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Abstract
Morphological analysis is one of the tasks that have been studied for years. Different techniques have been used to develop models
for performing morphological analysis. Models based on finite state transducers have proved to be more suitable for languages with
low available resources. In this paper, we have developed a method for weighting a morphological analyzer built using finite state
transducers in order to disambiguate its results. The method is based on a word2vec model that is trained in a completely unsupervised
way using raw untagged corpora and is able to capture the semantic meaning of the words. Most of the methods used for disambiguating
the results of a morphological analyzer relied on having tagged corpora that need to manually built. Additionally, the method developed
uses information about the token irrespective of its context unlike most of the other techniques that heavily rely on the word’s context to
disambiguate its set of candidate analyses.
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1. Introduction
Morphological Analysis is the task of mapping an input to-
ken to its morphemes. The morphological analysis of a to-
ken can change depending on its context (e.g.: The word
wound is a verb <v> in the sentence “the device is wound
with copper wire” and a singular noun <n><sg> in “a
knife wound”). Researchers have been working on build-
ing models for languages using different techniques. For
low resourced language, it’s not an easy task to find / build
a sufficiently large tagged corpus that can be used to train
supervised machine learning models.
Finite state transducers (FSTs) map a set of input sequences
to a set of output sequences. A transducer is defined by an
input alphabet A, an output alphabet B , a set of states S, a
set of initial states I , a set of final states F and a set of tran-
sitions between different states of the transducer T where
I ∈ S, F ∈ S, T ∈ S × (A ∪ {ε})× (B ∪ {ε})× S. Each
transition has an input token, output token, source state and
destination state. Given an input sequence, the output se-
quences correspond to the set of valid paths between the ini-
tial states and final states passing through a set of interme-
diate states. Finite state transducers have been used in mor-
phologically analyzing text to convert tokens from the sur-
face form to the lexical one (Beesley, 2003). These trans-
ducers are non-determinstic if multiple output sequences
can be generated for the same input sequence/pattern. A
weighthed finite state transducer associates a weight to each
transition. The total weight of a path is corresponding to the
multiplication of the path’s transitions weights. For a tropi-
cal semiring, the multiplication operator corresponds to the
algebric summation such that the total weight of a path is
computed as the summation of the weights (Mohri, 2004).
In this paper, we are investigating the usage of word2vec
as a word embedding model to disambiguate the analyses
generated by a finite state transducer. A weighted morpho-
logical analyzer has a method of ordering for the ambigu-
ous set of analyses for an input token. Our model is com-
pletely unsupervised and uses information about the word
only irrespective of its context. Adding weights to a mor-

phological analyzer will help in finding the most common
morphological analysis for each token and also help in find-
ing the most common tag for a morphologically unambigu-
ous token (e.g.: The word fine can have two valid analyses,
it can be considered to be an adjective <adj>as in “This is
a fine house”, and can be considered to be a singular noun
<n><sg>as in “I got a fine”.). This paper is organized as
follows: Section 2 gives a brief overview of the research
done in disambiguating morphological analyzers, Section
3 explains the background of building weighted morpho-
logical analyzers using finite state transducers, Section 4
describes the reference methods and the word2vec based
method that are used for weighting transducers, Section
5 shows the experimental setup for the word2vec method,
Section 6 reports the results for the weighting methods and
Section 7 provides our conclusion of the experiments.

