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Abstract
Electronic Health Records are a valuable source of patient information which can be leveraged to detect Adverse Drug Events (ADEs)
and aid post-mark drug-surveillance. The overall aim of this study is to scrutinize text written by clinicians in Swedish Electronic
Health Records (EHR) and build a model for ADE detection that produces medically relevant predictions. Natural Language Processing
techniques are exploited to create important predictors and incorporate them into the learning process. The study focuses on the five most
frequent ADE cases found in the electronic patient record corpus. The results indicate that considering textual features, can improve the
classification performance by 15% in some ADE cases, compared to a method that used structured features. Additionally, variable patient
history lengths are included in the models, demonstrating the importance of the above decision rather than using an arbitrary number for a
history length. The experimental findings suggest the importance of the variable window sizes as well as the importance of incorporating
clinical text in the learning process, as it is highly informative towards ADE prediction and can provide clinically relevant results.

1. Introduction
With the introduction of Electronic Health Records (EHRs)
an abundant of information has become available. This
provides unique opportunities not only for monitoring
patients but also for the use of these data sources in
secondary research. An EHR contains all the key in-
formation regarding a patient case over time, including
demographics, medication, diagnoses and procedures, vital
signs, laboratory results and hand-written text. Some of
the aforementioned are captured in a structured format, for
example, drug and diagnoses codes are represented in the
ATC and ICD-10 format respectively. However, the vast
majority of this information is captured in an unstructured
and non-standardized format, i.e. clinical free text notes.

As EHRs are a vast source of patient medical history, they
have enabled more efficient retrospective research in vari-
ous domains, namely epidemiology, public health research,
outcome research and drug surveillance (Weiskopf et al.,
2013). Specifically, in drug surveillance, EHRs are an
alternative method to evaluate drug risk and mitigate the
problem of Adverse Drug Reactions (ADEs). ADEs refer
to injuries caused by medication errors, allergic reactions
or overdoses, and are related to drugs1. They can happen
in different settings of patient care, from hospitals to
outpatient settings, after a drug has been released to the
market. In the United States alone, each year, they account
for approximately 2 million hospital stays, more than 1
million emergency department visits and cause prolonged
hospitalizations2. Due to several factors and barriers that
come with ADE reporting, they are heavily under-reported
in EHRs, causing in that way a long-term burden in the
healthcare sector and in the individuals suffering an ADE.
Nevertheless, it is estimated that about half of the ADEs

1ADE, https://health.gov/hcq/ade.asp
2https://health.gov/our-work/health-care-quality/adverse-

drug-events

are preventable3, indicating the importance of directing
research in post-market drug surveillance, to reduce
withdrawal of drugs from the market and more importantly
lessen human suffering.

EHRs are representative for a wide range of patients,
specifically for patients with different diseases, in different
age and gender distribution. Data and text mining methods
can be employed to leverage this information and predict
unwanted ADEs. In the side of structured data sources
stemming from EHRs, previous research has mainly
focused on utilizing specific predictors, for example
ICD-104, ATC5 or laboratory results, to predict ADEs. A
recent work by Bamba and Papapetrou (2019) has utilized
the temporal and hierarchical aspect of the previously
mentioned data sources to predict ADEs and concluded
in a framework with high classification performance.
Additionally, they experimented with variable history
lengths before the occurrence of an ADE and indicated
its importance in the experiments. However, they only
utilized features in a structured format and did not consider
important information that can be found in the text that
accompanies the majority of patients.

To meet the challenges posed by narrative data, text mining
is commonly used to extract and retrieve relevant infor-
mation by recognizing statistical patterns in the text. In
previous research the use of Natural Language Processing
(NLP) has been investigated for obtaining models that are
able to predict unseen ADEs from EHRs. For example,
Eriksson et al. (2013) constructed a dictionary from a Dan-
ish EHR and managed to identify 35,477 unique possible
ADEs. Henriksson et al. (2015) have modeled Swedish
EHR data in ensembles of semantic spaces and reported

3https://psnet.ahrq.gov/primer/medication-errors-and-
adverse-drug-events

4ICD-10, https://www.icd10data.com
5ATC, https://www.whocc.no/atc_ddd_index/

https://health.gov/hcq/ade.asp
https://www.icd10data.com
https://www.whocc.no/atc_ddd_index/
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improved performance in 27 datasets. Additionally, An
NLP system named MedLEE, was used to create discharge
summaries and outperformed traditional and previous
automated adverse event detection methods (Melton and
Hripcsak, 2005).

