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Abstract
Probabilistic word embeddings have shown ef-
fectiveness in capturing notions of generality
and entailment, but there is very little work
on doing the analogous type of investigation
for sentences. In this paper we define prob-
abilistic models that produce distributions for
sentences. Our best-performing model treats
each word as a linear transformation opera-
tor applied to a multivariate Gaussian distribu-
tion. We train our models on paraphrases and
demonstrate that they naturally capture sen-
tence specificity. While our proposed model
achieves the best performance overall, we also
show that specificity is represented by simpler
architectures via the norm of the sentence vec-
tors. Qualitative analysis shows that our prob-
abilistic model captures sentential entailment
and provides ways to analyze the specificity
and preciseness of individual words.

1 Introduction

Probabilistic word embeddings have been shown
to be useful for capturing notions of generality
and entailment (Vilnis and McCallum, 2014; Athi-
waratkun and Wilson, 2017; Athiwaratkun et al.,
2018). In particular, researchers have found that
the entropy of a word roughly encodes its gener-
ality, even though there is no training signal ex-
plicitly targeting this effect. For example, hy-
pernyms tend to have larger variance than their
corresponding hyponyms (Vilnis and McCallum,
2014). However, there is very little work on doing
the analogous type of investigation for sentences.

In this paper, we define probabilistic models
that produce distributions for sentences. In partic-
ular, we choose a simple and interpretable prob-
abilistic model that treats each word as an opera-
tor that translates and scales a Gaussian random
variable representing the sentence. Our models
are able to capture sentence specificity as mea-
sured by the annotated datasets of Li and Nenkova

(2015) and Ko et al. (2019) by training solely
on noisy paraphrase pairs. While our “word-
operator” model yields the strongest performance,
we also show that specificity is represented by
simpler architectures via the norm of the sentence
vectors. Qualitative analysis shows that our mod-
els represent sentences in ways that correspond
to the entailment relationship and that individual
word parameters can be analyzed to find words
with varied and precise meanings.

2 Proposed Methods

We propose a model that uses ideas from flow-
based variational autoencoders (VAEs) (Rezende
and Mohamed, 2015; Kingma et al., 2016) by
treating each word as an “operator”. Intuitively,
we assume there is a random variable z associated
with each sentence s = {w1, w2, · · · , wn}. The
random variable initially follows a standard mul-
tivariate Gaussian distribution. Then, each word
in the sentence transforms the random variable se-
quentially, leading to a random variable that en-
codes its semantic information.

Our word linear operator model (WLO) has two
types of parameters for each word wi: a scaling
factor Ai ∈ Rk and a translation factor Bi ∈ Rk.
The word operators produce a sequence of ran-
dom variables z0, z1, · · · , zn with z0 ∼ N (0, Ik),
where Ik is a k× k identity matrix, and the opera-
tions are defined as

zi = Ai(zi−1 +Bi) (1)

The means and variances for each random variable
are computed as follows:

µi = Ai(µi−1 +Bi) (2)

Σi = AiΣi−1A
>
i (3)

For computational efficiency, we only consider
diagonal covariance matrices, so the equations
above can be further simplified.
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3 Learning

Following Wieting and Gimpel (2018), all of our
models are trained with a margin-based loss on
paraphrase pairs (s1, s2):

max(0, δ − d(s1, s2) + d(s1, n1))+

max(0, δ − d(s1, s2) + d(s2, n2))

where δ is the margin and d is a similarity function
that takes a pair of sentences and outputs a scalar
denoting their similarity. The similarity function
is maximized over a subset of examples (typically,
the mini-batch) to choose negative examples n1
and n2. When doing so, we use “mega-batching”
(Wieting and Gimpel, 2018) and fix the mega-
batch size at 20. For deterministic models, d is
cosine similarity, while for probabilistic models,
we use the expected inner product of Gaussians.

