positive
6: else
7: Set predƒ n= most frequent prediction in pred bcket2 and pred bcket3

8: else if pred sent is Negative then
9: if most frequent prediction in pred bcket2 is Negative then

10: Set predƒ n= Negative
11: else
12: Set predƒ n= most frequent prediction in pred bcket1 and pred bcket3

13: else
14: if most frequent prediction in pred bcket3 is Neutral then
15: Set predƒ n= Neutral
16: else
17: Set predƒ n= most frequent prediction in pred bcket1 and pred bcket2

18: Return predƒ n



1263

CODE-MIXED PRE-PROCESSED SENTENCE: rohit bhai i am your big fan want to meet you
SENTENCE WITH SPOTS (MARKED AS <SPOT>): rohit bhai i am <spot> your big fan <spot>
want to meet you
SENTENCE IN BUCKET 1: rohit bhai i am undoubtedly your big fan by all means want to meet you
SENTENCE IN BUCKET 2: rohit bhai i am scarcely your big fan shaayad hee want to meet you
SENTENCE IN BUCKET 3: rohit bhai i am positively your big fan kaheen bhee nahin want to meet
you

Figure 3: Example CSG procedure for sentences in all the three buckets. We select phrases in italics at
random from the list of positive and negative phrases and replace with <spot> as per the rule for each
bucket.

final prediction by the Bi-LSTM + CSG + CSS model. We use the prediction by the Bi-LSTM classifier
as the baseline. We observe relatively better successful modifications for the neutral sentences to and
from the positive and negative sentences. This result can be attributed to the high overlap in the most
frequent words in the neutral sentences with both the other classes (as discussed in section 2). Table 5
shows the system performance of the two models on the test dataset. We observe an increase in the system
performance with the use of CSG and CSS procedures on top of the Bi-LSTM classifier. Table 6 shows
the system performance on the test dataset with the classwise F-score as the evaluation metric.

Successful modification Unsuccessful modification
Positive Negative Neutral Positive Negative Neutral

Positive - 10 77 - 20 96
Negative 7 - 120 34 - 149
Neutral 189 95 - 153 100 -

Table 4: Distribution of the successful and unsuccessful modification of the test sentences by the Bi-LSTM
+ CSG + CSS model. We use Bi-LSTM classifier as the baseline. Prediction labels in the rows shows the
prediction by the Bi-LSTM classifier whereas the prediction labels in the columns are for the Bi-LSTM +
CSG + CSS model.

Accuracy Precision Recall F-score
Bi-LSTM 0.587 0.607 0.590 0.595

Bi-LSTM + CSG + CSS 0.608 0.618 0.609 0.612

Table 5: System performance on the test dataset. We use the macro score for evaluation.

Positive Negative Neutral
Bi-LSTM 0.621 0.643 0.520

Bi-LSTM + CSG + CSS 0.754 0.625 0.459

Table 6: Evaluation of the system performance based on classwise F-score.

5 Conclusion and Future Work

We present a Bi-LSTM based sentiment classifier for the classification of code-mixed Hinglish sentences.
We also propose a candidate sentence generation and selection based approach on top of the Bi-LSTM
based classifier to improve the system performance. Up to a certain extent, the proposed approach is able
to detect the ambiguous labels in the dataset. We can extend the proposed method to solve other challenges
relevant to code-mixing, such as sarcasm detection, fake-news identification, intent classification, etc.



1264

References
Utsab Barman, Amitava Das, Joachim Wagner, and Jennifer Foster. 2014. Code mixing: A challenge for lan-

guage identification in the language of social media. In Proceedings of the First Workshop on Computational
Approaches to Code Switching, pages 13–23, Doha, Qatar, October. Association for Computational Linguistics.

Amitava Das and Björn Gambäck. 2014. Identifying languages at the word level in code-mixed indian social
media text. In Proceedings of the 11th International Conference on Natural Language Processing, pages 378–
387.

Cicero Dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts.
In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical
Papers, pages 69–78.

Souvick Ghosh, Satanu Ghosh, and Dipankar Das. 2016. Part-of-speech tagging of code-mixed social media text.
In Proceedings of the Second Workshop on Computational Approaches to Code Switching, pages 90–97.

Efthymios Kouloumpis, Theresa Wilson, and Johanna Moore. 2011. Twitter sentiment analysis: The good the bad
and the omg! In Fifth International AAAI conference on weblogs and social media.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and sentiment analysis. Foundations and Trends R© in Informa-
tion Retrieval, 2(1–2):1–135.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Joshi Aditya Shrivastava Manish Prabhu, Ameya and Vasudeva Verma. 2016. Towards sub-word level composi-
tions for sentiment analysis of hindi-english code mixed text. arXiv preprint arXiv:1611.00472.

Kushagra Singh, Indira Sen, and Ponnurangam Kumaraguru. 2018a. Language identification and named entity
recognition in hinglish code mixed tweets. In Proceedings of ACL 2018, Student Research Workshop, pages
52–58.

Vinay Singh, Deepanshu Vijay, Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018b. Named entity recognition
for hindi-english code-mixed social media text. In Proceedings of the Seventh Named Entities Workshop, pages
27–35.

Vivek Srivastava and Mayank Singh. 2020. Phinc: A parallel hinglish social media code-mixed corpus for machine
translation. arXiv preprint arXiv:2004.09447.

Sahil Swami, Ankush Khandelwal, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018. A corpus
of english-hindi code-mixed tweets for sarcasm detection. arXiv preprint arXiv:1805.11869.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali, and Monojit Choudhury. 2014. Pos tagging of english-
hindi code-mixed social media content. In Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 974–979.


	Introduction
	Dataset
	Experiments
	Results and Analysis
	Conclusion and Future Work