To the best of our knowledge existing data mining ap-
proaches for ADE prediction in Swedish EHRs, have been
mainly focusing on utilizing specific structured data types.
Moreover, many of the studies do not take into account
the importance of considering variable window lengths
depending on the ADE studied. Exploiting a very large
patient history window length can add noise to the data
and a very small window size can eliminate useful and
informative predictors.

Contributions. This paper, follows the work of Bamba
and Papapetrou (2019) utilizing variable window lengths,
but instead incorporating in the machine learning pro-
cess textual features, rather than structured, that can be
highly informative predictors for the specific ADEs stud-
ied. Specifically, the state-of-the-art is extended by:

1. including textual features, using the n-gram model and
tf*idf weighting,

2. exploring variable patient history trajectories for each
of the ADEs

3. benchmarking the proposed approach in three classifi-
cation models.

As shown in Section 5 the incorporation of text features
in the learning process, combined with the different win-
dow lengths for each ADE can provide improvements in the
classification performance while providing medical sound
predictions.

2. Related Work
EHRs contain a wealth of longitudinal patient history
which can be leveraged to create models for personalized-
care and provide clinically relevant insights. Post-market
drug surveillance based on EHRs can lead to further in-
vestigation and regulatory warnings about drugs (Karimi et
al., 2015) and a decrease in drug withdrawal from the mar-
ket. However, EHRs suffer from several disadvantages such
as under-reporting, absence of protocols and reporting bias
(Karimi et al., 2015), and in that way, the prevalence of an
ADE cannot be estimated with full confidence. Previous
research on EHRs tried to tackle problems like the afore-
mentioned, utilizing a wide range of predictors to iden-
tify ADEs. This section summarizes research conducted
towards ADE prediction from EHRs. The first paragraph
presents research that utilized the structured data founds in
EHRs; the rest of this section describes works that have fo-
cused on exploiting the textual features of EHRs to predict
ADEs.
Studies that use structured clinical codes (diagnoses and/or
drug codes) focus on different ways of representing them
by internationally defined standards (ICD diagnosis and

ATC drug codes respectively) and conclude that predic-
tive performance was significantly improved when using
the concept of hierarchies (Zhao et al., 2014; Zhao et al.,
2015b). Other related work utilizes clinical codes and clin-
ical measurements while taking their temporal aspect into
account, for identifying ADEs (Zhao et al., 2015c). Studies
in this area typically exploit logistic regression (Harpaz et
al., 2010) or Random Forests (Zhao et al., 2015a) applied
in clinical codes to identify ADEs. Using only laboratory
abnormalities Park et al. (2011) used the underlying tempo-
rality of these events to predict ADEs. Finally, (Bagattini et
al., 2019) focused on lab results extracted from EHRs and
proposed a framework that transforms sparse and multi-
variate time series to single valued presentations that can
be used be any classifier to identify ADEs; they conclude
that taking into account the sparsity of the feature space
can positively affect the predictive performance and be ef-
fectively utilized to predict ADEs.
The unstructured sections of EHRs, i.e. free-text, have also
been used to detect ADEs. The main approach in this line
of research is to employ NLP techniques to transform the
text in some form of structured features in order to feed ma-
chine learning classifiers (Karimi et al., 2015). For exam-
ple, (Wang et al., 2009) and (Melton and Hripcsak, 2005)
have both used the MedLee NLP system to identify ad-
verse drug event signals and they outperformed traditional
and previous automated adverse event detection methods.
MedLee is a natural language processor that extracts in-
formation from text employing a vocabulary and grammar
and has been extended to cover a spectrum of applica-
tions (Melton and Hripcsak, 2005). LePendu et al. (2013)
proposed a method to annotate the clinical notes found in
EHRs and using medical terminologies, transformed them
to a de-identified matrix. Eriksson et al. (2013) identified
a wide range of drugs by creating an ADE dictionary from
a Danish EHR. Furthermore, Henriksson et al. (2015) fo-
cused on Swedish EHR data and reported improvement in
ADE detection by exploiting multiple semantic spaces built
on different sizes, as opposed to a single semantic space.
Finally, the combination of local and global representation
of words and entities has proven to yield better accuracy
than using them in isolation for ADE prediction according
to Henriksson (2015).