3.1 Expected Inner Product of Gaussians
Let µ1, µ2 be mean vectors and Σ1, Σ2 be the
variances predicted by models for a pair of input
sentences. For the choice of d, following Vilnis
and McCallum (2014), we use the expected inner
product of Gaussian distributions:∫

x∈Rk

N (x;µ1,Σ1)N (x;µ2,Σ2)dx

= logN (0;µ1 − µ2,Σ1 + Σ2)

= −1

2
log det (Σ1 + Σ2)−

d

2
log(2π)

− 1

2
(µ1 − µ2)>(Σ1 + Σ2)

−1(µ1 − µ2)

(4)

For diagonal matrices Σ1 and Σ2, the equation
above can be computed analytically.

3.2 Regularization
To avoid the mean or variance of the Gaussian
distributions from becoming unbounded during
training, resulting in degenerate solutions, we im-
pose prior constraints on the operators introduced
above. We force the transformed distribution after
each operator to be relatively close to N (0, Ik),
which can be thought of as our “prior” knowl-
edge of the operator. Then our training addition-
ally minimizes

λ
∑

s∈{s1,s2,n1,n2}

∑
w∈s

KL(N (µ(w),Σ(w))‖N (0, I))

where λ is a hyperparameter tuned based on the
performance on the 2017 semantic textual similar-
ity (STS; Cer et al., 2017) data. We found prior

Domain News Twitter Yelp Movie
Number of instances 900 984 845 920

Table 1: Sizes of test sets for sentence specificity.

regularization very important, as will be shown in
our results. For fair comparison, we also add L2
regularization to the baseline models.

4 Experiments

4.1 Baseline Methods

We consider two baselines that have shown strong
results on sentence similarity tasks (Wieting
and Gimpel, 2018). The first, word averaging
(WORDAVG), simply averages the word embed-
dings in the sentence. The second, long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997) averaging (LSTMAVG), uses an LSTM
to encode the sentence and averages the hidden
vectors. Inspired by sentence VAEs (Bowman
et al., 2016), we consider an LSTM based proba-
bilistic baseline (LSTMGAUSSIAN) which builds
upon LSTMAVG and uses separate linear transfor-
mations on the averaged hidden states to produce
the mean and variance of a Gaussian distribution.

We also benchmark several pretrained models,
including GloVe (Pennington et al., 2014), Skip-
thought (Kiros et al., 2015), InferSent (Conneau
et al., 2017), BERT (Devlin et al., 2019), and
ELMo (Peters et al., 2018). When using GloVe,
we either sum embeddings (GloVe SUM) or aver-
age them (GloVe AVG) to produce a sentence vec-
tor. Similarly, for ELMo, we either sum the out-
puts from the last layer (ELMo SUM) or average
them (ELMo AVG). For BERT, we take the repre-
sentation for the “[CLS]” token.

4.2 Datasets

We use the preprocessed version of ParaNMT-
50M (Wieting and Gimpel, 2018) as our training
set, which consists of 5 million paraphrase pairs.

For evaluating sentence specificity, we use
human-annotated test sets from four domains, in-
cluding news, Twitter, Yelp reviews, and movie re-
views, from Li and Nenkova (2015) and Ko et al.
(2019). For the news dataset, labels are either
“general” or “specific” and there is additionally a
training set. For the other datasets, labels are real
values indicating specificity. Statistics for these
datasets are shown in Table 1.

For analysis we also use the semantic textual
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similarity (STS) benchmark test set (Cer et al.,
2017) and the Stanford Natural Language Infer-
ence (SNLI) dataset (Bowman et al., 2015).

4.3 Specificity Prediction Setup

For predicting specificity in the news domain,
we threshold the predictions either based on the
entropy of Gaussian distributions produced from
probabilistic models or based on the norm of vec-
tors produced by deterministic models, which in-
cludes all of the pretrained models. The thresh-
old is tuned based on the training set but no other
training or tuning is done for this task with any
of our models. For prediction in other domains,
we simply compute the Spearman correlations be-
tween the entropy/norm and the labels.

Intuitively, when sentences are longer, they tend
to be more specific. So, we report baselines
(“Length”) that predict specificity solely based on
length, by thresholding the sentence length for
news (choosing the threshold using the training
set) or simply returning the length for the oth-
ers. The latter results are reported from Ko et al.
(2019). We also consider baselines that average or
sum ranks of word frequencies within a sentence
(“Word Freq. AVG” and “Word Freq. SUM”).

