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Abstract
Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated
supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised
training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely
unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced
languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a
method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can
be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of
the original pre-trained fastText word embeddings by Grave et al. (2018), enabling WSD in these languages. Models and system are
available online.
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1. Introduction
There are many polysemous words in virtually any lan-
guage. If not treated as such, they can hamper the perfor-
mance of all semantic NLP tasks (Resnik, 2006). There-
fore, the task of resolving the polysemy and choosing the
most appropriate meaning of a word in context has been an
important NLP task for a long time. It is usually referred to
as Word Sense Disambiguation (WSD) and aims at assign-
ing meaning to a word in context.
The majority of approaches to WSD are based on the use
of knowledge bases, taxonomies, and other external man-
ually built resources (Moro et al., 2014; Upadhyay et al.,
2018). However, different senses of a polysemous word oc-
cur in very diverse contexts and can potentially be discrim-
inated with their help. The fact that semantically related
words occur in similar contexts, and diverse words do not
share common contexts, is known as distributional hypoth-
esis and underlies the technique of constructing word em-
beddings from unlabelled texts. The same intuition can be
used to discriminate between different senses of individual
words. There exist methods of training word embeddings
that can detect polysemous words and assign them differ-
ent vectors depending on their contexts (Athiwaratkun et
al., 2018; Jain et al., 2019). Unfortunately, many wide-
spread word embedding models, such as GloVe (Penning-
ton et al., 2014), word2vec (Mikolov et al., 2013), fastText
(Bojanowski et al., 2017), do not handle polysemous words.
Words in these models are represented with single vectors,
which were constructed from diverse sets of contexts cor-
responding to different senses. In such cases, their disam-

? Currently at Yandex.

biguation needs knowledge-rich approaches.
We tackle this problem by suggesting a method of post-
hoc unsupervised WSD. It does not require any external
knowledge and can separate different senses of a poly-
semous word using only the information encoded in pre-
trained word embeddings. We construct a semantic similar-
ity graph for words and partition it into densely connected
subgraphs. This partition allows for separating different
senses of polysemous words. Thus, the only language re-
source we need is a large unlabelled text corpus used to
train embeddings. This makes our method applicable to
under-resourced languages. Moreover, while other meth-
ods of unsupervised WSD need to train embeddings from
scratch, we perform retrofitting of sense vectors based on
existing word embeddings.
We create a massively multilingual application for on-the-
fly word sense disambiguation. When receiving a text, the
system identifies its language and performs disambiguation
of all the polysemous words in it based on pre-extracted
word sense inventories. The system works for 158 lan-
guages, for which pre-trained fastText embeddings avail-
able (Grave et al., 2018).1 The created inventories are based
on these embeddings. To the best of our knowledge, our
system is the only WSD system for the majority of the pre-
sented languages. Although it does not match the state of
the art for resource-rich languages, it is fully unsupervised
and can be used for virtually any language.
The contributions of our work are the following:

1The full list languages is available at fasttext.cc and includes
English and 157 other languages for which embeddings were
trained on a combination of Wikipedia and CommonCrawl texts.

https://fasttext.cc
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• We release word sense inventories associated with
fastText embeddings for 158 languages.

• We release a system that allows on-the-fly word sense
disambiguation for 158 languages.

• We present egvi (Ego-Graph Vector Induction), a
new algorithm of unsupervised word sense induction,
which creates sense inventories based on pre-trained
word vectors.