2. Related Work
The task of disambiguating the morphological analyses
for a certain input token has been discussed for years.
Yuret et al. (2006) used a supervised approach to learn a set
of rules that can be used for disambiguating the analyses.
They used an algorithm called GPA (Greedy Prepend Algo-
rithm) which is an update to the Prepend Algorithm (Webb,
1993). Initially, there is a single rule that matches all the in-
put tokens and assigns them to the most common class/tag
in the training set. Then, New candidate rules are generated
by prepending an attribute to all the rules that currently ex-
ist in the list. The gain of each rule is defined as the number
of instances that were wrongly classified and will get clas-
sified correctly if the rule is prepended to the set of rules.
Finally, the rule with maximum gain will be prepended to
the set of rules, which means it will have higher priority
than the previous ones. This seems logical since new rules
act as special cases to the old ones.
Another way to build a rule-based morphological analyzer
is to depend on a constraint grammar to disambiguate the
results of the tagger (Uı́ Dhonnchadha and Van Genabith,
2006).
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Schiller (2006) demonstrated a way to weight a finite
state transducer for segmenting tokens into their constituent
compounds. Although Segmentation differs from Morpho-
logical Analysis, The research demonstrated how using un-
supervised rules can lead to better models. The author’s
intuition is to favor compounds with less number of seg-
ments. Then, using a training corpus, the uni-gram counts
of token-compound pairs are used to disambiguate between
compounds having the same number of segments.
Sánchez-Martı́nez et al. (2008) developed a way to build a
part of speech tagger / disambiguator by training a Hidden
Markov Model that is used in a pipeline of a machine trans-
lator. The authors proved how making use of information
from the target language yields better disambiguators.
Shen et al. (2016) explored the usage of deep learning tech-
niques for the morphological disambiguation task through
Long short term-memory(LSTM)-based neural architec-
tures depending on features extracted from the word and
its context. They used two different Embedding models,
One for the list of candidate analyses of the token and the
other for the context’s words and their respective analyses.
These deep learning models depend on having large tagged
data-sets that can be used to optimize the cost function.

3. Background
Finite state transducers can be used to transform words
from surface form to lexical form. A FST is a directed
graph having a set of initial and final states. Each edge
in a weighted FST is characterized by three values: an in-
put token, an output token and a weight taking the form
Input token:Output token/Weight. Moreover,
the final states may have weight values associated to them.
For an input surface word, the corresponding lexical forms
(analyses) can be generated by finding the set of paths that
start from one of the initial states, end at one of the fi-
nal states and pass through a set of edges such that the
concatenation of the edges’ input tokens matches the in-
put surface word. A FST may have epsilon transitions (in
the form ε:Output token/Weight) which are edges
that generate an output token without consuming an input
token. For a tropical semi-ring implementation of FSTs,
the weight of a path is the summation of the weights of the
path’s edges and the weight of the final state.
Figure 1 shows how a simple FST can be used to
transform the word euro to its corresponding lexical
forms euro<n><sg> and euro<n><pl>. Initially, the
weights of the edges and the final states are equal to zero.
To disambiguate the results of the analyzer, different paths
should have different weights such that the most probable
path has the least weight.
One way to weight a FST is achieved by an operation called
Composition. Composition is an operation to join two FSTs
together. If the first FST is used to map a set of input tokens
X to a set of output tokens Y and the second FST is used
to map a set of input tokens Y to a set of output tokens Z,
then composing both FSTs together will result in a FST that
maps the set of input tokens X directly to the set of output
tokens Z.
Figure 2 shows an example for a FST that can be used
to weight the morphological analysis FST. The second
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Figure 1: An unweighted FST
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Figure 2: A weighted FST

FST weights any input with a suffix <n><sg> to 1 and
weights any input with a suffix <n><pl> to 2. This
FST is generated from two regular expressions in the form
?+<n><sg>::1 and ?+<n><pl>::2 where ? means
any token from the FST’s alphabet and ?+ means that the
input word must have a prefix of at least one token.
Using composition, a weighted morphological analyzer is
formed as shown in Figure 3. This example shows that in
order to weight a morphological analyzer, a set of weighted
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Figure 3: The composed FST

regular expressions (weightlist) needs to be formed so that
each path in the analyzer is associated with a certain weight.
Another simple FST operation is the difference operation
that resembles the difference operator between two sets. It
removes all the paths that are found in the second FST from
the first one. This operation is used in the case of having
multiple successive weightlists.