5 Results

5.1 Sentence Specificity

Table 2 shows results on sentence specificity tasks.
We compare to the best-performing models re-
ported by Li and Nenkova (2015) and Ko et al.
(2019). Their models are specifically designed for
predicting sentence specificity and they both use
labeled training data from the news domain.

Our averaging-based models (WORDAVG,
LSTMAVG) failed on this task, either giving the
majority class accuracy or negative correlations.
So, we also evaluate WORDSUM, which sums
word embeddings instead of averaging and shows
strong performance compared to the other models.

While the model from Li and Nenkova (2015)
performs quite well in the news domain, its per-
formance drops on other domains, indicating some
amount of overfitting. On the other hand, WORD-
SUM and WLO, which are trained on a large num-
ber of paraphrases, perform consistently across the
four domains and both outperform the supervised
models on Yelp. Additionally, our WLO model
outperforms all our other models, achieving com-
parable performance to the supervised methods.

News Twitter Yelp Movie
Majority baseline 54.6 - - -
Length 73.4 44.5 67.6 58.1
Word Freq. SUM 55.5 10.1 54.6 22.1
Word Freq. AVG 61.5 0.0 28.5 0.0

Prior work trained on labeled sentence specificity data
Li and Nenkova (2015) 81.6 55.3 63.3 57.5
Ko et al. (2019) - 67.9 75.0 70.6

Sentence embeddings from pretrained models
GloVe SUM 70.4 32.2 62.8 49.0
GloVe AVG 54.6 -49.6 -59.0 -38.2
InferSent 75.0 60.5 76.6 61.2
Skip-thought 57.7 2.9 14.1 27.2
BERT 64.5 20.8 29.5 18.1
ELMo SUM 65.4 46.2 72.7 59.3
ELMo AVG 56.2 -9.4 -0.9 -22.5

Our work
WORDAVG 54.6 -10.6 -32.3 -27.2
WORDSUM 75.8 57.9 75.4 60.0
LSTMAVG 54.6 -14.8 -41.1 -14.8
LSTMGAUSSIAN 55.5 3.2 2.2 4.1
WLO 77.4 60.5 76.6 61.9

Table 2: Sentence specificity results on test sets from
four domains (accuracy (%) for News and Spearman
correlations (%) for others). Highest numbers for the
models described in this work are underlined.

Full Length norm.
Majority baseline 54.6 50.1
WORDAVG 54.6 69.0
WORDSUM 75.8 68.6
LSTMAVG 54.6 69.6
LSTMGAUSSIAN 55.5 67.0
WLO 77.4 70.1

Table 3: Accuracy (%) for the specificity News test set,
in both the original and length normalized conditions.
Highest numbers in each column are in bold.

Among pretrained models, BERT, Skip-
thought, ELMo SUM, and GloVe SUM show slight
correlations with specificity, while InferSent
performs strongly across domains. InferSent uses
supervised training on a large manually-annotated
dataset (SNLI) while WORDSUM and WLO are
trained on automatically-generated paraphrases
and still show results comparable to InferSent.

To control for effects due to sentence length,
we design another experiment in which sentences
from News training and test are grouped by length,
and thresholds are tuned on the group of length k
and tested on the group of length k − 1, for all k,
leading to a pool of 3582 test sentences.

Table 3 shows the results. In this length-
normalized experiment, the averaging models
demonstrate much better performance and even
outperform WORDSUM, but still WLO has the best
performance.
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Entailment Neutral Contradiction
GloVe 42.5 53.8 39.6
InferSent 78.3 57.2 55.7
Skip-thought 62.5 54.3 57.3
ELMo 78.3 58.3 63.4
BERT 65.0 55.7 56.3
WORDAVG 77.5 50.0 57.2
WORDSUM 75.0 54.7 57.7
LSTMAVG 71.7 49.5 52.4
LSTMGAUSSIAN 65.0 49.5 48.6
WLO 75.8 54.7 57.2

Table 4: Percentage of cases in which hypothesis has
larger entropy (or smaller norm for non-probabilistic
models) than premise for equal-length sentence pairs
in the SNLI test set. In this setting, GloVe and ELMo
would give the same results under either SUM or AVG.