2. Related Work
There are two main scenarios for WSD: the supervised ap-
proach that leverages training corpora explicitly labelled for
word sense, and the knowledge-based approach that derives
sense representation from lexical resources, such as Word-
Net (Miller, 1995). In the supervised case WSD can be
treated as a classification problem. Knowledge-based ap-
proaches construct sense embeddings, i.e. embeddings that
separate various word senses.
SupWSD (Papandrea et al., 2017) is a state-of-the-art sys-
tem for supervised WSD. It makes use of linear classifiers
and a number of features such as POS tags, surrounding
words, local collocations, word embeddings, and syntactic
relations. GlossBERT model (Huang et al., 2019), which is
another implementation of supervised WSD, achieves a sig-
nificant improvement by leveraging gloss information. This
model benefits from sentence-pair classification approach,
introduced by Devlin et al. (2019) in their BERT contextu-
alized embedding model. The input to the model consists of
a context (a sentence which contains an ambiguous word)
and a gloss (sense definition) from WordNet. The context-
gloss pair is concatenated through a special token ([SEP])
and classified as positive or negative.
On the other hand, sense embeddings are an alternative
to traditional word vector models such as word2vec, fast-
Text or GloVe, which represent monosemous words well
but fail for ambiguous words. Sense embeddings represent
individual senses of polysemous words as separate vectors.
They can be linked to an explicit inventory (Iacobacci et al.,
2015) or induce a sense inventory from unlabelled data (Ia-
cobacci and Navigli, 2019). LSTMEmbed (Iacobacci and
Navigli, 2019) aims at learning sense embeddings linked to
BabelNet (Navigli and Ponzetto, 2012), at the same time
handling word ordering, and using pre-trained embeddings
as an objective. Although it was tested only on English, the
approach can be easily adapted to other languages present
in BabelNet. However, manually labelled datasets as well
as knowledge bases exist only for a small number of well-
resourced languages. Thus, to disambiguate polysemous
words in other languages one has to resort to fully unsuper-
vised techniques.
The task of Word Sense Induction (WSI) can be seen as
an unsupervised version of WSD. WSI aims at clustering
word senses and does not require to map each cluster to a
predefined sense. Instead of that, word sense inventories
are induced automatically from the clusters, treating each
cluster as a single sense of a word. WSI approaches fall into
three main groups: context clustering, word ego-network
clustering and synonyms (or substitute) clustering.
Context clustering approaches consist in creating vectors
which characterise words’ contexts and clustering these

.Ruby, CRuby, CoffeeScript, Ember, Faye, Garnet,
Gem, Groovy, Haskell, Hazel, JRuby, Jade, Jasmine,
Josie, Jruby, Lottie, Millie, Oniguruma, Opal, Python,
RUBY, Ruby., Ruby-like, Rabbitfoot, RubyMotion,
Rails, Rubinius, Ruby-, Ruby-based, Ruby2, RubyGem,
RubyGems, RubyInstaller, RubyOnRails, RubyRuby,
RubySpec, Rubygems, Rubyist, Rubyists, Rubys, Sadie,
Sapphire, Sypro, Violet, jRuby, ruby, rubyists

Table 1: Top nearest neighbours of the fastText vector of
the word Ruby are clustered according to various senses of
this word: programming language, gem, first name, color,
but also its spelling variations (typeset in black color).

vectors. Here, the definition of context may vary from
window-based context to latent topic-alike context. After-
wards, the resulting clusters are either used as senses di-
rectly (Kutuzov, 2018), or employed further to learn sense
embeddings via Chinese Restaurant Process algorithm (Li
and Jurafsky, 2015), AdaGram, a Bayesian extension of the
Skip-Gram model (Bartunov et al., 2016), AutoSense, an
extension of the LDA topic model (Amplayo et al., 2019),
and other techniques.

Word ego-network clustering is applied to semantic
graphs. The nodes of a semantic graph are words, and
edges between them denote semantic relatedness which is
usually evaluated with cosine similarity of the correspond-
ing embeddings (Pelevina et al., 2016) or by PMI-like mea-
sures (Hope and Keller, 2013b). Word senses are induced
via graph clustering algorithms, such as Chinese Whispers
(Biemann, 2006) or MaxMax (Hope and Keller, 2013a).
The technique suggested in our work belongs to this class
of methods and is an extension of the method presented by
Pelevina et al. (2016).

Synonyms and substitute clustering approaches create
vectors which represent synonyms or substitutes of polyse-
mous words. Such vectors are created using synonymy dic-
tionaries (Ustalov et al., 2019) or context-dependent substi-
tutes obtained from a language model (Amrami and Gold-
berg, 2018). Analogously to previously described tech-
niques, word senses are induced by clustering these vectors.