4. Development

All the methods except the analysis length method gen-
erate a regexp weightlist in the form of mapping an un-
weighted lexical form to a weighted lexical form. This reg-
exp weightlist is compiled and composed with the original
unweighted FST (mapping surface form to lexical form)
to generate a weighted FST. In the following section, we
will describe how weightlists are generated in the reference
methods and the word2vec method. In most of the models,
we need to estimate the weights of unseen tokens (lexical
forms). Two different methods were used for estimating the
counts of these tokens. The first one is Laplace smoothing
with simply adds a value of 1 to the counts of all the seen
tokens and assumes that any unseen token has a count of
1. The second method is based on Good-Turing smooth-
ing. We have used the simple good-turing implementation
(Gale and Sampson, 1995) which mainly aims at adjusting
the counts of seen tokens and estimating the counts of all
the unseen tokens.

4.1. Reference models
We have evaluated the usage of different reference methods
to compare them with the word2vec based method. These
reference models are based on statistical theories or based
on having a heuristic for weighting analyses.

4.1.1. Unigram-counts based weightlist
The unigram-counts based method is a supervised tech-
nique. It was proved that the unigram method can suc-
cessfully disambiguate morphological analyses for Finnish
(Lindn et al., 2009). Given a tagged corpus in the form (sur-
face form, analysis), The method estimates the probability
of a certain analysis, a given a surface form, s as P (a|s).
Using Bayes’ theorem, The probability of an analysis given
a surface form can be computed as in (1).

P (a|s) = P (s|a)P (a)
P (s)

. (1)

The method needs to estimate the values for the three terms
P (s|a), P (a) and P (s). The term P (s|a) is the probabil-
ity of a surface form s given that it has a lexical form a.
This term will always be equal to 1. e.g: For the analysis
cat<n><pl>, the only valid surface form is cats. Thus,
P (s|a) = 1 if analysis is one of the possible analyses for
the surface form (P (cats|cat < n >< pl >) = 1). Since
the denominator termP (s) is common for all the valid anal-
yses of the input surface form, then this term can be omitted
without affecting the order of the conditional probabilities.
Therefore, P (a|s) can be substituted by P (a). Doing so
will not make it possible to interpret the weights in a prob-
abilistic way but it will not affect the order of these prob-
abilities. The value P (a) can be estimated as number of
occurrences of analysis divided by the size of tagged cor-
pus.
Instead of calculating small floating values for the prob-
ability, Tropical semirings are used such that the weight
is equivalent to -log(probability). Thus the weight will be
−log(P (a)) which equals−log(Na)+log(|C|), whereNa

is the number of occurrences of analysis a and |C| is the
size of the corpus.
Finally, a smoothing method is used to estimate the count
of unseen tokens. We have tested both Laplace smoothing
and Simple Good-Turing methods to generate a secondary
weightlist for the tokens that weren’t part of the training
corpus. So, this unigram-counts based model will end-up
generating two different weightlists:

• A weightlist based on the unigram counts of each anal-
ysis in the corpus.

• A default weightlist based on Laplace smoothing or
simple Good-Turing smoothing.

4.1.2. Constraint Grammar-based weightlist
A constraint grammar is a set of rules for selecting or re-
moving certain analyses given the lexical forms of the pre-
vious/next tokens (Karlsson, 1990). For English, a con-
straint grammar might have a rule that selects the infinitive
analysis of a verb if it’s preceded by the word to. The
rule written in CG-3 format will be "SELECT Inf IF
(0C V) (-1C To) ;" which can interpreted as select
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the infinitive analysis if the current token is a verb and the
previous token is to.
Given a large unannotated corpus, First the list of candidate
analyses for the whole corpus is generated. Then, the Con-
straint Grammar is used to filter the lists of analyses. The
remaining candidate analyses are considered to be a tagged
corpus that is used to estimate the weightlist in the same
fashion as the unigram based method.
Since this method makes use of a pre-built constraint gram-
mar then it can be considered as a semi-unsupervised
model.

