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Abstract
Despite the great importance of the Latin language in the past, there are relatively few resources available today to develop modern NLP
tools for this language. Therefore, the EvaLatin Shared Task for Lemmatization and Part-of-Speech (POS) tagging was published in the
LT4HALA workshop. In our work, we dealt with the second EvaLatin task, that is, POS tagging. Since most of the available Latin word
embeddings were trained on either few or inaccurate data, we trained several embeddings on better data in the first step. Based on these
embeddings, we trained several state-of-the-art taggers and used them as input for an ensemble classifier called LSTMVoter. We were
able to achieve the best results for both the cross-genre and the cross-time task (90,64 % and 87,00 %) without using additional annotated
data (closed modality). In the meantime, we further improved the system and achieved even better results (96,91 % on classical, 90,87 %
on cross-genre and 87,35 % on cross-time).
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1. Introduction

EvaLatin is the first evaluation campaign totally devoted
to the evaluation of NLP tools for Latin (Sprugnoli et al.,
2020). For this purpose, two tasks have been released (i.e.
Lemmatization and Part of Speech (POS) tagging), each
of which is divided into three subgroups: classical, cross-
genre and cross-time. In this work we describe an approach
to the task of EvaLatin regarding POS tagging, that is, the
task of assigning each token in a text its part of speech. A
part of speech is a category of words with similar gram-
matical properties. For many natural language process-
ing (NLP) tasks, such as information retrieval, knowledge
extraction or semantic analysis, POS tagging is a crucial
pre-processing step. However, in morphologically rich lan-
guages such as Latin, this task is not trivial due to the vari-
ability of lexical forms. In order to perform POS tagging
automatically, it has to be understood as a sequence label-
ing problem, where an output class is assigned to each input
word so that the length of the input sequence corresponds
to the length of the output sequence.
There already exist approaches for POS tagging for Latin
(Gleim et al., 2019; vor der Brück and Mehler, 2016; Eger
et al., 2016; Eger et al., 2015; Straka and Straková, 2017;
Kestemont and De Gussem, 2016; Kondratyuk and Straka,
2019; Manjavacas et al., 2019). These approaches mostly
utilize the increasingly popular neural network based meth-
ods for POS-tagging – by example of Latin. Part of this
contribution is to extend this work and to train state-of-the-
art neural network based sequence labeling tools (Straka
and Straková, 2017; Lample et al., 2016; Akbik et al.,
2019a; Kondratyuk and Straka, 2019) for Latin.
These neural network based sequence labeling tools usu-
ally require pre-trained word embeddings (e.g. Mikolov
et al. (2013a) or Pennington et al. (2014)). These word
embeddings are trained on large unlabeled corpora and are
more useful for neural network sequence labeling tools if
the corpora are not only large but also from the same do-

main as the documents to be processed. Therefore another
part of this contribution is to create word embeddings for
Latin for different genres and epochs. Since Latin is a mor-
phologically rich language, sub-word-embeddings (Grave
et al., 2018; Heinzerling and Strube, 2018) must be created
to reflect its morphological peculiarities.
The various sequence labeling tools provide different re-
sults, making it advisable to combine them in order to bun-
dle their strengths. For this reason LSTMVoter (Hemati
and Mehler, 2019) was used to create a conglomerate of the
various tools and models (re-)trained here.
To simplify the above mentioned process of training em-
beddings and sequence labeling tools on the one hand
and creating an ensemble thereof, we developed a generic
pipeline architecture which takes a labeled corpus in Con-
LLU format as input, trains the different taggers and finally
creates an LSTMVoter ensemble. The idea is to make this
architecture available for the solution of related tasks in or-
der to systematically simplify the corresponding training
pipeline.
The article is organized as follows: Section 2 describes the
data sets we used to train our word embeddings. Section 3
describes the training process of the taggers and how they
were integrated into our system. In Section 4, we present
and discuss our results, while Section 5 provides a summary
of this study and prospects for future work.