3. Algorithm for Word Sense Induction

The majority of word vector models do not discriminate
between multiple senses of individual words. However, a
polysemous word can be identified via manual analysis of
its nearest neighbours—they reflect different senses of the
word. Table 1 shows manually sense-labelled most similar
terms to the word Ruby according to the pre-trained fastText
model (Grave et al., 2018). As it was suggested early by
Widdows and Dorow (2002), the distributional properties
of a word can be used to construct a graph of words that are
semantically related to it, and if a word is polysemous, such
graph can easily be partitioned into a number of densely
connected subgraphs corresponding to different senses of
this word. Our algorithm is based on the same principle.
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3.1. SenseGram: A Baseline Graph-based Word
Sense Induction Algorithm

SenseGram is the method proposed by Pelevina et al.
(2016) that separates nearest neighbours to induce word
senses and constructs sense embeddings for each sense. It
starts by constructing an ego-graph (semantic graph centred
at a particular word) of the word and its nearest neighbours.
The edges between the words denote their semantic relat-
edness, e.g. the two nodes are joined with an edge if cosine
similarity of the corresponding embeddings is higher than a
pre-defined threshold. The resulting graph can be clustered
into subgraphs which correspond to senses of the word.
The sense vectors are then constructed by averaging em-
beddings of words in each resulting cluster. In order to use
these sense vectors for word sense disambiguation in text,
the authors compute the probabilities of sense vectors of a
word given its context or the similarity of the sense vectors
to the context.

3.2. egvi (Ego-Graph Vector Induction): A
Novel Word Sense Induction Algorithm

Induction of Sense Inventories One of the downsides
of the described above algorithm is noise in the generated
graph, namely, unrelated words and wrong connections.
They hamper the separation of the graph. Another weak
point is the imbalance in the nearest neighbour list, when a
large part of it is attributed to the most frequent sense, not
sufficiently representing the other senses. This can lead to
construction of incorrect sense vectors.
We suggest a more advanced procedure of graph construc-
tion that uses the interpretability of vector addition and sub-
traction operations in word embedding space (Mikolov et
al., 2013) while the previous algorithm only relies on the
list of nearest neighbours in word embedding space. The
key innovation of our algorithm is the use of vector sub-
traction to find pairs of most dissimilar graph nodes and
construct the graph only from the nodes included in such
“anti-edges”. Thus, our algorithm is based on graph-based
word sense induction, but it also relies on vector-based op-
erations between word embeddings to perform filtering of
graph nodes. Analogously to the work of Pelevina et al.
(2016), we construct a semantic relatedness graph from a
list of nearest neighbours, but we filter this list using the
following procedure:

1. Extract a list N = {w1, w2, ..., wN} of N nearest
neighbours for the target (ego) word vector w.

2. Compute a list ∆ = {δ1, δ2, ..., δN} for each wi in N ,
where δi = w − wi. The vectors in δ contain the
components of sense of w which are not related to the
corresponding nearest neighbours from N .

3. Compute a list N = {w1, w2, ..., wN}, such that wi is
in the top nearest neighbours of δi in the embedding
space. In other words, wi is a word which is the most
similar to the target (ego) word w and least similar to
its neighbour wi. We refer to wi as an anti-pair of wi.
The set of N nearest neighbours and their anti-pairs
form a set of anti-edges i.e. pairs of most dissimilar

nodes – those which should not be connected: E =
{(w1, w1), (w2, w2), ..., (wN , wN )}.
To clarify this, consider the target (ego) word w =
python, its top similar term w1 = Java and the re-
sulting anti-pair wi = snake which is the top related
term of δ1 = w − w1. Together they form an anti-
edge (wi, wi) = (Java, snake) composed of a pair of
semantically dissimilar terms.

4. Construct V , the set of vertices of our semantic graph
G = (V,E) from the list of anti-edgesE, with the fol-
lowing recurrent procedure: V = V ∪ {wi, wi : wi ∈
N , wi ∈ N}, i.e. we add a word from the list of near-
est neighbours and its anti-pair only if both of them
are nearest neighbours of the original word w. We do
not add w’s nearest neighbours if their anti-pairs do
not belong to N . Thus, we add only words which can
help discriminating between different senses of w.

5. Construct the set of edges E as follows. For each
wi ∈ N we extract a set of its K nearest neighbours
N ′

i = {u1, u2, ..., uK} and define E = {(wi, uj) :
wi ∈ V, uj ∈ V, uj ∈ N ′

i , uj 6= wi}. In other
words, we remove edges between a word wi and its
nearest neighbour uj if uj is also its anti-pair. Accord-
ing to our hypothesis, wi and wi belong to different
senses of w, so they should not be connected (i.e. we
never add anti-edges into E). Therefore, we consider
any connection between them as noise and remove it.