4.1.3. Random weightlist
The random method represents the baseline for all the other
models. Given a a raw unlabeled corpus and unweighted
FST, Weights are generated as follows:

• Each token is analyzed using the unweighted FST gen-
erating multiple ambiguous analyses/lexical forms.

• A random analysis is chosen and added to a weighting
corpus.

• The randomly selected analyses for the tokens are
treated as a tagged corpus that is used to estimate the
weights of the analyses.

The method breaks down any regularity/heuristic that could
have improved the weighting process. This method’s eval-
uation metrics act as a lower bound for the metrics of all
the other methods.

4.1.4. Equal weightlist
The equally-probable method assigns a weight of one to all
the analyses. After weighting the FST, the first candidate
out of the list of valid lexical analyses is selected as the
correct analysis. This method evaluates the default order of
the analyses reached by the analyzer.

4.1.5. Analysis Length weightlist
The analysis length method depends on a heuristic that
shorter analyses are more probable than long ones. There-
fore, Complex analyses having many tags will have larger
weight (less probability) than simple/short ones. One way
to achieve such weighting is to assign a weight of 1 to all
the edges of a FST.

4.2. The word2vec-based weightlist
Word embedding models have proved to be successful in
capturing the semantic similarities between words even if
they are syntactically different. Word2vec is one of the
most popular models used for training word embedding
models (Mikolov et al., 2013). After training a word2vec
model using large raw corpus (such as: wikipedia dumps), a
smaller untagged corpus is used. For each token in the cor-
pus, a list of the top 10 similar words to the token is gen-
erated by finding the words whose vectors have the high-
est cosine similarity with the input token’s vector. Then,
the analyses of all the similar words is found using the
unweighted morphological analyzer and all the ambiguous
similar words (the words having more than one analysis)
are discarded. Finally, the analyses of unambiguous similar

Table 1: Most common analyses of the unambiguous similar
words of the word wound

Tag Count

<n><sg> 7
<n><pl> 1

words are used to disambiguate the analysis of the current
token.
Example: For the token “wound”, the possible analyses are:
wound wind<vblex><pp>/

wind<vblex><past>/
wound<n><sg>/
wound<vblex><pres>/
wound<vblex><inf>/
wound<vblex><imp>

The words similar to the token “wound” using just the co-
sine similarity between the token and the vectors of the
other tokens in the vocabulary without making use of the
token’s context are:
wounds wound<n><pl>/

wound<vblex><pres><p3><sg>
injuries injury<n><pl>
injury injury<n><sg>
neck neck<n><sg>
chest chest<n><sg>
blow blow<n><sg>/

blow<vblex><inf>/
blow<vblex><pres>/
blow<vblex><imp>

cord cord<n><sg>
ulcer ulcer<n><sg>
tendon tendon<n><sg>
surgery surgery<n><sg>

The ambiguous similar words (wounds and blow) will
be discarded then a tag count for the tags of the remain-
ing similar words’ analyses is formed. (The most common
tags among the analyses of the similar words are found in
Table 1). Finally, the most common tags are compared to
the possible analyses of the current token and the matching
tags are weighted using the unigram tag counts. (i.e.: For
the token “wound” the tag <n><sg> is the most probable
analysis and is a possible analysis for the input token. On
the other hand, the tag <n><pl> isn’t a possible analysis
for the input token thus it’s ignored).