3. Data
The clinical dataset Stockholm EPR Structured and Un-
structured ADE corpus, (SU-ADE Corpus)6 used in this
study consists of information representing more than a
million patients from Karolinska University Hospital in
Sweden. The SU-ADE Corpus is an extract from the
research infrastructure Health Bank (the Swedish Health
Record Research Bank) at DSV/Stockholm University
that contain patients from 512 clinical units encompassing
the years 2007-2014 originally from the TakeCare CGM
electronic patient record system at Karolinska University
Hospital (Dalianis et al., 2015).

6Ethical approval was granted by the Stockholm Regional Eth-
ical Review Board under permission no. 2012/834-31/5.
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Both structured and unstructured data are part of the
database and are also timestamped. Structured data are
labelled using common encoding systems such as the
Anatomical Therapeutic Chemical Classification System
(ATC) for medications, the International Statistical Clas-
sification of Diseases and Related Health Problems, 10th
Edition (ICD-10) for diagnoses as well as the Nomen-
clature, Properties and Units (NPU) coding system7 for
clinical laboratory measurements. Regarding unstructured
format, each patient is described by a text that is written
in free format by clinicians; the SU-ADE Corpus contains
more than 500 million tokens, in total.

The ADE groups of this study were selected as they
are some of the most frequent in the SU-ADE Corpus.
The specific 5 ADE cases were chosen for comparison
reasons to the paper by Bamba and Papapetrou (2019)(see
section 5). The experiments are formulated as a binary
classification task; according to patients’ ICD-10 codes,
labels are assigned to each of them. More concretely, each
patient in a dataset is described by a class label that denotes
if that patient has an ADE or not. Negative examples are
denoted as 0, while positive examples are denoted as 1.
The following procedure was adopted: Patients that are
assigned a specific ADE code are considered positive to
that ADE (Stausberg and Hasford, 2011), while patients
that are not assigned that specific ADE code but have been
given a code that belongs to the same disease taxonomy
are considered ADE negative. For example, patients that
are given the ADE code D61.1 (drug induced aplastic
anaemia) are positive to that specific ADE, on the other
side, patients that are given codes that belong to D61.x
with x 6= 0 are considered ADE negative. A list and an
explanation for each dataset can be seen in Table 1.

The ICD-10 codes serve only as reference for the extrac-
tion of the sub-datasets and the subsequent class labeling.
In that way, from the original corpus we extract all the pa-
tients that have at least one reference of the following codes
in their history: D61.*, E27.*, G62.*, L27.*,T80.* (* de-
notes every possible digit from one to nine). Following that,
we create the sub-datasets according to the ADE codes and
assign the class labels as described above. The patients are
then described by text written by a healthcare expert. The
main methodology is described in section 4.

4. Methods
The following section provides a description of the methods
used in this work. In Figure 1 the process of the method that
was used is depicted.

4.1. Text Preprocessing
Following the class labeling, text assigned to each patient
is then pre-processed, so as to bring it in a format that
is analyzable and predictable. Swedish is different from
English thus the techniques used are different, for example

7NPU, http://www.ifcc.org/
ifcc-scientific-division/sd-committees/
c-npu/

Figure 1: Depiction of the method flow. Starting from the
SU-ADE corpus to the creation of the 5 ADE datasets and
finally evaluation of the model.

Swedish is a highly inflected language as well as a com-
pounding language, similar to German.

Since the datasets that are handled in this work are very
large, to help with the consistency of the expected output,
all the words were lower-cased. Also, noise and Swedish
stop word removal was carried out to help reduce the num-
ber of features before classification and produce consistent
results. Stop-words do not convey any significant seman-
tics in the output result, consequently they were discarded.
Finally, lemmatisation was performed to transform the
Swedish words into their dictionary form, a procedure
highly important in our study as the Swedish language is
highly inflectional (Carlberger et al., 2001). The library
used for stop word removal and lemmatisation was NLTK8.