Note that N (the number of nearest neighbours for the tar-
get word w) and K (the number of nearest neighbours of
wci) do not have to match. The difference between these
parameters is the following. N defines how many words
will be considered for the construction of ego-graph. On
the other hand,K defines the degree of relatedness between
words in the ego-graph — if K = 50, then we will connect
vertices w and u with an edge only if u is in the list of 50
nearest neighbours of w. Increasing K increases the graph
connectivity and leads to lower granularity of senses.
According to our hypothesis, nearest neighbours of w are
grouped into clusters in the vector space, and each of the
clusters corresponds to a sense ofw. The described vertices
selection procedure allows picking the most representative
members of these clusters which are better at discriminating
between the clusters. In addition to that, it helps dealing
with the cases when one of the clusters is over-represented
in the nearest neighbour list. In this case, many elements
of such a cluster are not added to V because their anti-pairs
fall outside the nearest neighbour list. This also improves
the quality of clustering.
After the graph construction, the clustering is performed us-
ing the Chinese Whispers algorithm (Biemann, 2006). This
is a bottom-up clustering procedure that does not require to
pre-define the number of clusters, so it can correctly pro-
cess polysemous words with varying numbers of senses as
well as unambiguous words.
Figure 1 shows an example of the resulting pruned graph of
for the word Ruby for N = 50 nearest neighbours in terms
of the fastText cosine similarity. In contrast to the baseline
method by (Pelevina et al., 2016) where all 50 terms are
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clustered, in the method presented in this section we spar-
sify the graph by removing 13 nodes which were not in the
set of the “anti-edges” i.e. pairs of most dissimilar terms out
of these 50 neighbours. Examples of anti-edges i.e. pairs
of most dissimilar terms for this graph include: (Haskell,
Sapphire), (Garnet, Rails), (Opal, Rubyist), (Hazel, Ruby-
OnRails), and (Coffeescript, Opal).

Labelling of Induced Senses We label each word clus-
ter representing a sense to make them and the WSD results
interpretable by humans. Prior systems used hypernyms to
label the clusters (Ruppert et al., 2015; Panchenko et al.,
2017), e.g. “animal” in the “python (animal)”. However,
neither hypernyms nor rules for their automatic extraction
are available for all 158 languages. Therefore, we use a
simpler method to select a keyword which would help to
interpret each cluster. For each graph node v ∈ V we
count the number of anti-edges it belongs to: count(v) =
|{(wi, wi) : (wi, wi) ∈ E ∧ (v = wi ∨ v = wi)}|. A
graph clustering yields a partition of V into n clusters:
V = {V1, V2, ..., Vn}. For each cluster Vi we define a
keyword wkey

i as the word with the largest number of anti-
edges count(·) among words in this cluster.

Hazel

ruby

Sadie

Millie

Garnet

Rails

Gem

Ruby.
Jasmine

Rubys

Faye

Jade

KidsRuby

Opal

Rubyist

Ember

Josie

RubyOnRails
Groovy

Sapphire

RubygemsCRuby

JRuby

Haskell

Rabbitfoot

Coffeescript
Ruby-based

Violet

CoffeeScriptRuby-

RubyGems

RubySpec

Lottie

-Ruby

Rubyists

RubyInstaller

RUBY

Figure 1: The graph of nearest neighbours of the word Ruby
can be separated according several senses: programming
languages, female names, gems, as well as a cluster of dif-
ferent spellings of the word Ruby.

Word Sense Disambiguation We use keywords defined
above to obtain vector representations of senses. In
particular, we simply use word embedding of the key-
word wkey

i as a sense representation si of the target
word w to avoid explicit computation of sense embed-
dings like in (Pelevina et al., 2016). Given a sentence
{w1, w2, ..., wj , w, wj+1, ..., wn} represented as a matrix
of word vectors, we define the context of the target word

w as cw =

∑n
j=1 wj

n
. Then, we define the most appropri-

ate sense ŝ as the sense with the highest cosine similarity to

the embedding of the word’s context:

ŝ = arg max
si

cw · si
||cw|| · ||si||

.

4. System Design
We release a system for on-the-fly WSD for 158 languages.
Given textual input, it identifies polysemous words and re-
trieves senses that are the most appropriate in the context.