2. Datasets
This section gives a brief overview about the datasets sup-
plied for EvaLatin as well as other corpora we used for the
closed modality run of the POS task.
Current state-of-the-art sequence labeling systems for POS
tagging make use of word embeddings or language mod-
els (Akbik et al., 2018; Bohnet et al., 2018; Gleim et al.,
2019, LMs). These tools are usually trained and evaluated
on high-resource languages; making use of the availability
of large unlabeled corpora to build feature-rich word em-
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beddings. This leads to an ever-increasing ubiquitousness
of embeddings for all kinds of languages.
Unfortunately, the number of available, high-quality cor-
pora for Latin is stretched thin; historically the Latin
Wikipedia has often been used as a corpus for training word
embeddings (Grave et al., 2018; Heinzerling and Strube,
2018). But the Latin Wikipedia is composed of modern
texts written by scholars of different backgrounds, which
cannot properly reflect the use of Latin language throughout
history. Thus we compiled a corpus of historical, Medieval
Latin texts covering different epochs which is presented in
the following section.

2.1. Historical Corpora
An overview of the corpora used is shown in table 1. It lists
each corpus together with its numbers of sentences, tokens
and characters and provides a summary of the overall cor-
pus with the total number and unique counts. In addition
to the corpus published for EvaLatin, we added other pub-
licly accessible corpora: the Universal Dependencies Latin
(Nivre et al., 2016a, UD Latin) corpora UD Latin-PROIEL
(Haug and Jøhndal, 2008), UD Latin-ITTB (Cecchini et al.,
2018) and UD Latin-Perseus (Bamman and Crane, 2011a),
the Capitularies (Mehler et al., 2015) and the Cassiodorus
Variae (Variae, 2020). But the main bulk of text comes from
the Latin text repository of the eHumanties Desktop (Gleim
et al., 2009; Gleim et al., 2012) and the CompHistSem
(Cimino et al., 2015) project comprising a large number
of Medieval Latin texts.1 For all corpora we extracted the
plain text without annotations and compiled a single corpus
called Historical Latin Corpus (HLC).

Corpus Sentences Tokens Chars

UD-Perseus 2 260 29 078 1 444 884
Cassiodor. Variae 3 129 135 352 748 477
EvaLatin 14 009 258 861 1 528 538
Capitularies 15 170 477 247 2 432 482
UD-PROIEL 18 526 215 175 1 157 372
UD-ITTB 19 462 349 235 1 771 905
CompHistSem 2 608 730 79 136 129 384 199 772

Total
2 665 840

80 129 332 389 576 106
Unique 971 839 434

Table 1: Plain text corpora statistics.

3. System Description
3.1. Embeddings
While there are some word embeddings and language mod-
els trained on Latin texts, these are either trained on small,
but higher-quality datasets (eg. Nivre et al. (2016b), trained
on the Latin part of the UD corpus; Sprugnoli et al. (2019),
trained on the 1 700 000 token Opera Latin corpus), or
larger datasets which suffer from poor OCR quality (eg.
Bamman and Crane (2011b) trained on noisy data) or are of
modern origin (eg. Grave et al. (2018) and Heinzerling and
Strube (2018) trained on Wikipedia). Therefore we trained

1The texts are available via www.comphistsem.org or the
eHumanities Desktop (hudesktop.hucompute.org).

our own embeddings2 on the HLC of Section 2.1 to ob-
tain high quality word embeddings for our sequence label-
ing models. In the following sections we describe the type
of embeddings we used and their hyperparameters adjusted
during training.

3.1.1. Word Embeddings
wang2vec (Ling et al., 2015) is a variant of word2vec em-
beddings (Mikolov et al., 2013a; Mikolov et al., 2013b)
which is aware of the relative positioning of context words
by making a separate prediction for each context word po-
sition during training.