8Natural Language Toolkit, https://www.nltk.org/

http://www.ifcc.org/ifcc-scientific-division/sd-committees/c-npu/
http://www.ifcc.org/ifcc-scientific-division/sd-committees/c-npu/
http://www.ifcc.org/ifcc-scientific-division/sd-committees/c-npu/
https://www.nltk.org
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Dataset Description Positive Negative
D61.* Aplastic Anaemia 557 (D61.1) 94(D61.x)
E27.* Adrenocortical insufficiency 55(E27.3) 219 (E27.x)
G62.* Polyneuropathy 79(G62.0) 672 (G62.x)
L27.* Generalized skin eruption 391 (L27.0) 172 (L27.x)
T80.* Infusion complications 502 (T80.8) 135 (T80.x)

Table 1: The 5 most common ADE cases studied. The * under the Dataset column: denotes every possible code under the specific
category included in the dataset; column Positive depicts the number of ADE positive patients and the specific ADE code is in parentheses;
column Negative depicts the number of ADE negative patients where x is any number besides the last digit of the ADE depicted in each
row and the examples are in parentheses.

4.2. Window Sizes
Furthermore, as this study focuses on events that occur over
various time periods, the sub-datasets are created on differ-
ent window sizes, in order to investigate potentially infor-
mative patient trajectories for specific ADEs. 30, 60 and
90 days window sizes are investigated. In those cases, the
day when the ADE was registered was excluded from the
learning process, as we are interested in predicting patients
with a potential ADE.

4.3. Word Vectors
The following representations of the text at word level
are considered: unigrams, bigrams, trigrams (n-grams)
and tf*idf (in a uni-gram word level) where tf stands for
term frequency and idf for inverse document frequency
(Van Rijsbergen, 1979).

The n-gram model predicts the occurrence of the n-th word
based on the occurrence of n-1 words in the document.
This follows the Markov assumption that only the previous
words affect the next word (Manning et al., 1999). For
instance, the bigram model (n=2) predicts the occurrence
of a word given only its previous word, while the trigram
model (n=3) predicts the occurrence of a word based on
the previous two words. Even though the trigram model
may be useful as it could predict sequences of words that
have better medical meaning in terms of interpretability
(ex. 500mg of paracetamol (In English)), it may not be
practical as it can increase the number of parameters and
also the dimensionality of feature space.

The final approach is to assign a tf*idf weighting to all
terms. tf is the simple term frequency; idf assigns in each
term a weight such that it can compensate for the words that
occur too often in the document, as they can be important
to discriminate between others (Schütze et al., 2008). The
number of features are reduced to a maximum of 500 terms,
those with the highest tf*idf scores. A motivation for tf*idf
was found in (Ehrentraut et al., 2016) where they utilized
tf*idf, to classify healthcare associated infections and this
method yielded the best results while extracting the most
relevant results.

4.4. Classification
Three algorithms are benchmarked to evaluate the perfor-
mance of the used methods :

• RF: Random Forests with 100 trees, gini impurity as

the split criterion and the number of features consid-
ered at decision split criterion set to default

√
m where

m is the number of features in each dataset;

• SVMlinear: Support Vector Machines using a linear
kernel and weighted class balance;

• SVMrbf: Support Vector Machines using the RBF
kernel and weighted class balance;

4.5. Evaluation
All models were trained in the four different word se-
quences and for the three different window sizes. Strati-
fied ten-fold cross validation was used, as described in (Ko-
havi, 1995) to ensure more efficient use of data. Since the
datasets in this study are imbalanced, the Area Under the
ROC Curve (AUC) was considered to be the most appro-
priate measure, as it has been proved to be an appropri-
ate evaluation for skewed classification problems (Fawcett,
2006). Nevertheless, as in some cases the class imbalance
favors the negative examples, the metrics precision, recall
(as described in (Van Rijsbergen, 1979)) and F1 score were
used to evaluate the results of each class independently.