4.1. Construction of Sense Inventories
To build word sense inventories (sense vectors) for 158 lan-
guages, we utilised GPU-accelerated routines for search of
similar vectors implemented in Faiss library (Johnson et al.,
2019). The search of nearest neighbours takes substantial
time, therefore, acceleration with GPUs helps to signifi-
cantly reduce the word sense construction time. To further
speed up the process, we keep all intermediate results in
memory, which results in substantial RAM consumption of
up to 200 Gb.
The construction of word senses for all of the 158 languages
takes a lot of computational resources and imposes high re-
quirements to the hardware. For calculations, we use in
parallel 10–20 nodes of the Zhores cluster (Zacharov et al.,
2019) empowered with Nvidia Tesla V100 graphic cards.
For each of the languages, we construct inventories based
on 50, 100, and 200 neighbours for 100,000 most frequent
words. The vocabulary was limited in order to make the
computation time feasible. The construction of inventories
for one language takes up to 10 hours, with 6.5 hours on av-
erage. Building the inventories for all languages took more
than 1,000 hours of GPU-accelerated computations.
We release the constructed sense inventories for all the
available languages. They contain all the necessary infor-
mation for using them in the proposed WSD system or in
other downstream tasks.

4.2. Word Sense Disambiguation System
The first text pre-processing step is language identification,
for which we use the fastText language identification mod-
els by Bojanowski et al. (2017). Then the input is to-
kenised. For languages which use Latin, Cyrillic, Hebrew,
or Greek scripts, we employ the Europarl tokeniser.2 For
Chinese, we use the Stanford Word Segmenter (Tseng et
al., 2005). For Japanese, we use Mecab (Kudo, 2006). We
tokenise Vietnamese with UETsegmenter (Nguyen and Le,
2016). All other languages are processed with the ICU to-
keniser, as implemented in the PyICU project.3 After the
tokenisation, the system analyses all the input words with
pre-extracted sense inventories and defines the most appro-
priate sense for polysemous words.
Figure 2 shows the interface of the system. It has a tex-
tual input form. The automatically identified language of
text is shown above. A click on any of the words displays
a prompt (shown in black) with the most appropriate sense
of a word in the specified context and the confidence score.
In the given example, the word Jaguar is correctly iden-
tified as a car brand. This system is based on the system

2https://www.statmt.org/europarl
3https://pypi.org/project/PyICU

https://www.statmt.org/europarl
https://pypi.org/project/PyICU
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Figure 2: Interface of our WSD module with examples for the English language. Given a sentence, it identifies polysemous
words and retrieves the most appropriate sense (labelled by the centroid word of a corresponding cluster).

by Ustalov et al. (2018), extending it with a back-end for
multiple languages, language detection, and sense brows-
ing capabilities.

5. Evaluation
We first evaluate our converted embedding models on
multi-language lexical similarity and relatedness tasks, as
a sanity check, to make sure the word sense induction pro-
cess did not hurt the general performance of the embed-
dings. Then, we test the sense embeddings on WSD task.

5.1. Lexical Similarity and Relatedness
Experimental Setup We use the SemR-11 datasets4

(Barzegar et al., 2018), which contain word pairs with man-
ually assigned similarity scores from 0 (words are not re-
lated) to 10 (words are fully interchangeable) for 12 lan-
guages: English (en), Arabic (ar), German (de), Spanish
(es), Farsi (fa), French (fr), Italian (it), Dutch (nl), Por-
tuguese (pt), Russian (ru), Swedish (sv), Chinese (zh). The
task is to assign relatedness scores to these pairs so that
the ranking of the pairs by this score is close to the rank-
ing defined by the oracle score. The performance is mea-
sured with Pearson correlation of the rankings. Since one
word can have several different senses in our setup, we fol-
low Remus and Biemann (2018) and define the relatedness
score for a pair of words as the maximum cosine similar-
ity between any of their sense vectors.
We extract the sense inventories from fastText embedding
vectors. We set N = K for all our experiments, i.e. the
number of vertices in the graph and the maximum number
of vertices’ nearest neighbours match. We conduct exper-
iments with N = K set to 50, 100, and 200. For each
cluster Vi we create a sense vector si by averaging vec-
tors that belong to this cluster. We rely on the method-
ology of (Remus and Biemann, 2018) shifting the gener-
ated sense vector to the direction of the original word vec-