GloVe embeddings (Pennington et al., 2014) are trained
on global word-word co-occurrence statistics across an en-
tire corpus rather than considering local samples of co-
occurrences.

3.1.2. Sub-word Embeddings
fastText embeddings (Grave et al., 2018) are trained on
character n-grams of words rather than words themselves.
They are able to capture character-based information which
may be related to morphological information in addition to
distributional information.

Byte-Pair Embeddings (Heinzerling and Strube, 2018,
BPEmb) are composed of sub-word token embeddings.
They utilize a vocabulary of character sequences which are
induced from a large text corpus using a variant of byte-
pair encoding for textual data (Sennrich et al., 2016). We
used the SentencePiece’s3 implementation of the byte-pair
algorithm to encode the HLC (see Section 4).

3.1.3. FLAIR Language Model
Current methods for sequence labeling use language mod-
els (LMs) trained on large unlabeled corpora to obtain con-
textualized embeddings, achieving state-of-the-art perfor-
mance in POS tagging and named entity recognition for En-
glish, German and Dutch (Peters et al., 2018; Akbik et al.,
2018). Some recent sequence labeling models with strong
performance leverage FLAIR character language models
(Akbik et al., 2018; Akbik et al., 2019b). These models
are available through the FLAIR framework (Akbik et al.,
2019a) which, since its first release, has been expanded
with character language models for various languages by
the NLP community, but none for Latin. Thus, we trained
our own Latin character language model on the HLC of
Section 2.1.

3.2. Taggers
In the following sections we briefly describe the taggers we
have selected for our evaluation.

3.2.1. MarMoT
MarMoT is a generic CRF framework (Mueller et al.,
2013). It implements a higher order CRF with approxima-
tions such that it can deal with large output spaces. It can
also be trained to fire on predictions of lexical resources and
on word embeddings.

2http://embeddings.texttechnologylab.org
3https://github.com/google/sentencepiece
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3.2.2. anaGo
anaGo is a neural network-based sequence labeling system.
It is based on the Glample Tagger (Lample et al., 2016),
which combines a bidirectional Long Short-term Memory
(LSTM) with Conditional Random Fields (CRF).

3.2.3. UDPipe
UDPipe provides a trainable pipeline for tokenization, tag-
ging, lemmatization and dependency parsing. It offers 94
pre-trained models of 61 languages, each of which has been
trained on UD Treebank (Nivre et al., 2016a) datasets. The
POS model itself is based on MorphoDiTa (Straková et al.,
2014) and can be easily trained on new data; no additional
embeddings or features are required.

3.2.4. UDify
UDify is a single BERT-based (Devlin et al., 2018) model
which was trained on 124 treebanks of 75 different lan-
guages for tagging, lemmatization and dependency parsing
as well. Besides a pre-trained BERT model, the pipeline
does not require any other features to be trained on new
data.

3.2.5. FLAIR
Utilizing the FLAIR language model introduced above, we
trained a BiLSTM-CRF sequence tagger using pooled con-
textualized embeddings (Akbik et al., 2019b, PCEs). PCEs
are aggregated during the tagging process to capture the
meaning of underrepresented words, which have already
been seen by the tagger previously in contexts that are more
specified.

3.2.6. Meta-BiLSTM
The Meta-BiLSTM tagger (Bohnet et al., 2018) combines
two separate classifiers using a meta-model and achieves
very good results on POS tagging. Each intermediate
model is trained on the sequence labeling task using a dif-
ferent view of sentence-level representations, namely word
and character embeddings. Then, a meta-model is trained
on the same task while using the hidden states of the two
other models as its input.

3.2.7. LSTMVoter
LSTMVoter (Hemati and Mehler, 2019) is a two-stage re-
current neural network system that integrates the optimized
sequence labelers from our study into a single ensemble
classifier: in the first stage, we trained and optimized all
POS taggers mentioned so far. In the second stage, we com-
bined the latter sequence labelers with two bidirectional
LSTMs using an attention mechanism and a CRF to build
an ensemble classifier. The idea of LSTMVoter is to learn,
so to speak, which output of which embedded sequence la-
beler to use in which context to generate its final output.