5. Results
Table 2 presents our results in terms of predictive mod-
elling. Five different types of ADEs expressed in the
following ICD-10 codes D61.1, E27.3, G62.0, L27.0 and
T80.8 are investigated. The table is separated in three
sub-tables that present the investigation of variable window
sizes for each ADE. The columns present the investigation
of unigrams, bigrams, trigrams and tf*idf, for each ADE
and window size. The results are depicted as mean AUC.
Table 3 presents a classification report for the best per-
forming window size and word sequence method for each
ADE. Reported are: precision, recall, F1 score and support
for both positive and negative classes, for the previously
mentioned ADEs. Note that in binary classification, recall
of the positive class is also known as sensitivity; recall of
the negative class is specificity. Finally, Table 4 compares
our classification results to the approach by Bamba and
Papapetrou (2019).

Word vector representation. First, we investigate the
importance of different kind of representations in a
word level, for each ADE. We observe that although all
n-gram approaches perform well they are almost always
outperformed by the tf*idf approach. Specifically, ADEs
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E27.3, G62.0, L27.0 and T80.8 had better classification
performance when considering the inverse document
frequency (idf) with the SVM linear classifier. Comparing
the n-grams, the unigram was always performing better
than the bigram and trigram approaches (sequence of two
and three adjacent words), where the results are anging
from 2% to 9% improvement. Unigram was always the
second best performing after tf*idf.

Window Sizes. The aim in this section is to investigate
variable window sizes in the patient trajectory following
the work of Bamba and Papapetrou (2019). We can see
that L27.0 acquired better results in a small window size
of 30 days and E27.3, T80.8 gave an improvement of 1%
to 3% in a window size of 60 days as compared to 30 and
90 days. For ADEs D61.1 and G62.0 the best results are
obtained in a 90 days patient history length with AUC
0.9542 and 0.9045 respectively.

Classification Report. Furthermore, for each best per-
forming size and word vector representation we provide a
classification report for both negative and positive classes.
In Table 3, we observe that for the ADEs D61.1 and T80.8
where the class imbalance favors the positive class, the
precision and recall are high. However, for ADEs E27.3
and G62.0 we can see that the classifier is not performing
well in the positive class, failing both to retrieve and
correctly classify the cases, as the class distribution is
skewed towards the negative class.

Comparison to LDM approach. Finally, we compare our
approach to the LDM framework as described in (Bamba
and Papapetrou, 2019). In this paper the authors studied the
importance of incorporating three different types of struc-
tured predictors in the learning process, Lab measurements,
Drug codes, Diagnoses codes (LDM) while using variable
window sizes. In table 4, depicted are the best performing
windows sizes and classifiers for each of the approaches.
We observe that for 4 out for 5 classifiers, employing fea-
tures found in the clinical text improves the classification
task. Specifically, there is an improvement of 1% for D61.1,
13% for E27.3, 2% for G62.0 and 15% for L27.0.

5.1. Important Features and Medical Relevance
In this section top textual features are provided that were
found important by the SVM classifier, for two of the
studied ADEs. We are interested in investigating the
features that the classifier based its decision upon and
additionally, see if the are medically relevant. We only
consider the results from SVM linear classifier and use
the weights obtained from the coefficients of the vector
which are orthogonal to the hyperplane and their direction
indicates the predicted class. The absolute size of the
coefficients in relation to each other can then be used to
determine feature importance for the data separation task.

In figures 2, 3 we observe the most important features
for both the negative and positive classes as decided by
the SVM linear classifier for ADEs D61.1 (drug induced
aplastic anaemia) and L27.0 (drug induced generalized

skin eruption). Among the most import features for D61.1
are the words (In Swedish but also translated to English
in parenthesis) thrombocyter (platelets), sandimmun (a
drug), blodtransfusion (blood transfusion), cytostatica
(cytostatics), lymfom (lymphoma) and crp (a protein in
blood made by the liver). For example, according to
the literature, irregular levels of plateles in the blood are
indicators of aplastic anaemia and a way to treat is by
blood transfusions (NIDDK, 2019). For L27.0 among
the most important features are svullnad (swelling), mjölk
(milk), ägg (egg), övre (upper), hudutslag (rash), nötter
(nuts), andningsljud (noises heard on auscultation over any
part of the respiratory tract), mildison (cream prescribed
to relieve skin inflammation and itching), reagera (react),
akuten (emergency unit), hb (hemoglobin), ser (look), stor
(big) and remiss (referral).