4.3. How are weightlists used
The generated weightlists using different methods are in the
form of weighted analyses. These weightlists can be com-
piled into FSTs that transform an unweighted analysis into
a weighted one. FST composition is then used to generate a
FST that transforms an input surface form into a weighted
analysis. The first FST is the unweighted morphological
analyzer that maps surface forms to lexical forms. And the
second FST is one that maps unweighted lexical forms to
weighted ones. Each weighted analysis in the weightlist
is converted a weighted FST using hfst-regexp2fst.
These FSTs are disjuncted together to generate a single FST
for mapping lexical forms to weighted lexical forms. On
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composing both FSTs, a weighted FST mapping surface
form to weighted lexical forms will be generated.
However, if the second FST doesn’t have a path for a cer-
tain analysis then the surface-form:analysis pair will be
dropped. To avoid this we use FST difference to find all
the paths that were part of the unweighted FST and were
dropped in the final composed FST. Then, we use another
fallback weightlist for these remaining analyses.
Our implementation allows the usage of a set of weightlists
such that the second weightlist acts as a fallback for the first
weightlist and the third weightlist acts as a fallback for the
first two and so on. We also need to make sure that the
weights in the second weightlist are larger than those of the
first one such that those paths are less favorable. Addition-
ally, The final and default weightlist makes use of Laplace
Smoothing such that every path that was part of the un-
weighted FST is added to the final weighted FST.

5. Experiments
Different weighting methods are implemented as a set of
shell scripts and Python 3 scripts 1. Apertium’s lttoolbox
(lexical toolbox) and hfst are used to apply different FST
operations and transformations. Linguistic resources such
as: unweighted morphological analyzers, tagged corpora
and constraint grammars for English, Kazakh (Washington
et al., 2014) and Serbo-Croatian2 that were used throughout
the experiments are actually available as part of Apertium’s
resources.

5.1. Word2vec models
Word2vec model has two common architectures: Conti-
nous Bag of Words (CBoW) and Skip-gram (SG). Ac-
cording to the results reached by Mikolov et al. (2013) on
the Semantic-Syntactic Word Relationship test set, Models
based on the skip-gram architecture perform better on se-
mantic similarity tasks while the continuous bag of words
perform better on syntactic similarity tasks. In our model,
we are more interested in using word2vec models that can
find the words semantically similar to a given word so we
used the Skip-gram version of the word2vec models (e.g:
for the word wound, a semantically similar word would be
injury which can be used to disambiguate the morpho-
logical analysis of wound. On the other hand, a syntacti-
cally similar word would be wounding which isn’t useful
in disambiguating the input word as they don’t share similar
morphological analyses).
Fares et al. (2017) showed that researchers don’t pay great
attention to optimizing the training process of word2vec
models. The trained models aren’t reproducible due to the

1https://github.com/apertium/
apertium-weighting-tools

2We use the language name Serbo-Croatian to refer to the va-
rieties spoken in Bosnia, Croatia, Montenegro and Serbia which
may appear under a number of names. The languages are morpho-
logically very similar and the morphological analyzer treats them
as a single language system. Regional differences in phonology
(e.g. the yat reflex as {-e-, -je-, -ije-}, morphology/orthography
(spelling of the future tense) and lexicon are dealt with in the an-
alyzer.

Table 2: Hyperparameters settings of the word2vec model

Hyperparameter Value

model architecture Skip-gram
minimum count 5
window size 2, 5, 10
vector size 100, 200, 300
downsampling threshold 10−5

initial learning rate 0.025
minimum learning rate 0.0001
negative sampling 20
epochs 5
random seed 42