4. Experiments
In this section we discuss our experiments and outline the
parameters used to train each of the models. After the end
of the task’s evaluation window we were able to fine-tune
our models using the gold-standard evaluation dataset. All
of our experiments were conducted according to the closed
modality of the second EvaLatin task, i.e. no additional
labeled training data was used.

Tool Classical Cross-Genre Cross-Time

LSTMVoterV1e 93,24 % 83,88 % 81,38 %
FLAIRe† 96,34 % 90,64 % 83,00 %
LSTMVoterV2e 95,35 % 86,95 % 87,00 %

UDPipe 93,68 % 84,65 % 86,03 %
UDify 95,13 % 86,02 % 87,34 %
Meta-BiLSTM† 96,01 % 87,95 % 82,32 %
FLAIR† 96,67 % 90,87 % 83,36 %
LSTMVoterV3† 96,91 % 90,77 % 87,35 %

Table 2: F1-scores (macro-average) for the different test
datasets. All tools were trained according to the closed
modality. † denotes models that were trained using our em-
beddings, while e denotes models which were submitted
during the tasks evaluation window.

4.1. Training
4.1.1. Embeddings
For each of the methods mentioned in Section 3.1.1 we cre-
ated 300 dimensional word embeddings by
• setting the window size to 10 for wang2vec and training

for 50 epochs,
• using default parameters in the case of fastText and by

training it for 100 epochs,
• choosing a window size of 15 with default parameters for

GloVe and training for 100 epochs.
We encoded the HLC by means of the byte-pair algo-
rithm, experimented with different vocabulary sizes c ∈
{5 000, 10 000, 100 000, 200 000} and trained 300 dimen-
sional GloVe embeddings on them using the same hyperpa-
rameters for GloVe as with the plain text corpus.
For our FLAIR language model we choose our parameters
according to the recommendations of Akbik et al. (2018)
and set the hidden size of both forward and backward lan-
guage models to 1024, the maximum character sequence
length to 250 and the mini-batch size to 100. We trained
the model until after 50 epochs the learning rate annealing
stopped with a remaining perplexity of 2,68 and 2,71 for
the forward and backward model, respectively.

4.1.2. Taggers
We trained a BiLSTM-CRF sequence tagger using FLAIR
with pooled contextualized embeddings together with our
language model. We added all our word and subword em-
beddings as features for up to 150 epochs and used learning
rate annealing with early stopping. In our experiments the
byte-pair embeddings with the smallest vocabulary size of
5 000 performed best. We choose one hidden LSTM layer
with 256 nodes and default parameters otherwise.
The Meta-BiLSTM tagger was trained with our GloVe em-
beddings using default parameters. UDPipe was trained
with the default settings on the data set. POS was trained
independently of the lemmatizer, as this achieved better re-
sults. The UDify BERT model was also only trained on
POS, while all other modules were removed. This con-
cerned a variant of BERT-Base-Multilingual4 which also
processed Latin data.

4https://github.com/google-research/bert/
blob/master/multilingual.md
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ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN SCONJ VERB X

Classical
Meta 90 % 99 % 93 % 85 % 99 % 97 % 98 % 97 % 76 % 99 % 97 % 97 % 89 % 97 % 75 %
UDPipe 85 % 98 % 91 % 64 % 99 % 96 % 88 % 95 % 69 % 98 % 95 % 95 % 85 % 95 % 89 %
UDify 87 % 99 % 92 % 88 % 99 % 96 % 00 % 96 % 74 % 99 % 96 % 97 % 91 % 97 % 00 %
FLAIR 91 % 99 % 95 % 86 % 99 % 97 % 91 % 97 % 78 % 100 % 97 % 97 % 93 % 98 % 82 %
VoterV1 83 % 98 % 90 % 67 % 99 % 96 % 70 % 94 % 69 % 99 % 95 % 95 % 86 % 95 % 00 %
VoterV2 88 % 99 % 93 % 84 % 99 % 97 % 96 % 96 % 74 % 99 % 96 % 97 % 90 % 97 % 95 %
VoterV3 91 % 99 % 95 % 88 % 99 % 97 % 96 % 97 % 78 % 99 % 98 % 98 % 92 % 98 % 90 %