These words are highly relevant for each ADE studied, thus
indicating that the model is not performing at random. Nev-
ertheless, we can observe that words such as the abbrevia-
tion pga (because of) or the numerical value 14, are consid-
ered important features but cannot be related to the ADEs
at a first glance. In the future, it would be of great impor-
tance to incorporate a medical expert in the process in order
to validate the procedure and results, so as to create a safe
and interpretable prediction model. Additionally, we ob-
serve that in some of the ADEs, the top important features
include drugs or diagnoses that are administered and reg-
istered after the manifestation of the ADE. This indicates
that the adverse events might be registered in the record at
a later point in time, thus capturing both the treatment and
the diagnosis of the ADE.

6. Analysis
The increased adoption of Electronic EHRs has brought a
tremendous increase in the quantities of health care data.
They contain records that offer a holistic overview of a
patient’s medical history, rendering them a valuable tool
source for drug safety surveillance. Machine learning
methods can be employed to uncover clinical and medical
insights stemming from both structured and unstructured
data to detect ADEs. Existing approaches on ADE predic-
tion from EHRs have been mainly focusing on utilizing
structured data types, on the other hand, text mining
techniques have focused on identifying ADEs globally
rather than focusing on specific types that occur frequently.
This paper followed the work of Bamba and Papapetrou
(2019) and incorporated in the learning process textual
features while considering variable window lengths, for
the five most frequent ADEs found in the SU-ADE corpus.

The experimental findings suggest that the textual features
contain information that is highly important for ADE
prediction. We observe that in many cases the word
predictors outperformed the framework by Bamba and
Papapetrou (2019) where the only utilized structured lab
measurements, diagnoses and medication codes. In section
5.1 we included a number of important predictors as found
by the SVM linear classifier, indicating that the model
is not performing at random. We observed that some of
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30 DAYS
unigram bigram trigram tf*idf

RF svmLin svmRbf RF svmLin svmRbf RF svmLin svmRbf RF svmLin svmRbf
D61.1 0.9330 0.8707 0.8780 0.9159 0.8504 0.9133 0.8630 0.7604 0.8179 0.9408 0.9432 0.9249
E27.3 0.8109 0.7466 0.7113 0.6970 0.6928 0.7384 0.6947 0.7481 0.7272 0.7985 0.8700 0.8630
G62.0 0.7875 0.7436 0.8805 0.6879 0.6871 0.7796 0.6777 0.6833 0.7002 0.8235 0.8268 0.8666
L27.0 0.9272 0.8491 0.9118 0.8863 0.8328 0.8811 0.8113 0.8145 0.7920 0.9226 0.9109 0.9031
T80.8 0.8929 0.8173 0.8871 0.8829 0.8168 0.8621 0.8221 0.8105 0.8339 0.8863 0.9060 0.8962

60DAYS
D61.1 0.9354 0.8632 0.8572 0.9369 0.8882 0.9025 0.8597 0.7585 0.8477 0.9415 0.9502 0.9275
E27.3 0.8224 0.7941 0.7567 0.7574 0.766 0.7674 0.7040 0.7294 0.7194 0.8626 0.8822 0.8677
G62.0 0.8382 0.7603 0.828 0.7660 0.7301 0.8467 0.7490 0.721 0.7956 0.8547 0.8742 0.8829
L27.0 0.9206 0.8408 0.9089 0.8882 0.8303 0.8862 0.8134 0.8083 0.7997 0.9120 0.9108 0.8936
T80.8 0.9076 0.8274 0.8865 0.9042 0.8304 0.8887 0.8581 0.8609 0.8691 0.9185 0.9207 0.9171

90DAYS
D61.1 0.9403 0.8933 0.8503 0.9245 0.8836 0.8980 0.8651 0.8128 0.8425 0.9424 0.9542 0.9352
E27.3 0.7833 0.7647 0.7367 0.7219 0.6886 0.7259 0.6748 0.6848 0.6912 0.8078 0.8420 0.8337
G62.0 0.8357 0.7902 0.8454 0.8000 0.7639 0.8666 0.7749 0.7341 0.8048 0.8788 0.9045 0.8892
L27.0 0.9216 0.8427 0.9085 0.8811 0.824 0.8834 0.8248 0.7995 0.8036 0.9165 0.9142 0.8941
T80.8 0.8984 0.7936 0.8565 0.8801 0.8172 0.8856 0.8623 0.8447 0.8654 0.8836 0.9005 0.8944