tor: si = λ w + (1 − λ)
1

n

∑
u ∈ Vi

cos(w, u) · u,

4https://github.com/Lambda-3/
Gold-Standards/tree/master/SemR-11

where, λ ∈ [0, 1], w is the embedding of the original word,
cos(w, u) is the cosine similarity between w and u, and
n = |Vi|. By introducing the linear combination of w and
u ∈ Vi we enforce the similarity of sense vectors to the
original word important for this task. In addition to that,
we weight u by their similarity to the original word, so that
more similar neighbours contribute more to the sense vec-
tor. The shifting parameter λ is set to 0.5, following Remus
and Biemann (2018).
A fastText model is able to generate a vector for each word
even if it is not represented in the vocabulary, due to the
use of subword information. However, our system can-
not assemble sense vectors for out-of-vocabulary words, for
such words it returns their original fastText vector. Still, the
coverage of the benchmark datasets by our vocabulary is at
least 85% and approaches 100% for some languages, so we
do not have to resort to this back-off strategy very often.
We use the original fastText vectors as a baseline. In this
case, we compute the relatedness scores of the two words
as a cosine similarity of their vectors.

Discussion of Results We compute the relatedness scores
for all benchmark datasets using our sense vectors and com-
pare them to cosine similarity scores of original fastText
vectors. The results vary for different languages. Figure 3
shows the change in Pearson correlation score when switch-
ing from the baseline fastText embeddings to our sense vec-
tors. The new vectors significantly improve the relatedness
detection for German, Farsi, Russian, and Chinese, whereas
for Italian, Dutch, and Swedish the score slightly falls be-
hind the baseline. For other languages, the performance of
sense vectors is on par with regular fastText.

5.2. Word Sense Disambiguation
The purpose of our sense vectors is disambiguation of pol-
ysemous words. Therefore, we test the inventories con-
structed with egvi on the Task 13 of SemEval-2013 —
Word Sense Induction (Jurgens and Klapaftis, 2013). The
task is to identify the different senses of a target word in
context in a fully unsupervised manner.

https://github.com/Lambda-3/Gold-Standards/tree/master/SemR-11
https://github.com/Lambda-3/Gold-Standards/tree/master/SemR-11
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Figure 3: Absolute improvement of Pearson correlation
scores of our embeddings compared to fastText. This is
the averaged difference of the scores for all word similarity
benchmarks.

Experimental Setup The dataset consists of a set of pol-
ysemous words: 20 nouns, 20 verbs, and 10 adjectives and
specifies 20 to 100 contexts per word, with the total of
4,664 contexts, drawn from the Open American National
Corpus. Given a set of contexts of a polysemous word,
the participants of the competition had to divide them into
clusters by sense of the word. The contexts are manually
labelled with WordNet senses of the target words, the gold
standard clustering is generated from this labelling.
The task allows two setups: graded WSI where participants
can submit multiple senses per word and provide the proba-
bility of each sense in a particular context, and non-graded
WSI where a model determines a single sense for a word
in context. In our experiments we performed non-graded
WSI. We considered the most suitable sense as the one with
the highest cosine similarity with embeddings of the con-
text, as described in Section 3.2.
The performance of WSI models is measured with three
metrics that require mapping of sense inventories (Jaccard
Index, Kendall’s τ , and WNDCG) and two cluster compar-
ison metrics (Fuzzy NMI and Fuzzy B-Cubed).

Discussion of Results We compare our model with the
models that participated in the task, the baseline ego-graph
clustering model by Pelevina et al. (2016), and AdaGram
(Bartunov et al., 2016), a method that learns sense em-
beddings based on a Bayesian extension of the Skip-gram
model. Besides that, we provide the scores of the sim-
ple baselines originally used in the task: assigning one
sense to all words, assigning the most frequent sense to all
words, and considering each context as expressing a dif-
ferent sense. The evaluation of our model was performed
using the open source context-eval tool.5

Table 2 shows the performance of these models on the Se-
mEval dataset. Due to space constraints, we only report the
scores of the best-performing SemEval participants, please
refer to Jurgens and Klapaftis (2013) for the full results.
The performance of AdaGram and SenseGram models is
reported according to Pelevina et al. (2016).
The table shows that the performance of egvi is simi-

5https://github.com/uhh-lt/context-eval

lar to state-of-the-art word sense disambiguation and word
sense induction models. In particular, we can see that it
outperforms SenseGram on the majority of metrics. We
should note that this comparison is not fully rigorous, be-
cause SenseGram induces sense inventories from word2vec
as opposed to fastText vectors used in our work.