Cross-Genre
Meta 79 % 96 % 85 % 57 % 97 % 94 % 77 % 90 % 67 % 97 % 96 % 80 % 75 % 91 % —
UDPipe 69 % 93 % 80 % 13 % 98 % 92 % 79 % 86 % 55 % 98 % 96 % 86 % 75 % 87 % —
UDify 73 % 97 % 80 % 50 % 98 % 89 % 00 % 88 % 55 % 98 % 95 % 87 % 79 % 88 % —
FLAIR 82 % 97 % 87 % 80 % 98 % 94 % 91 % 93 % 64 % 97 % 96 % 87 % 78 % 94 % —
VoterV1 66 % 95 % 81 % 29 % 98 % 92 % 70 % 86 % 71 % 98 % 95 % 85 % 73 % 86 % —
VoterV2 73 % 97 % 84 % 50 % 98 % 93 % 77 % 88 % 74 % 98 % 96 % 86 % 78 % 89 % —
VoterV3 79 % 97 % 86 % 80 % 98 % 93 % 80 % 92 % 71 % 98 % 97 % 87 % 80 % 93 % —

Cross-Time
Meta 74 % 97 % 72 % 42 % 90 % 89 % 60 % 89 % 29 % 100 % 84 % 65 % 70 % 86 % —
UDPipe 70 % 97 % 68 % 36 % 90 % 89 % 50 % 93 % 97 % 100 % 82 % 98 % 72 % 86 % —
UDify 74 % 98 % 68 % 46 % 90 % 87 % 00 % 95 % 97 % 100 % 85 % 93 % 76 % 88 % —
FLAIR 74 % 98 % 71 % 44 % 90 % 86 % 75 % 90 % 50 % 100 % 85 % 52 % 72 % 89 % —
VoterV1 69 % 97 % 68 % 38 % 90 % 89 % 55 % 88 % 29 % 100 % 81 % 55 % 70 % 86 % —
VoterV2 73 % 98 % 69 % 43 % 90 % 89 % 100 % 94 % 97 % 100 % 84 % 95 % 74 % 88 % —
VoterV3 75 % 98 % 73 % 43 % 90 % 89 % 46 % 94 % 96 % 100 % 86 % 81 % 74 % 89 % —

Table 3: F-Scores (micro-average) for each tool per tag and dataset. Model names are abbreviated: VoterVi denotes
LSTMVoter Vi and Meta denotes the Meta-BiLSTM model. Bold entries mark the best values prior to rounding.

For LSTMVoter we used a 40-10-40-10 split of the training
data in line with Hemati and Mehler (2019). Using the first
40-10 split, all taggers from Section 3.2 were trained and
their hyperparameters were optimized. The second split
was then used to train LSTMVoter and to optimize its hy-
perparameters. We created the following ensembles:

V1: MarMoT and anaGo.
V2: MarMoT, anaGo and UDify, UDPipe.
V3: MarMoT, anaGo, UDify, UDPipe and FLAIR.