randomized nature of the architecture. Additionally, hyper-
parameter optimizations are required to build models that
can perform well on the given task. They have also pub-
licly shared a set of pre-trained models as a solution to the
reproducibility issues. Pre-trained models for English and
Kazakh only are avialable and we have used these models
to evaluate our weighting method.
The three pretrained models that were used are: A
Word2Vec Continuous Skipgram (ID:18) trained using gen-
sim with vector size of 300 and window size of 5 trained
using the English Wikipedia Dump of February 2017 with
vocabulary size 291186, a Word2Vec Continuous Skipgram
(ID:40) trained using gensim with vector size of 100 and
window size of 10 trained using the English CoNLL17 cor-
pus with vocabulary size 4027169 and a Word2Vec Contin-
uous Skipgram (ID:54) with vector size of 100 and window
size of 10 trained using the Kazakh CoNLL17 corpus of
vocabulary size 176643.
Moreover, we have trained multiple word2vec models from
scratch to investigate the effect of different parameters on
the overall performance of the system. Wikipedia dumps
for English, Kazakh and Serbo-Croatian are used to train
models. We used a Python package called gensim to train
the word2vec models. After thoroughly checking the gen-
sim Python package, we found that using a single thread
and setting the random seed are required to ensure the re-
producibility of the results.
Some of the hyperparameters are already optimized by
Mikolov et al. (2013) where they have recommended a set
of values for the parameters.
We have trained the models with the settings shown in
Table 2. The values for minimum count (the minimum
count of word in corpus to be considered as a unique
word), downsampling threshold (for downsampling high
frequency words), initial learning rate and minimum learn-
ing rate are set to the values that were recommended by
Mikolov et al. (2013). Regarding the number of epochs, it
is set to only 5 as we found that increasing it results in worse
models. This occurs due to the fact that word2vec models
are based on neural networks with huge number of param-
eters and training them for a long time using the same data
will cause over-fitting. Finally, we have investigated the ef-
fect of the window size and the vector size on the system’s
performance.
All the models are trained using wikipedia dumps (dumped

https://github.com/apertium/apertium-weighting-tools
https://github.com/apertium/apertium-weighting-tools
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Table 3: Effect of vector size on skip-gram models (window size is 2)

English Serbo-Croatian Kazakh
Vector size P R F P R F P R F

100 (la) 0.710 0.713 0.712 0.468 0.470 0.469 0.646 0.636 0.641
200 (la) 0.701 0.705 0.703 0.469 0.471 0.470 0.640 0.630 0.635
300 (la) 0.705 0.709 0.707 0.473 0.476 0.474 0.649 0.639 0.644

100 (sgt) 0.701 0.704 0.702 0.460 0.462 0.461 0.647 0.637 0.642
200 (sgt) 0.698 0.702 0.700 0.463 0.466 0.464 0.646 0.636 0.641
300 (sgt) 0.696 0.700 0.698 0.476 0.480 0.478 0.652 0.642 0.647

Table 4: Effect of window size on skip-gram models (vector size is 100 for English and 300 for Kazakh and Serbo-Croatian)

English Serbo-Croatian Kazakh
Window size P R F P R F P R F

2 (la) 0.710 0.713 0.712 0.473 0.476 0.474 0.649 0.639 0.644
5 (la) 0.737 0.736 0.736 0.450 0.454 0.452 0.644 0.634 0.639
10 (la) 0.740 0.739 0.739 0.437 0.440 0.438 0.652 0.642 0.647

2 (sgt) 0.701 0.704 0.702 0.476 0.480 0.478 0.652 0.642 0.647
5 (sgt) 0.730 0.729 0.730 0.431 0.434 0.432 0.642 0.632 0.637
10 (sgt) 0.734 0.732 0.733 0.434 0.437 0.436 0.654 0.645 0.650

on the 22nd of February 2020). Since the size of the English
dump is much larger than the size of the Kazakh and Serbo-
Croatian dumps, a portion of the English dump was used to
make the sizes of the corpora comparable.

6. Evaluation and Results
To evaluate the performance of a generated weightlist, first
a weighted FST is generated. For each labeled token in the
tagged corpus, the list of candidate morphological analy-
ses are generated using the weighted FST. Finally, the most
probable analysis (the one having the least weight) is con-
sidered as the model’s prediction.