5.3. Analysis
In order to see how the separation of word contexts that we
perform corresponds to actual senses of polysemous words,
we visualise ego-graphs produced by our method. Figure 1
shows the nearest neighbours clustering for the word Ruby,
which divides the graph into five senses: Ruby-related pro-
gramming tools, e.g. RubyOnRails (orange cluster), female
names, e.g. Josie (magenta cluster), gems, e.g. Sapphire
(yellow cluster), programming languages in general, e.g.
Haskell (red cluster). Besides, this is typical for fastText
embeddings featuring sub-string similarity, one can observe
a cluster of different spelling of the word Ruby in green.
Analogously, the word python (see Figure 4) is divided
into the senses of animals, e.g. crocodile (yellow cluster),
programming languages, e.g. perl5 (magenta cluster), and
conference, e.g. pycon (red cluster).
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Figure 4: Ego-graph for a polysemous word python which
is clustered into senses snake (yellow), programming lan-
guage (magenta), and conference (red). Node size denotes
word importance with the largest node in the cluster being
used as a keyword to interpret an induced word sense.

In addition, we show a qualitative analysis of senses of
mouse and apple. Table 4 shows nearest neighbours of
the original words separated into clusters (labels for clus-
ters were assigned manually). These inventories demon-
strate clear separation of different senses, although it can
be too fine-grained. For example, the first and the second
cluster for mouse both refer to computer mouse, but the
first one addresses the different types of computer mice,
and the second one is used in the context of mouse ac-
tions. Similarly, we see that iphone and macbook are sep-

https://github.com/uhh-lt/context-eval
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Supervised Evaluation Clustering Evaluation
Model Jacc. Ind. Kendall’s τ WNDCG F.NMI F.B-Cubed

Baselines

One sense for all 0.192 0.609 0.288 0.000 0.631
One sense per instance 0.000 0.000 0.000 0.071 0.000
Most Frequent Sense 0.455 0.465 0.339 – –

SemEval-2013 participants

AI-KU (base) 0.197 0.620 0.387 0.065 0.390
AI-KU (remove5-add1000) 0.244 0.642 0.332 0.039 0.451
Unimelb (50k) 0.213 0.620 0.371 0.060 0.483

Sense embeddings

AdaGram, α = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470
SenseGram (word2vec) 0.197 0.615 0.291 0.011 0.615
egvi (fastText, K=200) 0.229 0.625 0.300 0.035 0.541

Table 2: WSD performance on the SemEval-2013 Task 13 dataset for the English language.

Figure 5: Distribution of the number of senses per word in the generated inventories for all 158 languages for the number
of neighbours set to: N ∈ {50, 100, 200}, K ∈ {50, 100, 200} with N = K.

arated into two clusters. Interestingly, fastText handles ty-
pos, code-switching, and emojis by correctly associating
all non-standard variants to the word they refer, and our
method is able to cluster them appropriately.
Both inventories were produced with K = 200, which en-
sures stronger connectivity of graph. However, we see that
this setting still produces too many clusters. We computed
the average numbers of clusters produced by our model
withK = 200 for words from the word relatedness datasets
and compared these numbers with the number of senses in
WordNet for English and RuWordNet (Loukachevitch and
Dobrov, 2014) for Russian (see Table 3). We can see that
the number of senses extracted by our method is consis-
tently higher than the real number of senses.
We also compute the average number of senses per word
for all the languages and different values of K (see Figure
5). The average across languages does not change much
as we increase K. However, for larger K the average ex-
ceed the median value, indicating that more languages have
lower number of senses per word. At the same time, while
at smaller K the maximum average number of senses per
word does not exceed 6, larger values of K produce out-
liers, e.g. English with 12.5 senses.
Notably, there are no languages with an average number of
senses less than 2, while numbers on English and Russian
WordNets are considerably lower. This confirms that our
method systematically over-generates senses. The presence
of outliers shows that this effect cannot be eliminated by

further increasing K, because the i-th nearest neighbour of
a word for i > 200 can be only remotely related to this
word, even if the word is rare. Thus, our sense clustering
algorithm needs a method of merging spurious senses.

mc rg simlex ws353 total

English

inventory 9.8 9.8 12.6 11.3 12.5

WordNet 3.6 3.7 6.5 5.5
1.23 (nouns)
2.16 (verbs)

Russian

inventory 1.8 2.0 – 2.2 2.97

RuWordNet 1.4 1.4 – 1.8
1.12 (nouns)
1.33 (verbs)

Table 3: Average number of senses for words from SemR-
11 dataset in our inventory and in WordNet for English and
ruWordNet for Russian. The rightmost column gives the
average number of senses in the inventories and WordNets.