4.2. Results
An overview of the results of our taggers is provided by Ta-
ble 2, while a more detailed report listing the performance
of each tool for each POS and data type is given by Table 3.
The first three rows of Table 2 show our submissions dur-
ing the EvaLatin evaluation window. The best model for the
classical and cross-genre sub-task is the FLAIR BiLSTM-
CRF tagger with 96,34 % and 90,64 % while the LST-
MVoter V2 model performs best on the cross-time sub-task
with 87,00 %. With these results we placed first among
other closed modality EvaLatin participants for both out-
of-domain tasks and second for the Classical sub-task.
With fine-tuning after the release of the gold-standard an-
notations (while still following closed modality rules) we
were able to increase all our results significantly by means
of the third variant (V3) of our LSTMVoter ensemble
model, while the performance of the fine-tuned FLAIR tag-
ger only increased marginally.

5. Conclusion
We presented our experiments and results for the EvaLatin
task on POS tagging. We trained and optimized various
state-of-the-art sequence labeling systems for the POS tag-
ging of Latin texts. Current sequence labeling systems re-
quire pre-trained word embeddings. In our experiments
we trained a number of such models. In the end a com-
bination of tools, which were integrated into an ensemble

classifier by means of LSTMVoter, led to the best results.
The reason for this might be that the LSTMVoter combines
the strengths of the individual taggers as much as possible,
while at the same time not letting their weaknesses get too
many chances. The best model submitted during the eval-
uation window for the classical and cross-genre sub-task
was the FLAIR BiLSTM-CRF tagger with 96,34 % and
90,64 % while the LSTMVoter V2 model performed at this
time best on the cross-time sub-task with 87,00 %. With
these results we placed first among other closed modality
EvaLatin participants for both out-of-domain tasks and sec-
ond for the classical sub-task. With fine-tuning after the
release of the gold-standard annotations we were able to
increase all our results significantly with the help of LST-
MVoter V3. However, it is rather likely that we reached
the upper bound of POS tagging for classic texts, because
the inter-annotator agreement for POS tagging seems to be
limited by a number in the range of 97 %–98 % (Brants,
2000; Plank et al., 2014). Our results for cross-genre and
cross-time are top performers in EvaLatin, but they still
offer potential for improvements. Future work should de-
velop models that are specialized for each genre and time
period. This also regards the inclusion of additional infor-
mation such as lemma-related and morphological features
to a greater extent, since Latin is a morphologically rich
language.

The data and the code used and implemented in this
study are available at https://github.com/
texttechnologylab/SequenceLabeling; the
embeddings are available at http://embeddings.
texttechnologylab.org. All presented tools are
accessible through the TextImager (Hemati et al., 2016)
interface via the GUI 5 and as REST services6.

5textimager.hucompute.org
6textimager.hucompute.org/rest/doku/
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Straková, J., Straka, M., and Hajic, J. (2014). Open-source
tools for morphology, lemmatization, pos tagging and
named entity recognition. In Proceedings of 52nd An-
nual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 13–18.

Variae. (2020). Latin Text Archive (LTA) Version of the
CompHistSem Working Group of the Corpus “Variae”
by Flavius Magnus Aurelius Cassiodorus based on Cas-
siodori Senatoris Variae, rec. Theodorus Mommsen,
Berlin: Weidmann, 1894 (MGH Auct. Ant. 12). Re-
trieved from the critical edition and prepared by the
BMBF project “Humanist Computer Interaction under
Scrutiny” (https://humanist.hs-mainz.de/en/). Available
at https://www.comphistsem.org/texts.html.

vor der Brück, T. and Mehler, A. (2016). TLT-CRF: A
lexicon-supported morphological tagger for Latin based
on conditional random fields. In Proceedings of the 10th
International Conference on Language Resources and
Evaluation, LREC 2016.


	Introduction
	Datasets
	Historical Corpora

	System Description
	Embeddings
	Word Embeddings
	Sub-word Embeddings
	FLAIR Language Model

	Taggers
	MarMoT
	anaGo
	UDPipe
	UDify
	FLAIR
	Meta-BiLSTM
	LSTMVoter


	Experiments
	Training
	Embeddings
	Taggers

	Results

	Conclusion
	Bibliographical References