6.1. Evaluation corpora
Apertium3 has tagged corpora for the supported languages.
The evaluation process relied on Apertium’s tagged corpora
for English, Kazakh and Serbo-Croatian. These corpora are
distributed under the GNU General Public License.
For the English corpus, the number of token/analysis pairs
in corpus is 29,650. The number of unique tag combina-
tions in the corpus is 198. The distribution for the number
of candidate analyses for each token before disambiguation
is shown in Figure 4.
Clearly, 65.8% of the corpus is actually not ambiguous.
This is a result of the nature of the English Morphology.
On the other hand, Kazakh is a morphologically com-
plex language. For the Kazakh corpus, the number of to-
ken/analysis pairs in corpus is 9762. The number of unique
tag combinations in the corpus is 655. And the distribution
for the number of candidate analyses for each token before
disambiguation is shown in Figure 5. A single token in
Kazakh might have more than 20 candidate analysis. More

3Apertium is a machine translation program targeting lower
resourced languages.
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Figure 4: Ratio of tokens having 1, 2, .. number of candidate
analyses in the English corpus

than 0.5% of the corpus has 16 or more analyses which
makes the disambiguation process much harder. Addition-
ally, the Kazakh corpus has 655 unique tag combinations
compared to the 198 tags in the English corpus despite the
fact that the Kazakh corpus size is about one third that of
the English corpus.
Similarly, Serbo-Croatian has 20127 token/analysis pairs
with 598 unique tag combinations. Figure 6 shows that
more than 5% of the tokens in the tagged corpus had 16
or more candidate morphological analyses.

6.2. Results
To evaluate the weighted FSTs, precision, recall and F1
score are used. For each tag in the tagged corpus, pre-
cision is calculated as P = TP

TP+FP , recall is calculated
as R = TP

TP+FN and F1 score is calculated the harmonic

mean of the precision and recall F1 = 2∗(P∗R)
P+R where TP
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Table 5: Results of the reference and the word2vec methods. The unigram-count and constraint-grammar methods both rely on either
annotated data or rule-based disambiguation.

English Serbo-Croatian Kazakh
Model name P R F P R F P R F

unigram-counts (la smoothing) 0.848 0.844 0.846 0.830 0.841 0.835 0.849 0.841 0.845
unigram-counts (simple good-turing smoothing) 0.856 0.853 0.855 0.830 0.840 0.835 0.849 0.841 0.845
constraint grammar (la smoothing) 0.776 0.774 0.775 0.607 0.622 0.615 0.702 0.697 0.699
constraint grammar (simple good-turing smoothing) 0.771 0.768 0.769 0.557 0.572 0.564 0.641 0.637 0.639

random (la smoothing) 0.705 0.703 0.704 0.434 0.448 0.441 0.577 0.573 0.575
random (simple good-turing smoothing) 0.705 0.703 0.704 0.450 0.459 0.455 0.606 0.600 0.603
equal 0.687 0.687 0.687 0.554 0.558 0.556 0.647 0.633 0.640
analysis length 0.685 0.685 0.685 0.542 0.549 0.545 0.670 0.662 0.666
word2vec (la smoothing) 0.740 0.739 0.739 0.473 0.476 0.474 0.652 0.642 0.647
word2vec (sgt smoothing) 0.734 0.732 0.733 0.476 0.480 0.478 0.654 0.645 0.650
word2vec (la smoothing) (pretrain - WP dump 17) 0.708 0.707 0.708 - - - - - -
word2vec (sgt smoothing) (pretrain - WP dump 17) 0.702 0.702 0.702 - - - - - -
word2vec (la smoothing) (pretrain - CoNLL17) 0.720 0.720 0.720 - - - - - -
word2vec (sgt smoothing) (pretrain - CoNLL17) 0.713 0.712 0.713 - - - - - -
word2vec (la smoothing) (pretrain - CoNLL17) - - - - - - 0.642 0.632 0.637
word2vec (sgt smoothing) (pretrain - CoNLL17) - - - - - - 0.653 0.643 0.648
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Figure 5: Ratio of tokens having 1, 2, .. number of candidate
analyses in the Kazakh corpus

is the number of True positives, FP is the number of False
positives and FN is the number of False negatives. For ex-
ample, To calculate the precision, recall and F1 score for
the analysis (classification class) euro<n><sg>, the cor-
rect labels and the predictions of the disambiguation model
are divided into two bins: positive (the model’s prediction
is equal to the class in question euro<n><sg>) and nega-
tive (the model’s prediction isn’t equal to the class in ques-
tion euro<n><sg>). The four combinations of the label
and prediction are:

• True Positive (TP): The correct label is
euro<n><sg> and the model’s prediction is
euro<n><sg>.