6. Conclusions and Future Work
We present egvi, a new algorithm for word sense induc-
tion based on graph clustering that is fully unsupervised
and relies on graph operations between word vectors. We
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Label Nearest neighbours
MOUSE

computer
mouse types

touch-pad, logitec, scrollwheel, mouses, mouse.It, mouse.The, joystick, trackpads, nano-receiver, 800DPI, nony,
track-pad, M325, keyboard-controlled, Intellipoint, MouseI, intellimouse, Swiftpoint, Evoluent, 800dpi, moused,
game-pad, steelseries, ErgoMotion, IntelliMouse, <...>

computer
mouse actions

Ctrl-Alt, right-mouse, cursor, left-clicks, spacebar, rnUse, mouseclick, click, mousepointer, keystroke, cusor,
mousewheel, MouseMove, mousebutton, leftclick, click-dragging, mouse-button, cursor., arrow-key, double-
clicks, mouse-down, ungrab, mouseX, arrow-keys, right-button, <...>

rodent Rodent, rodent, mousehole, rats, mice, mice-, hamster, SOD1G93A, meeses, mice.The, PDAPP, hedgehog,
Maukie, rTg4510, mousey, meeces, rodents, cat, White-footed, rat, Mice, <...>

keyboard keyborad, keybard, keybord, keyboardThe, keyboad, keyboar, Keyboard, keboard, keyboardI, keyb, key-
board.This, keybaord, keyboard

medical SENCAR, mTERT, mouse-specific

Latin Apodemus, Micormys

Latin Akodon
APPLE

iphone mobileme, idevice, carplay, iphones, icloud, iwatch, ios5, ipod, iphone, android, ifans, iphone.I, iphone4,
iphone5s, idevices, ipad, ios, ipad., iphone5, iphone., ios7

fruit apples, apple-producing, Honeycrisp, apple-y, Macouns, apple-growing, pear, apple-pear, Gravensteins, apple-
like, Apples, Honeycrisps, apple-related, Borkh, Braeburns, Starkrimson, Apples-, SweeTango, Elstar

macbook macbook, macbookpro, macbookair, imac, ibooks, tuaw, osx, macintosh, imacs, apple.com, applestore, Tagsap-
ple, stevejobs, applecare

fruit, typos blackerry, blackberry, blueberry, aplle, cidar, apple.The, apple.I, aple, appple, calvados, pie.It,
pinklady

tokenisation is-
sues, typos

Apple.This, AMApple, it.Apple, too.Apple, AppleApple, up.Apple, AppleA, Aplle, Apple.Apple

Apple criticism anti-apple, Aple, Crapple, isheep, iDiots, crapple, Appple, iCrap, non-apple

Bible Adam

cooking caramel-dipped

iphone earpod

Russian яблоко [Russian: “apple”]

emoji [apple emoji]

Table 4: Clustering of senses for words mouse and apple produced by our method. Cluster labels in this table were assigned
manually for illustrative purposes. For on-the-fly disambiguation we use centroid words in clusters as sense labels (shown
here in bold).

apply this algorithm to a large collection of pre-trained fast-
Text word embeddings, releasing sense inventories for 158
languages.6 These inventories contain all the necessary in-
formation for constructing sense vectors and using them in
downstream tasks. The sense vectors for polysemous words
can be directly retrofitted with the pre-trained word embed-
dings and do not need any external resources. As one ap-
plication of these multilingual sense inventories, we present
a multilingual word sense disambiguation system that per-
forms unsupervised and knowledge-free WSD for 158 lan-
guages without the use of any dictionary or sense-labelled
corpus.
The evaluation of quality of the produced sense invento-
ries is performed on multilingual word similarity bench-
marks, showing that our sense vectors improve the scores

6Links to the produced datasets, online demo, and source
codes are available at: http://uhh-lt.github.io/158.

compared to non-disambiguated word embeddings. There-
fore, our system in its present state can improve WSD and
downstream tasks for languages where knowledge bases,
taxonomies, and annotated corpora are not available and
supervised WSD models cannot be trained.
A promising direction for future work is combining dis-
tributional information from the induced sense invento-
ries with lexical knowledge bases to improve WSD per-
formance. Besides, we encourage the use of the produced
word sense inventories in other downstream tasks.
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