6 Analysis

6.1 Sentence Entailment

Vilnis and McCallum (2014) explored whether
their Gaussian word entropies captured the lexi-
cal entailment relationship. Here we analyze the
extent to which our representations capture sen-
tential entailment.

We test models on the SNLI test set, assuming
that for a given premise p and hypothesis h, p is
more specific than h for entailing sentence pairs.
To avoid effects due to sentence length, we only
consider 〈p, h〉 pairs with the same length. After
this filtering, entailment/neural/contradiction cat-
egories have 120/192/208 instances respectively.
We encode each sentence and calculate the per-
centage of cases in which the hypothesis has larger
entropy (or smaller norm for non-probabilistic
models) than the premise. Under an ideal model,
this would happen with 100% of entailing pairs
while showing random results (50%) for the other
two types of pairs.

As shown in Table 4, our best paraphrase-
trained models show similar trends to InferSent,
achieving around 75% accuracy in the entailment
category and around 50% accuracy in other cat-
egories. Although ELMo can also achieve simi-
lar accuracy in the entailment category, it seems
to conflate entailment with contradiction, where
it shows the highest percentage of all models.
Other models, including BERT, GloVe, and Skip-
thought, are much closer to random (50%) for en-
tailing pairs.

6.2 Lexical Analysis

WLO associates translation and scaling parame-
ters with each word, allowing us to analyze the

Small norm Large norm
small abs. ent. small ent. small abs. ent. small ent.

, addressing staveb cenelec
/ derived jerusalem ohim

by decree trent placebo
an fundamental microwave hydrocarbons

gon beneficiaries brussels iec
as tendency synthetic paras

having detect christians allah
a reservations elephants milan

on remedy seldon madrid
for eligibility burger ±

from film-coated experimental ukraine
’d breach alison intravenous
— exceed 63 electromagnetic
his flashing prophet 131
’ objectives diego electrons

upon cue mallory northeast
under commonly ö blister

towards howling natalie http
’s vegetable hornblower renal

with bursting korea asteroid

Table 5: Examples showing top-20 lists of large-norm
or small-norm words ranked based on small absolute
entropy or small entropy in WLO.

impact of words on sentence representations. We
ranked words under several criteria based on their
translation parameter norms and single-word sen-
tence entropies. Table 5 shows the top 20 words
under each criterion.

Words with small norm and small absolute en-
tropy have little effect, both in terms of meaning
and specificity; they are mostly function words.
Words with large norm and small entropy have a
large impact on the sentence while also making it
more specific. They are organization names (cen-
elec) or technical terms found in medical or sci-
entific literature. When they appear in a sentence,
they are very likely to appear in its paraphrase.

Words with large norm and small absolute en-
tropy contribute to the sentence semantics but do
not make it more specific. Words like microwave
and synthetic appear in many contexts and have
multiple senses. Names (trent, alison) also appear
in many contexts. Words like these often appear
in a sentence’s paraphrase, but can also appear in
many other sentences in different contexts.

Words with small norm/entropy make sentences
more specific but do not lend themselves to a pre-
cise characterization. They affect sentence mean-
ing, but can be expressed in many ways. For exam-
ple, when beneficiaries appears in a sentence, its
paraphrase often has a synonym like beneficiary,
heirs, or grantees. These words may have multiple
senses, but it appears more that they correspond to
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WORDSUM WLO
largest norm (specific) smallest norm (general) smallest entropy (specific) largest entropy (general)

this regulation shall not apply to wine grape
products, with the exception of wine vine-
gar, spirit drinks or flavoured wines.

oh, man, you’re gonna...
you’re just gonna get it,
vause*, aren’t you ?

under a light coating of dew she was a velvet
study in reflected mauve with rose overtones
against the indigo nightward* sky.

oh, man, you’re gonna... you’re just
gonna get it, vause*, aren’t you?

operating revenue community subsidies
other subsidies/revenue* total (a) operating
expenditure staff administration operating
activities total (b) operating result (c=ab)

okay, i know you don’t get re-
lationships, like, at all, but i
don’t need to screw anyone for
an “a.”

a similar influenza disease occurred in 47%
of patients who received plegridy 125 mi-
crograms every 2 weeks, and 13% of the pa-
tients were given placebo.