• False Positive (FP): The correct label isn’t
euro<n><sg> and the model’s prediction is
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Figure 6: Ratio of tokens having 1, 2, .. number of candidate
analyses in the Serbo-Croatian corpus

euro<n><sg>.

• False Negative (FN): The correct label is
euro<n><sg> but the model prediction isn’t
euro<n><sg>.

• True Negative (TN): The correct label isn’t
euro<n><sg> and the model’s prediction isn’t
euro<n><sg>.

After counting the values of TP / FP / FN for the cur-
rent analysis euro<n><sg>, the precision, recall and F1
scores are computed as shown above. This operation is
repeated for all the analyses (classification classes) in the
evaluation data-set. The precision, recall and F1 metrics
are finally merged using a weighted macro-average among
all these tags.
Table 5 reports the evaluation metrics for the reference
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methods in addition to our word2vec based method for the
English, Kazakh and Serbo-Croatian languages.

6.2.1. Hyperparameter optimization
Results of the hyperparameter optimizations for the vec-
tor and window sizes are shown in Tables 3, 4. On op-
timizing the hyperparameters, both laplace smoothing (la)
and simple good-turing (sgt) were used. First, three mod-
els are trained for each language with all the other param-
eters set as the values indicated in 2 and vector sizes are
100, 200, 300. It was found that the vector size of 100
suited English better while vector size of 300 was better
for both Kazakh and Serbo-Croatian. For the window size,
it was found that larger window sizes generated more pre-
cise models for English and Kazakh but weren’t useful for
Serbo-Croatian. For the counts smoothing method, Laplace
smoothing worked better with the word2vec models for
English while simple Good-Turing outperformed Laplace
smoothing for Kazakh and Serbo-Croatian.

6.3. Discussion
We have noticed that the results of Skip-gram word2vec
models is sensitive to values like the random seed used dur-
ing the training of the model. We found that (Hellrich and
Hahn, 2017) have made deeper investigation into the effect
of the randomness of the word2vec models on the reliability
of these models. They showed that the most similar words
for an input word are highly affected by changing the ran-
dom seed concluding that the results of these models aren’t
reliable enough and are sensitive to the seed.
Additionally, training word2vec models from scratch and
tuning them seemed better than using the pretrained models
even if these pretrained models used much larger corpora.
Word2vec models require the usage of relatively large un-
tagged corpora. Fares et al. (2017) managed to train a
word2vec model for languages with limited resources such
as: Norwegian, Uyghur, Latvian and Irish. Despite the
fact that these models might not be able to fully capture
the semantic meanings of languages, they prove that train-
ing word embedding models for low-resourced languages
is doable given that a moderately large untagged corpus is
available which seems to be possible even for languages
like Irish which has about 1,171,000 users according to Eth-
nologue.
Finally, it was found that all the reference methods per-
formed better than the random method. This indicates that
even having a simple heuristic for sorting the analyses is an
improvement to the unweighted morphological analyzer.

7. Conclusion
The paper explores exploiting the word2vec model’s (as an
embedding model) ability to capture the semantic similari-
ties between words for disambiguating the results of a mor-
phological analyzer. This method proved to be useful for
both morphological analysis and tagging tasks. Our novel
word2vec-based method performed better than the basic
unsupervised reference models. And despite the fact that
it didn’t improve over the supervised unigram method, it
proved to be able to improve the analyses order and con-
sequently the FST’s accuracy without relying on manually

tagged corpora. This method was very successful in dis-
ambiguating English analyses but its performance dropped
for morphologically complex languages like Kazakh and
Serbo-Croatian. We have also shown that directly weight-
ing the analyses of words instead of relying on the context
to disambiguate the results is a successful technique to de-
ploy.
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