Table 2: AUC obtained by 3 classifiers on 3 different patient history lengths for 5 different ADE cases and 4 different word
weighting factor approaches. Each table presents the AUC obtained by stratified 10-fold cross validation on the different
window sizes. In bold: best AUC for each ADE in the specific window size across all approaches, In red: Best AUC for
the specific ADE across all window sizes, classifiers, and approaches;

Class Precision Recall F1 score
D61.1 Negative 0.78 0.80 0.79

Positive 0.90 0.89 0.89
E27.3 Negative 0.95 0.85 0.89

Positive 0.28 0.56 0.37
G62.0 Negative 0.98 0.91 0.94

Positive 0.30 0.62 0.40
L27.0 Negative 0.89 0.83 0.86

Positive 0.72 0.82 0.77
T80.8 Negative 0.70 0.79 0.74

Positive 0.93 0.89 0.91

Table 3: Classification report of each ADE in the best performing classifier and window size for each of them (the ones
reported as red in Table 2). Support: the number of occurrences of each class in the correct values

Figure 2: Top 20 feature importance for D61.1 in a 90 days window size using the tf*idf weighting and SVM linear. X-axis:
Feature words in Swedish, Y-axis: Vector coefficients.
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Figure 3: Top 20 feature importance for L27.0 in a 30 days window size using the tf*idf weighting and SVM linear. X-axis:
Feature words in Swedish, Y-axis: Vector coefficients

tf*idf LDM WS
D61.1 0.954 0.948 90
E27.3 0.882 0.756 30
G62.0 0.904 0.880 90
L27.0 0.927 0774 60
T80.8 0.920 0.946 30

Table 4: Comparison of textual tf*idf and LDM (Labs,
Diagnoses, Medication) approach. WS: Best Performing
Window Size for each ADE

the features are highly relevant with each ADE studied;
for L27.0 (drug induced skin eruption) important features
were swelling, egg and nuts or rash. This indicated that
incorporating the clinical text in the learning process can
provide medically sound predictions and provide a more
interpretable model. Moreover, we observed that, as pro-
posed by (Ehrentraut et al., 2016), tf*idf yields reasonably
good results that can be clinically interpreted. Finally, the
results indicate that considering different patient history
lengths can increase the classification performance by
3%. A long patient history length could add noise to the
dataset, while a short one could eradicate very important
information. Carefully studying the appropriate window
length depending on the ADE of interest is very important
as it can provide medically relevant predictions.

A limitation of this study is the formulation of the ADE
positive and negative groups. Although the positive groups
are based on the study by (Stausberg and Hasford, 2011)
the negative cases seem tightly close to the positive ones.
Someone could argue that as some ADE codes are very
similar to each other they can be used interchangeably
by medical experts. Moreover, another limitation is the
distribution of the positive and negative examples. In some
datasets the distribution of the positive examples is far
less than the one of the negative examples, causing lower
predictive performance.

For future work we would like to investigate other ways
of defining the control and test groups for the ADE exam-
ples. Furthermore, we would like to incorporate all struc-
tured and unstructured features in the learning process; we
believe that not only it will improve the model performance
but it will also shed light in ADE signalling. A natural ex-
tension of this paper would be to implement more recent
NLP techniques as well as word-embeddings and evaluate
them on the ADE problem. We plan to use decompounding
of words to see if the performance of our algorithms will
improve analysing the decompounded elements. Lastly, an
extension would be to dynamically adjust the window sizes
for each patient or ADE studied.

7. Conclusion
This paper focused on utilizing textual features using dif-
ferent word sequences and patient history lengths to predict
ADEs from EHRs. We demonstrated the importance of in-
corporating in the machine learning process clinical text, as
this textual source are very informative towards ADE pre-
diction. NLP techniques can be utilized to meet the chal-
lenges posed by narrative data and provide meaningful pre-
dictions.
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