’authorisation’ means an instrument is-
sued in any form by the authorities by
which the right to carry on the business
of a credit institution is granted;

Table 6: Examples of most general and specific sentences for selected lengths (* = mapped to unknown symbol).

With Prior Without Prior
Acc. F1 Acc. F1

WLO 77.4 78.4 67.9 68.2

Table 7: Accuracy (%) and F1 score (%) for specificity
News test set with and without prior regularization.

STS Benchmark
WORDAVG 73.4
LSTMAVG 73.6
LSTMGAUSSIAN 74.3
WLO 73.7

Table 8: Pearson correlation (%) for STS benchmark
test set. Highest number is in bold.

concepts with many valid ways of expression.

6.3 Sentential Analysis

We subsample the ParaNMT training set and
group sentences by length. For each model and
length, we pick the sentence with either high-
est/lowest entropy or largest/smallest norm values.
Table 6 shows some examples. WORDSUM tends
to choose conversational sentences as general and
those with many rare words as specific. WLO fa-
vors literary and technical/scientific sentences as
most specific, and bureaucratic/official language
as most general.

6.4 Effect of Prior Regularization

As shown in Table 7, there is a large performance
improvement after adding prior regularization for
avoiding degenerate solutions.

6.5 Semantic Textual Similarity

Although semantic textual similarity is not our
target task, we still include the performance of
our models on the STS benchmark test set in
Table 8 to show that our models are competi-
tive with standard strong baselines. When using
probabilistic models to predict sentence similar-
ity during test time, we let v1 = concat(µ1,Σ1),
v2 = concat(µ2,Σ2), where concat is a concate-
nation operation, and predict sentence similarity
via cosine(v1, v2), since we find it performs better

than solely using the mean vectors. The two prob-
abilistic models, LSTMGAUSSIAN and WLO, are
able to outperform the baselines slightly.

7 Related Work

Our models are related to work in learning prob-
abilistic word embeddings (Vilnis and McCal-
lum, 2014; Athiwaratkun and Wilson, 2017; Athi-
waratkun et al., 2018) and text-based VAEs (Miao
et al., 2016; Bowman et al., 2016; Yang et al.,
2017; Kim et al., 2018; Xu and Durrett, 2018, in-
ter alia). The WLO is also related to flow-based
VAEs (Rezende and Mohamed, 2015; Kingma
et al., 2016), where hidden layers are viewed as
operators over the density function of latent vari-
ables.

Previous work on sentence specificity relies on
hand-crafted features or direct training on an-
notated data (Louis and Nenkova, 2011; Li and
Nenkova, 2015). Recently, Ko et al. (2019) used
domain adaptation for this problem when only the
source domain has annotations. Our work also re-
lates to learning sentence embeddings from para-
phrase pairs (Wieting et al., 2016; Wieting and
Gimpel, 2018).

8 Conclusion

We trained sentence models on paraphrase pairs
and showed that they naturally capture specificity
and entailment. Our proposed WLO model, which
treats each word as a linear transformation opera-
tor, achieves the best performance and lends itself
to analysis.
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A Supplementary Material

A.1 Hyperparameters
For all experiments, the dimension of word em-
beddings and word operator is 50. The dimension
of LSTM is 100. The dimension of Gaussian dis-
tribution for LSTMGAUSSIAN is 100. Mini-batch
size is 100. For LSTM, LSTMGAUSSIAN, and
WLO, we scramble training sentences with a prob-
ability of 0.4. For baseline models, the margin δ is
0.4. For other models, δ is 1. All models are ran-
domly initialized and trained with Adam (Kingma
and Ba, 2014) using learning rate of 0.001.
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